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ABSTRACT

In the near future, the need for portable multi-antenna wireless devices supporting

high data-rates in a harsh mobile environment is anticipated. Typically, in this sce-

nario, the underlying wireless channels are time- and frequency selective, hence dou-

bly selective (DS). Multicarrier modulation (MCM) schemes, wherein data is split

into sub-streams and transmitted on a set of subcarriers in parallel, is frequently

used on wireless communication systems. DS channels generate both inter-symbol

interference (ISI) as well as inter-carrier interference (ICI) for MCM transmissions,

thereby making the design of MCM receivers a challenging task. The challenge is

compounded by strict computational power constraints as a result of the demand for

light, portable, low-power devices, and by the lack of channel state information (CSI)

in practical wireless receivers. Local subcarrier processing (LSP) using CSI acquired

via pilot-aided channel estimation is arguably the most popular MCM receiver design

technique. The LSP constraint allows the use of only a small subset of local ob-

servations and dominant ICI coefficients to retrieve information transmitted on each

subcarrier. The characterization of performance limits imposed by the LSP constraint

on generic MCM schemes serves as the primary motivation for this dissertation.

We characterize a lower-bound on the ergodic LSP-constrained achievable-rate of

channel-estimation based generic multi-antenna MCM receivers operating over DS
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channels. In doing so, we assume the use of pilot-aided MCM transmission and inde-

pendent and identically distributed (i.i.d.) Gaussian codebooks. We use this lower-

bound to evaluate the high-SNR spectral efficiency in two distinct regimes of high

signal-to-noise ratio (SNR). In the regime where practical wireless systems are likely

to operate, we find that multiple receive antennas are both necessary and sufficient to

achieve spectral efficiency when i.i.d. Gaussian codebooks are used. There is another

regime of even higher SNRs (unlikely for practical wireless systems to be operating

in) where residual ICI and ISI components result in an achievable-rate ceiling. We

also characterize a trade-off between LSP-constrained performance and complexity.

This LSP-constrained achievable-rate metric is a versatile tool for analysis and

design of MCM systems over DS channels. As an example, we use this metric to

compare the performance of various MCM schemes under a reception complexity

constraint. As yet another example, we design novel LSP-constrained achievable-rate

maximizing beamforming and combining vectors for multiple-input multiple-output

(MIMO) orthogonal frequency division multiplexing (OFDM) systems operating on

DS channels.

Channel estimation errors are a major hindrance to the performance of MCM re-

ception over DS channels. We show that channel re-estimation coupled with successive-

decoding can be applied to reduce the effect of channel estimation errors on achievable-

rate performance over DS channels. Specifically, we show that the channel re-estimation

based approach is also spectrally efficient and provides a performance boost over “one-

shot” channel estimation approaches.
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columns within Ĥk(i) form the dominant ICI matrix ˆ̄Hk(i). . . . . . 38

4.1 Quasi-banded channel matrix. . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The modulation pulse {an} and demodulation pulse {bn} used. . . . . 56

4.3 The effect of channel estimation error tr(Σcee)/N on the observations

for pilot spacing Np = 4, Np = 8 and Np = 16. . . . . . . . . . . . . . 57

4.4 The interference variance tr(Σv(i))/N , labeled Eff. Noise, and its com-
ponents: the variance of the additive noise tr(Σw(i))/N , labeled Noise;

the residual ICI tr(Σwrici(i))/N , labeled RICI; the ISI tr(Σwisi(i))/N , la-

beled ISI; and the effect of channel estimation error tr(Σcee)/N , labeled
CEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Performance of LSP and GSP on the surrogate MCM system for (a)

Nr = 1, (b) Nr = 2 and (c) Nr = 3. . . . . . . . . . . . . . . . . . . . 59

4.6 The rate-complexity trade-offs with Nr = 2 at two SNRs. . . . . . . . 60

4.7 Lower-bounds on LSP-constrained achievable rate of CP-OFDM, jointly
optimized max-SINR MCM, and Gaussian pulsed MCM scheme for a

SIMO-MCM system with Nr = 2 receive antennas and N = 128 sub-
carriers for Dh = Dh = 1. . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



5.1 Structure of MIMO subcarrier coupling matrix Ĥ(i) for the surrogate
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CHAPTER 1

INTRODUCTION

1.1 Wireless Channels

Wireless links are a pivotal component of existing and future communication in-

frastructure. Communicating over wireless links poses two main challenges.

On one hand, reflections off physical objects create multiple paths between trans-

mitter and receiver. Consequently, the receiver observes the sum of several delayed

and phase-shifted echoes of the transmitted signal. This phenomenon is commonly

called multipath fading [1]. When the delay spread of the paths is comparable to

the transmitted symbol duration, energy from one symbol spills over into observa-

tions for neighboring symbols. This effect is called inter-symbol interference (ISI).

Large delay-spreads imply that the channel’s frequency response changes over the

bandwidth of the transmitted signal. Thus, ISI causing channels are often called

“frequency selective” channels.

On the other hand, the transmitter, the receiver and the reflectors may individu-

ally be in motion in a wireless environment. In a mobile setting, characteristics (i.e.,

delays and phase-shifts) of each echo observed at the receiver may change appreciably

over a few symbol durations. In this scenario, the channel is called “time selective”.

1



If a pure tone is transmitted over a time selective channel, the receiver observes a

band of frequencies. Furthermore, if symbols are transmitted on closely spaced carrier

tones over a time selective channel, symbols on one tone contaminate observations

for neighboring tones at the receiver. This effect is called inter-carrier interference

(ICI) [2–5].

1.1.1 Doubly Selective Wireless Channels

A wireless channel that is both time- and frequency selective is called doubly

selective (DS). Next generation systems, expected to support high data-rate services

in mobile environments, have to be designed for the DS channel. The principal

challenge in communicating over the DS channel is combating/exploiting ICI and ISI

simultaneously. In this dissertation, we focus on communication over DS wireless

channels.

Popularly, DS channels are modeled as noisy linear time-varying systems. In

such a noisy linear time-varying system, the received sequence can be written as a

convolution between the transmitted sequence and the time-varying channel impulse

response that has been corrupted by additive Gaussian noise. A number of DS channel

models have been proposed. For instance, Bello proposed the wide-sense stationary

uncorrelated scattering (WSSUS) channel model in [6]. An alternative approach is to

represent the DS wireless channel in terms of a truncated Fourier basis as seen in [7–

9]. The resulting model is popularly called the complex-exponential basis expansion

model (CE-BEM) for a DS channel.

The maximum Doppler frequency measures the rate of time-variations of a DS

channel, where a higher maximum Doppler frequency implies rapid time-variations.
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Mobility being the cause of time-variations in a wireless channel, the maximum

Doppler frequency is a function of the velocities of the communicating devices and

reflectors. The maximum Doppler frequency is also a function of the transmission

carrier frequency.

The use of multicarrier modulation (MCM) for communication over DS channels

is popular, and serves as the primary focus of this dissertation.

1.2 Multicarrier Modulation

In MCM, the information stream is split into several substreams and modulated

on a set of subcarriers in parallel. These modulated subcarriers are transmitted after

being shaped by a possibly non-rectangular modulation pulse. At the receiver, the

observations are demodulated using another possibly non-rectangular demodulation

pulse.

Cyclic-prefixed orthogonal frequency division multiplexing (CP-OFDM), [6,7], is

perhaps the most popular MCM scheme. On purely frequency-selective channels, CP-

OFDM creates parallel non-interfering channels – one on each subcarrier, thereby fa-

cilitating simple reception strategies. Unfortunately, on the DS channel, CP-OFDMs

subcarriers interfere. Moreover, the rectangular CP-OFDM pulses imply that the

side-lobes of the subcarrier spectra decay slowly with increasing frequency distance.

The resulting ICI pattern necessitates the use of expensive equalization techniques at

the receiver.

Among the most popular MCM schemes for communication over the DS channel

are those based on time-frequency shifts of prototype pulses, e.g., [10–15]. Matheus

and Kammeyer [16,17] proposed the use of dilated Gaussian prototype pulses with the
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aim of suppressing ICI and/or ISI. Kozek and Molisch [12] designed non-rectangular

pulses for robustness against ISI/ICI using knowledge of the channel cross-ambiguity

function. Strohmer and Beaver [15] used a similar approach, but used pulses gener-

ated by a Gabor basis instead. Vahlin and Holte [18] designed pulses for an offset

quadrature amplitude modulation (OQAM) OFDM system to reduce interference to

adjacent frequency bands. Slimane [19] designed non-rectangular pulsed OFDM to

reduce peak-to-average power ratio. Schniter [20] proposed a receiver for CP-OFDM

using ISI-suppressing demodulation pulses. Hunziker and Dahlhaus [21] proposed a

scheme using a Gaussian modulation pulse that minimized an out-of-target ISI/ICI

metric for a purely frequency-selective and purely time-selective channels. In our

previous work [22,23], we designed MCM pulses for the WSSUS DS channel to shape

ISI/ICI into a desired target pattern.

1.3 Motivation

In DS channels, implementation of the optimal MCM demodulator is made diffi-

cult by the complicated structure of the ISI/ICI response. For example, the number

of ISI/ICI coefficients grows with the square of the number of subcarriers, which it-

self may be quite large (e.g., > 100) in practical systems. The number of ISI/ICI

coefficients increases further when multiple antennas are used. For this reason, prac-

tical receiver designs have been proposed that use only the dominant ISI/ICI co-

efficients. Examples include the iterative likelihood maximization in [21], the two-

level block DFE structure proposed in [24], efficient sequence detection algorithms

in [25], iterative minimum mean squared error (MMSE) and iterative maximum like-

lihood (ML) equalizers in turbo configuration [22, 23], as well as the receiver designs
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in [16, 20, 26–30]. In the typical case of narrowband subcarriers and band-limited

Doppler spreading, the dominant ISI/ICI coefficients are those that correspond to

interference from neighboring subcarriers; both ISI and ICI from far-away subcar-

riers is much weaker. This claim is justified, e.g., by the ISI/ICI analysis of CP-

OFDM systems in [2, 4, 28, 31–33] and Weyl-Heisenberg systems (e.g., those using

time/frequency shifts of prototype pulses) in [5, 15, 21]. For these reasons, we are

interested in characterizing the performance of MCM receivers that consider inter-

ference from only neighboring subcarriers, i.e., that operate under a local subcarrier

processing (LSP) constraint. While previous studies focused on particular schemes

and particular LSP-constrained MCM systems (e.g., [8, 21, 24, 28, 34]), we are in-

terested in general performance limits imposed by the LSP constraint. Hence, we

undertake an information-theoretic approach to the study of LSP constrained MCM

reception.

Most practical wireless systems are non-coherent, i.e., channel state information

(CSI) is not available a priori at the receiver. A receiver operating over a DS channel

has to update CSI regularly due to time-variations in the channel. These CSI updates

can require significant computational burden and form a critical component of receiver

design. A popular non-coherent receiver design strategy is to use channel estimation

for pilot-aided transmission (PAT) [35]. In PAT, the transmitted sequence consists

of “pilot” symbols that are known a priori at the receiver. These pilots are used

to acquire CSI at the receiver via channel estimation algorithms. PAT schemes are

popular with the DS channel, (e.g., see [23, 36–39]). Information-theoretic analysis

of PAT schemes can be found in [36, 40–45] and specifically for the (CE-BEM) DS

channel in [46–49]. Realizing the importance of acquiring CSI in a practical wireless
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receiver for DS channels, we consider MCM PAT schemes with channel-estimation

based reception for our investigations.

We characterize the LSP-constrained achievable-rate of multi-antenna MCM re-

ception for PAT over non-coherent WSSUS Rayleigh-fading DS channels. In our

analysis, we assume the use of i.i.d. Gaussian codebooks only. This LSP-constrained

achievable rate is a versatile tool in the design and analysis of practical MCM systems

over DS channels. We demonstrate this versatility by presenting a few applications

of the LSP-constrained achievable-rate metric in Section 1.4.

1.4 Our Contribution

1.4.1 LSP-Constrained Achievable-Rate

We find that the statistical properties of interference observed when decoding

under the LSP-constraint makes achievable-rate analysis difficult. As an alternative,

a surrogate system model that approximates the MCM system is derived. A lower-

bound the LSP-constrained achievable-rate of MCM reception using this surrogate

system is then derived [50]. We analyze the derived lower-bound at high signal-to-

noise-ratio (SNR), since this is the practical operating regime for most MCM systems.

It is convenient to split our analysis of the LSP-constrained achievable-rate in two

regimes, defined by the relative levels of residual ICI, ISI, channel estimation error

and additive noise. We define Regime 1 as the range of SNRs for which the levels of

additive noise are much larger than those of residual ICI (RICI) and ISI, and Regime

2 as the range of SNRs for which the levels of RICI and ISI are much larger than

that of additive noise.
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In Regime 1, it is seen that the use of multiple receive antennas is necessary

and sufficient for “spectrally efficient” LSP-constrained MCM reception when i.i.d

Gaussian codebooks are used. Here, “spectrally efficient” refers to the pre-log factor

of the LSP-constrained achievable-rate expression being equal to the prelog-factor

for the achievable-rate expression for global subcarrier processing (GSP) reception, a

strategy employing all observations and all ICI coefficients. Note that the use of a

single receive antenna is insufficient with LSP, whereas it is sufficient with optimal

reception [51]. Furthermore, this lower-bound on the LSP-constrained achievable rate

may be tightened by incorporating more observations and ICI coefficients in LSP at

the expense of increased implementation complexity.

Finally, in Regime 2, we observe that the presence of non-vanishing ISI / RICI

causes an achievable-rate ceiling for LSP. However, we demonstrate that judicious

selection of MCM system parameters can ensure that Regime 2 lies beyond the op-

erating SNR range of practical wireless systems.

1.4.2 Choosing MCM System Parameters

The choice of modulation and demodulation pulses is a critical component of MCM

system design. For a given set of channel spreading characteristics, the number of

dominant ICI (and ISI) coefficients is a function of the MCM pulse shape as well as

the time-frequency spacing between the MCM pulses. The time-frequency spacing

affects the system’s spectral efficiency and hence must be chosen with care. The

pulse shape determines the time-frequency dispersion of the pulses, which affects the

number of significant ISI/ICI coefficients. It also determines the correlation between

these coefficients, which affects the diversity that can be exploited by the decoder. In
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short, MCM schemes should be designed with decoding complexity, spectral efficiency,

as well as diversity exploitation in mind. We are, however, not aware of any MCM

design strategies that attempt to address all three of these aspects simultaneously. For

example, the classical MCM schemes that minimize ISI/ICI subject to (bi)orthogonal

pulse constraints (e.g., [10–12,15]) admit good ISI/ICI suppression only at relatively

low spectral efficiencies (as a consequence of the Balian-Low Theorem [52]) and never

consider coefficient correlation. As another example, modern MCM schemes can

attain much higher spectral efficiencies while maintaining only a small number of non-

negligible ISI/ICI coefficients (e.g., [20,22,30,53]) but do so without explicit concern

for ISI/ICI coefficient correlation. As yet another example, so-called “maximum

diversity” pulses [8,54] have been proposed at the price of low spectral efficiency and

high implementation complexity.

The lower-bound on LSP-constrained achievable-rate allows us to incorporate all

three design metrics, i.e., implementation complexity, spectral efficiency, as well as

coefficient correlation. In [55], we compare the lower-bounds on LSP-constrained

achievable rates for a set of MCM schemes. By proper choice of LSP parameters, we

ensure identical reception complexity during this comparison.

1.4.3 Beamforming for MIMO-OFDM

The last decade has seen the emergence of multiple-input multiple-output (MIMO)

systems that provide large spatial diversity gains [56–58]. MIMO systems promise a

diversity advantage proportional to the product of the number of transmit and receive

antennas. Space-time codes [56, 57] and, more recently, lattice codes [59] have been

shown to take advantage of spatial diversity. When channel state information (CSI)
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is available at the transmitter, one can also combine traditional coding techniques

with beamforming and antenna combining to leverage spatial diversity (see [58, 60]

and references therein). Spatial diversity can also be harnessed in a MIMO-OFDM

system via beamforming and combining (see, e.g., [61–63]).

One of the central assumptions in traditional MIMO-OFDM beamforming and

combining is that subcarriers do not interfere and, hence, the SNR for each subcar-

rier can be maximized independently. However, DS channels cause subcarriers to

interfere with each other, rendering traditional MIMO-OFDM beam-forming strate-

gies ineffective. We design beamforming and combining strategies for MIMO-OFDM

operating over DS channels aimed at maximizing the LSP-constrained achievable

rate [64]. These novel MIMO-OFDM beamforming and combining strategies are ef-

fective even in the presence of significant ICI, and also show robustness to channel

prediction errors.

1.4.4 Successive Decoding with Channel Re-Estimation

We have used a “one-shot” PAT scheme in our studies, whereby the receiver

computes a pilot-aided channel estimate and subsequently uses it for coherent data

decoding. Channel estimation error acts as additional noise that degrades decoding

performance and thus the rate of reliable communication [40–42]. Though channel

estimation can be improved by allocating more transmission resources (e.g., rate and

power) to pilots, doing so limits the resources that remain for data transmission.

As an improvement to one-shot estimation/decoding of PAT, several authors have

considered iterative (i.e., “turbo”) estimation/decoding strategies, whereby soft de-

coder outputs are employed to refine channel estimates, which can then be used for
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improved decoding, and so on [65–68]. Such systems are generally suboptimal and

difficult to analyze.

More recently, the use of block interleaving with successive decoding has been

proposed as a more structured approach to joint estimation/decoding of PAT [49,69].

There the idea is to split the information stream into independently coded substreams

and decode them successively. While a pilot-aided channel estimate is used to decode

the first substream, reliably decoded symbols can be employed to refine the channel

estimates used by later decoding stages. For long coding blocks and properly chosen

substream rates (e.g., assuming known channel statistics), each substream can be

reliably decoded, greatly simplifying the design and analysis of such systems. PAT

with successive decoding has been used successfully in time-selective and frequency-

selective SISO channels [69] as well as time-selective MIMO channels [49].

In [70], we propose a scheme for non-coherent communication over doubly (i.e,

time- and frequency-) selective fading channels that uses successive decoding and

channel re-estimation at the receiver. Assuming perfect decoding of each stream,

we calculate an achievable-rate lower-bound and use it to infer a set of substream

rates which are sufficient to ensure perfect decoding. We also characterize the high-

SNR spectral efficiency of the proposed communication strategy. we consider the

case of transmissions over a CE-BEM DS channel in further detail. For this CE-

BEM DS channel, we design a suitable pilot pattern and through it verify that the

pre-log factor of the high-SNR achievable rate expression coincides with that of the

ergodic capacity [47,71]. We also propose a pilot/data power allocation strategy that

maximizes a lower-bound on the achievable rate.
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1.5 Organization

In Chapter 2, we describe the generic MCM modulation and demodulation pro-

cedure. We present details of the WSSUS and CE-BEM DS channel models. We also

describe the process of incorporating multiple receive and transmit antenna into the

MCM system model.

In Chapter 3, we describe the construction of the transmission sequence from in-

formation bits through coding, interleaving and insertion of pilots. We present details

of the one-shot channel estimation procedure using transmitted pilot MCM symbols.

Finally, we define and present details of the LSP constraint on MCM reception. We

develop a model to analyze MCM reception under the LSP constraint. We also in-

vestigate the statistics of the interference observed for LSP-constrained reception.

We derive and characterize the performance of reception in single-input multiple-

output (SIMO) MCM systems under an LSP constraint in Chapter 4. In order to do

so, we derive a surrogate system model that makes analysis tractable. We then define

SNR regimes based on interference characteristics. Using the surrogate model, we

derive a lower-bound on the LSP-constrained achievable-rate, and study the spectral

efficiency of LSP-constrained MCM reception. We explore a trade-off between LSP

constrained performance and LSP complexity, and compare various MCM schemes

under a complexity constraint.

In Chapter 5, we consider the MIMO-OFDM system over DS channels. We de-

signing novel beamforming and combining strategies aimed at maximizing the LSP-

constrained achievable rate.

In Chapter 6, we explore how channel re-estimation improves performance over DS

channels. We also present a pilot-data power allocation strategy for communication

11



systems over CE-BEM DS channels that use channel re-estimation and successive

decoding at the receiver.

Finally, conclusions are presented in Chapter 7.

1.6 Notation Used

In the dissertation, we use (·)T to denote transpose, and (·)H the conjugate trans-

pose. We use [B]m,n to denote the element in the mth row and nth column of B, where

row/column indices begin with zero. Further, we use IK to denote the K ×K iden-

tity matrix, eK(k) to denote its kth column. D(a0, a1, · · · , aK) and D(a) denote the

square matrix constructed by placing the elements of a = [a0, a1, · · · , aK ]T along the

leading diagonal. Similarly, Db(A0, · · · ,AK) creates a block-diagonal matrix from

matrices {Ak}Kk=0, where {Ak}Kk=0 have the same dimensions. On the other hand,

diagk(A) stacks the elements on the k-th diagonal of matrix A into a column vector.

The trace and Frobenius norm of a matrix and the norm of a vector are denoted

by tr(·), || · ||F and || · ||, respectively. The Kronecker product and element-wise

product of two matrices are denoted by operators ⊗ and ⊙, respectively. Also, δl

denotes the Kronecker delta with argument l, 〈·〉N the modulo-N operation, and C

the set of all complex numbers. Expectation is denoted by E(·), autocovariance by

Σb := E(bbH) − E(b)E(bH), and crosscovariance by Σa,b := E(abH) − E(a)E(bH)

The mutual information (MI) between two random entities X and Y is denoted by

I(X;Y ). When conditioned on a realization of the random entity Z, MI is denoted

by I (X;Y | Z). Finally, we abbreviate the phrase “without loss of generality” by

“w.l.o.g.”, and the phrase “with probability one” by “w.p.1” for brevity.
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CHAPTER 2

SYSTEM MODEL

We develop the mathematical model for communication using a generic MCM

system. We first present details of the modulation strategy used in MCM transmitters.

The transmitted MCM signal experiences a DS channel en route to the receiver. We

describe two popular channel models used for such DS channels. The receiver has

to demodulate a received sequence that is a noisy and faded version of the MCM

transmit sequence. The details of this demodulation procedure are presented next.

Finally, we describe extensions to this model to incorporate multiple receive antennas

and a multi-antenna transmitter employing beamforming.

2.1 Multicarrier Modulation

At each multicarrier symbol index i ∈ Z, N scalar symbols {sk(i)}N−1
k=0 are collected

to form a multicarrier symbol s(i) = [s0(i), . . . , sN−1(i)]
T , where sk(i) is modulated on

the k-th subcarrier. These scalar symbols are obtained by coding and interleaving the

information sequence and inserting pilot symbols for purposes of channel estimation.

The details of coding and interleaving are presented in Section 3.1, whereas the details

of the channel estimation procedure are presented in Section 3.3. The modulated

subcarriers are then shaped by a (possibly non-rectangular) modulation pulse {an}
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and transmitted. The transmitted sequence {tn} can then be expressed as:

tn =
∞∑

i=−∞
an−iNs

1√
N

N−1∑

k=0

sk(i)e
j 2π

N
(n−iNs−No)k. (2.1)

In (2.1), Ns is the symbol interval, so that a new multicarrier is transmitted every Ns

samples. Note that Ns > N corresponds to adding time domain guards of Ns − N

samples at the expense of a loss in spectral efficiency, Ns = N corresponds to full

Nyquist rate signaling and Ns < N corresponds to a overloaded system. Additionally

in (2.1), No ∈ {0, . . . , N − 1} delays the subcarrier origin relative to the pulse origin.

2.2 Doubly-Selective Channel Models

The transmitted sequence encounters a doubly selective (DS) wireless channel en

route to the receiver. This channel is described by its time-variant discrete impulse

response hn,l, defined as the time-n response to an impulse applied at time n− l. We

assume a causal impulse response that has a maximum length of Nh samples. The

additive noise corrupted and faded transmit sequence observed at the receiver can

then be expressed as

xn =

Nh−1∑

l=0

hn,ltn−l + νn, (2.2)

where {νn} is a circular white Gaussian noise (CWGN) sequence such that E{νn1νn2} =

σ2δn1−n2 .

Two DS channel models are used in this dissertation.

2.2.1 WSSUS Rayleigh-Faded Model

The wide-sense stationary uncorrelated scattering (WSSUS) Rayleigh-faded chan-

nel model is used in Chapters 3 through 5.In this model, each lag-tap of the channel is
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modeled as complex Gaussian random sequence with wide-sense stationary statistics,

i.e., stationary first- and second order statistics. The statistics of the DS channel

change rather slowly, and wide-sense stationarity provides a good “local” statistical

characterization of each lag-tap of the channel. Moreover, a rich scattering environ-

ment is considered that leads to mutually uncorrelated channel lag-taps. Then the

WSSUS channels can be statistically characterized by

E
{
hn1,l1h

∗
n2,l2

}
= σ2

l1φn1−n2δl1−l2 . (2.3)

In (2.3), σ2
l := E{|hn,l|2} denotes the variance (or, power) of the l-th lag-tap. Further-

more, {φn} is the normalized auto-correlation sequence, i.e., φ0 = 1, and is dependent

on the propagation model used. For instance, when isotropic scattering [1] with a

single-sided maximum Doppler spread of FDop is assumed, φn = J0

(
2πFDopTsn

)
, where

J0 denotes the zero-th order Bessel function and Ts the sampling interval.

2.2.2 CE-BEM Model

We also consider DS channels which obey a complex-exponential basis expan-

sion model (CE-BEM) in Chapter 6. In this model, each lag is represented in

terms of complex-exponential basis via a truncated Fourier series expansion. The

Fourier series coefficients, so obtained, are modeled as uncorrelated complex Gaus-

sian random variables. These coefficients are commonly called the CE-BEM co-

efficients. Again, a rich scattering environment is considered, which implies that

the CE-BEM coefficients are uncorrelated across lag-taps. The DS channel is then

characterized by the mutually uncorrelated complex-Gaussian CE-BEM coefficients

{
ξm,l : m ∈ {−D, . . . , D}, l ∈ {0, . . . , Nh − 1}

}
, i.e,

E
[
ξm1,l1ξ

∗
m2,l2

]
= σ2

m1,l1
δm1−m2δl1−l2 . (2.4)
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Here, σ2
m,l is the variance of the m-th CE-BEM coefficient for the l-th lag-tap of the

DS channel. The impulse response of the DS channel can then be defined in terms of

the CE-BEM coefficients by

hn,l =
1√
N

D∑

m=−D
ξm,l e

j 2π
N
m(n−l). (2.5)

It is clear from (2.5) that D measures the maximum single-sided frequency dispersion

produced by DS channel and can be related to the single-sided maximum Doppler

spread FDop via

D ≈ ⌈FDopTsN⌉. (2.6)

Recall that Ts represents the sampling interval for the communication system.

We assume the wireless DS channels to be energy preserving throughout the dis-

sertation. For WSSUS modeled wireless DS channels, this implies that

Nh−1∑

l=0

σ2
l = 1. (2.7)

When we have a uniform power-delay profile, as is assumed for simplicity through

most of the dissertation, (2.7) implies that

σ2
l =

1

Nh
, l ∈ {0, · · · , Nh − 1}. (2.8)

Similarly for energy preserving CE-BEM DS channels, we have

Nh−1∑

l=0

D∑

m=−D
σ2
l,m = 1. (2.9)

Moreover, when we have a uniform Doppler-delay profile, (2.9) implies that

σ2
l,m =

1

Nh(2D + 1)
, (2.10)

for all l ∈ {0, · · · , Nh − 1} and m ∈ {−D, · · · , D}.
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2.3 Multicarrier Demodulation

The received sequence is demodulated during each multicarrier symbol inter-

val at the receiver. In order to understand the demodulation process, we define

xn(i) := xiNs+n, νn(i) := νiNs+n, and hn,l(i) := hiNs+n,l as the received sequence, the

CWGN sequence and the channel impulse response for multicarrier symbol index i,

respectively. With these definitions, equations (2.1) and (2.2) imply

xn(i) = νn(i) +

Nh−1∑

l=0

hn,l(i)tiNs+n−l (2.11)

= νn(i) +

Nh−1∑

l=0

hn,l(i)

×
∞∑

q=−∞
a(i−q)Ns+n−l

1√
N

N−1∑

k=0

s
(q)
k ej

2π
N

(n−l+iNs−qNs−No)k (2.12)

= νn(i) +

Nh−1∑

l=0

hn,l(i)

×
∞∑

q=−∞
aqNs+n−l

1√
N

N−1∑

k=0

sk(i− q)ej
2π
N

(n−l+qNs−No)k. (2.13)

The receiver employs the demodulation pulse {bn} to generate {rd(i)}N−1
d=0 the obser-

vation at subcarrier index d during multicarrier symbol index i:

rd(i) =
1√
N

∞∑

n=−∞
xn(i)bne

−j 2π
N
d(n−No). (2.14)

Plugging (2.13) into (2.14), we find

rd(i) =
∞∑

q=−∞

N−1∑

k=0

Hd−k,k(i, q) sk(i− q) + wd(i). (2.15)

In (2.15),

wd(i) =
1√
N

∞∑

n=−∞
bnνn(i)e

−j 2π
N
d(n−No) (2.16)
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is colored frequency-domain noise, and

Hd,k(i, q) =
1

N

∞∑

n=−∞

Nh−1∑

l=0

hn,l(i)bnaqNs+n−l e
−j 2π

N
d(n−No)e−j

2π
N
k(l−qNs) (2.17)

subcarrier coupling coefficients. Equation (2.15) indicates that the subcarrier cou-

pling coefficient Hd,k(i, q) can be interpreted as the response, at multicarrier symbol

index i at subcarrier index k + d, to an impulse applied at multicarrier symbol in-

dex i− q and subcarrier k. Observe that Hd,k(i, q) is a function the modulation and

demodulation pulses {an} and {bn}. Note that {Hd,k(i, q)}q 6=0} models the interfer-

ence across multicarrier symbols and is referred to as inter symbol interference (ISI)

coefficients, whereas, {Hd,k(i, 0)}d6=0 models the interference across subcarriers of an

MCM symbol and is referred to as inter-carrier interference (ICI) coefficients.

In practice, we use finite-duration causal pulses {an} and {bn} of length Na and

Nb, respectively. This implies that only a finite number of terms in the sequence

{Hd,k(i, q)}q∈Z will be non-zero. In general, H
(m)
d,k (i, q) may be non-zero only for

q ∈ {−Lpre, . . . , Lpst}, where

−LpstNs +Na − 1 +Nh − 1 ≥ 0

⇒ Lpst ≤ Na +Nh − 2

Ns

⇒ Lpst =

⌊
Na +Nh − 2

Ns

⌋

, (2.18)

and

LpreNs ≤ Nb − 1

⇒ Lpre =

⌊
Nb − 1

Ns

⌋

. (2.19)
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We can now define the observation vector for the i-th multicarrier symbol index

r(i) := [r0(i), . . . , rN−1(i)]
T , the frequency domain noise vector for the i-th multicar-

rier symbol index w(i) := [w0(i), . . . , wN−1(i)]
T , and subcarrier coupling matrices for

the i-th multicarrier symbol index [H(i, q)]d,k := Hd−k,k(i, q). Using these definitions,

(2.15) can be re-written in matrix-vector form as

r(i) =

Lpst∑

q=−Lpre

H(i, q)s(i− q) + w(i) (2.20)

It is straightforward to observe from (2.20) that {H(i, q)}q 6=0 represent ISI whereas

off-diagonal elements of H(i, 0) represent ICI. Note that, with

ν(i) := [ν0(i), . . . , νNb−1(i)]
T , (2.21)

we have

w(i) = FNJ D(b)ν(i) (2.22)

J :=

[

0N−No×No
IN̄oIN · · · IN

INo
0N−N̄o×N̄o

]

, (2.23)

where FN denotes the unitary N -DFT matrix, N̄o := 〈Nb − No〉N , and the number

of IN matrices in J is ⌊Nb−No

N
⌋. Thus the covariance of the frequency domain noise

vector is

Σw(i) := E{w(i)w(i)H}

= FNJ D(b) E
{
ν(i)ν(i)H

}
D(b∗)JHFH

N

= σ2
wFNJ D(b)2JHFH

N . (2.24)

19



2.4 CP-OFDM: An Example MCM System

Our description of the MCM system is generic. As an example, we now show

that the popular CP-OFDM system [72] follows from our MCM system model for an

appropriate choice of system parameters.

Recall that the incorporation of an Nh-length cyclic-prefix implies that an MCM

symbol is transmitted every N + Nh − 1 samples in a CP-OFDM system, so that

Ns = N + Nh − 1. The CP-OFDM modulator uses a rectangular modulation pulse

with Na = Ns so that

an =

{

1 0 ≤ n ≤ Ns − 1,

0 else.
(2.25)

The cyclic prefix is incorporated by setting No = Ns − N . At the receiver, the

cyclic prefix is removed prior to demodulation with a Nb = N -length rectangular

demodulation pulse

bn =

{

1 No ≤ n ≤ Ns − 1,

0 else.
(2.26)

Note that Ng = Ns − N is analogous to the CP-OFDM time domain guard interval.

It is straightforward to show that the modulation pulse in (2.25) and demodulation

pulse in (2.26) imply that Lpre = Lpst = 0, i.e., ISI is completely suppressed. Thus

for the CP-OFDM case, (2.20) reduces to

r(i) = H(i, 0)s(i) + w(i). (2.27)

It is generally assumed that CP-OFDM encounters white frequency domain noise.

By plugging (2.26) in (2.24), we verify that indeed Σw(i) = σ2IN for CP-OFDM.
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2.5 Incorporating Multiple Antennas

In this section, we show that multiple receive or transmit antennas can be incor-

porated into our MCM system model through simple modifications.

2.5.1 Single-Input Multiple-Output (SIMO) Systems

We first look at the scenario when transmission from a single transmit antenna

is received through Nr > 1 receive antennas. Such systems are popularly known as

single-input multiple-output (SIMO) systems. The received sequence x
(nr)
n (i) at the

nr-th receive antenna for multicarrier symbol index i can be defined in similar fashion

to (2.2) as

x(nr)
n (i) :=

Nh−1∑

l=0

h
(nr)
n,l (i)tn+iNs−l + ν(nr)

n (i). (2.28)

In (2.28), h
(nr)
n,l (i) denotes the response at the nr-th receive antenna at time n+ iNs to

an impulse transmitted at time n+ iNs− l and {ν(nr)
n (i)} denotes samples of additive

circular white Gaussian noise (CWGN) at the nr-th receive antenna. The received

sequence is demodulated using the demodulation pulse {bn} at each receive antenna.

After demodulation with {bn} at the nr-th receive antenna, the observation at the

d-th subcarrier output r
(nr)
d (i) for d ∈ {0, · · · , N − 1} can be expressed in similar

fashion to (2.20) as

r
(nr)
d (i) =

∞∑

q=−∞

N−1∑

k=0

H
(nr)
d−k,k(i, q) sk(i− q) + w

(nr)
d (i). (2.29)

In (2.29), the subcarrier coupling coefficient for the nr-th receive antenna H
(nr)
d,k (i, q) is

the response at subcarrier index k+d at the nr-th antenna to an impulse transmitted

on subcarrier k and multicarrier symbol i − q, whereas, w
(nr)
d (i) is the frequency
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domain noise observed at subcarrier index d at the nr-th receive antenna. These can

be defined in identical fashion to (2.17) and (2.16), respectively, as:

H
(nr)
d,k (i, q) =

1

N

∞∑

n=−∞

Nh−1∑

l=0

h
(nr)
n,l (i)bnaqNs+n−l e

−j 2π
N
d(n−No)e−j

2π
N
k(l−qNs), (2.30)

w
(nr)
d (i) =

1√
N

∞∑

n=−∞
bnν

(nr)
n (i)e−j

2π
N
d(n−No). (2.31)

Using (2.30), we define the subcarrier coupling matrix for the nr-th receive antenna

element-wise as
[
H(nr)(i, q)

]

m1,m2
= H

(nr)
m1,m1−m2

(i, q), and the SIMO subcarrier cou-

pling matrix as

H(i, q) =
Nr∑

nr=1

H(nr)(i, q) ⊗ eNr
(nr). (2.32)

Grouping the observations at each subcarrier output at the nr-th receive antenna

into r(nr)(i) :=
[
r
(nr)
0 (i), · · · , r(nr)

N−1(i)
]T

, we can define the observation for the i-th

multicarrier symbol as

r(i) =
Nr∑

nr=1

r(nr)(i) ⊗ eNr
(nr). (2.33)

Note that in r(i), observations are grouped by subcarrier index, i.e., in r(i), the

observations at theNr receive antenna at the k = 0-th subcarrier appear first, followed

by the Nr observations at the k = 1-st subcarrier, and so on. In similar fashion, we

group the noise terms into w(nr)(i) :=
[
w

(nr)
0 (i), · · · , w(nr)

N−1(i)
]T

and define the noise

vector

w(i) =

Nr∑

nr=1

w(nr)(i) ⊗ eNr
(nr). (2.34)

Using these definitions, the observation r(i) can be expressed in terms of the trans-

mitted MCM symbol vectors as

r(i) =

Lpst∑

q=−Lpre

H(i, q)s(i− q) + w(i). (2.35)
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Finally, we describe the statistical assumptions for the SIMO systems. We assume

that all spatial paths have independent fades, so that

E
[
h

(nr1 )

n1,l1
h

(nr2 )

n2,l2

∗]
= σ2

l1
φ(n1−n2)δ(l1−l2)δ(nr1−nr2). (2.36)

Furthermore, we assume that the noise at different receive antennas are also indepen-

dent, implying that

E
[
w(nr1 )(i)w(nr2 )(i)H

]
= Σw(nr)(i)δ(nr1−nr2 ), (2.37)

where Σw(nr)(i) is given by (2.24). We assume that noise observed at each receive

antenna has identical statistics. Then using (2.34) and (2.37), it is straightforward to

show that

E
[
w(i)w(i)H

]
= Σw(0)(i) ⊗ INr

. (2.38)

This concludes our discussion on modeling SIMO systems.

2.5.2 Beamforming MIMO Systems

We now describe an MCM system with multiple antennas at both transmitter and

receiver. Such a system is commonly referred to as a multiple-input multiple-output

(MIMO) system. In this dissertation, we only deal with beamforming MIMO-MCM

systems. At a beamforming multi-antenna MCM (MA-MCM) transmitter, the i-th

MA-MCM symbol sma(i) ∈ C
NNt is defined as sma(i) := [sma

0 (i)T , sma
1 (i)T , · · · , sma

N−1(i)
T ]T ,

where the entries of vector sma
k (i) ∈ C

Nt are modulated onto the k-th subcarrier at

the Nt transmit antennas. The set of beamforming vectors (BVs), {ck(i) ∈ CNt}N−1
k=0 ,

relate the i-th MCM symbol to the i-th MA-MCM symbol by

sma(i) = Db

(
c0(i), c1(i), · · · , cN−1(i)

)
s(i). (2.39)

23



Components of sma(i) are collected along the respective transmit antenna, modulated

using the MCM modulation technique described in Section 2.1 and transmitted. We

note here that to make transmit power constraints easier to handle, we use unit power

BF vectors, so that ||ck(i)|| = 1, for all k ∈ {0, · · · , N − 1} and for all i ∈ Z.

The received sequence at the nr-th receive antenna can be expressed in terms of

the Nt transmitted sequences {t(nt)
n }Nt

nt=1 in similar fashion as (2.28) by

x(nr)
n (i) :=

Nt∑

nt=1

Nh−1∑

l=0

h
(nr ,nt)
n,l (i)t

(nt)
n+iNs−l + ν(nr)

n (i). (2.40)

In (2.40), h
(nr ,nt)
n,l (i) denotes the response at the nr-th receive antenna at time n +

iNs to an impulse transmitted on the nt-th transmit antenna at time n + iNs − l.

Demodulation is identical to the SIMO system in Section 2.5.1. Then the frequency

domain observation r
(nr)
d (i) for d ∈ {0, · · · , N−1} can be expressed in similar fashion

to (2.20) as

r
(nr)
d (i) =

Nt∑

nt=1

∞∑

q=−∞

N−1∑

k=0

H
(nr ,nt)
d−k,k (i, q) [ck(i− q)]nt−1sk(i− q) + w

(nr)
d (i). (2.41)

In (2.41), the subcarrier coupling coefficient H
(nr,nt)
d,k (i, q) is the response at subcarrier

index k + d at the nr-th antenna to an impulse transmitted on subcarrier k and

multicarrier symbol i − q at the nt-th transmit antenna. Then in similar fashion as

(2.17), we obtain

H
(nr,nt)
d,k (i, q) =

1

N

∞∑

n=−∞

Nh−1∑

l=0

h
(nr ,nt)
n,l (i)bnaqNs+n−l e

−j 2π
N

[
d(n−No)+k(l−qNs)

]

.(2.42)

Using (2.42), we define the subcarrier coupling matrix for the nr-th receive and nt-th

transmit antenna pair element-wise as
[
H(nr ,nt)(i, q)

]

m1,m2
= H

(nr,nt)
m1,m1−m2

(i, q), and

the MIMO subcarrier coupling matrix H(i, q) by

H(i, q) =

Nt∑

nt=1

Nr∑

nr=1

H (nr,nt)(i, q) ⊗
[
eNr

(nr)eNt
(nt)

T
]
. (2.43)
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With the definitions of r(i), w(i), and sma(i) in (2.33),(2.34) and (2.39), respectively,

we obtain

r(i) =

Lpst∑

q=−Lpre

H(i, q)sma(i− q) + w(i) (2.44)

=

Lpst∑

q=−Lpre

H(i, q)Db

(

c0(i− q), · · · , cN−1(i− q)
)

s(i− q) + w(i). (2.45)

We again assume that all spatial paths experience uncorrelated fades, so that

E
[
h

(nr1 ,nt1)

n1,l1
h

(nr2 ,nt2)

n2,l2

∗]
= σ2

l1
φ(n1−n2)δ(l1−l2)δ(nr1−nr2)δ(nt1−nt2). (2.46)

This concludes our discussion on modeling beamforming MIMO systems.
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CHAPTER 3

TRANSMISSION AND RECEPTION STRATEGY

This chapter is devoted to describe processing done at the transmitter and receiver

of a SIMO-MCM system. We begin by a description of the pilot and code structure,

and follow it up by describing the reception strategy. The penultimate section presents

details of the channel estimation algorithm used. Finally, we formally define the LSP

constraint and develop a model to investigate its performance.

3.1 Code and Pilot Structure

We assume that the transmitter knows the channel and noise statistics, but not

their realizations. The transmitter codes information usingQdN zero-mean i.i.d Gaus-

sian codebooks of suitably long codeword length Nc. Rate allocation is detailed in

Section 6.2.2. For now, it suffices to say that the rates, functions of the channel and

noise statistics, are chosen to facilitate error-free decoding when Nc is sufficiently

large. The generated codewords are then interleaved. The interleaved codewords

are modulated into multicarrier symbols using the modulation technique described in

Section 2.1. These data-bearing multicarrier symbols are structured into frames by

embedding pilot multicarrier symbols. The constructed frames are then transmitted.

The details of this transmission strategy will now be provided.
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Recall that the channel coefficients are correlated across time. The interleaving is

assumed to be of sufficient depth to mitigate the effects of this time domain correlation

between the channel coefficients at the input to the decoder.

We define one transmission epoch (depicted in Fig. 3.1) to consists of a sequence

of Nc frames, where each frame comprises of Qc multicarrier symbols. To facilitate

the acquisition of channel state information (CSI) at the receiver, Qp = Qc − Qd

multicarrier symbols out of the Qc multicarrier symbols in a frame are assumed to

be known a priori at the receiver as pilot symbols, whereas the other Qd multicar-

rier symbols in the frame bear coded data. The arrangement of the pilot and data

multicarrier symbols in each frame can be described as follows: The QdN scalar data

symbols transmitted during a frame consist of one symbol from each of the QdN

codewords. The pilot symbol indices, Ip, and data symbol indices, Id, form a parti-

tion of {0, · · · , Qc − 1} with |Ip| = Qp and |Id| = Qd. We assume w.l.o.g. that the

first multicarrier symbol in each frame is a pilot, i.e., 0 ∈ Ip, and that there exists

at least max(Lpre, Lpst) data multicarrier symbols between every pair of pilot multi-

carrier symbols. This should be easy to satisfy since typically Lpre = Lpst = 1. The

arrangement of scalar symbols can be described as follows: sk(ifQc + io), the scalar

symbol modulated on the k-th subcarrier of the io-th multicarrier symbol in the if -th

frame, is a scalar symbol of the (ψ(io)N + k)-th codeword when io ∈ Id. Otherwise,

when io ∈ Ip, sk(ifQc + io) is a pilot symbol. Here ψ : Id → {0, · · · , Qd− 1} is a one-

to-one mapping that enumerates the data multicarrier symbols in a frame. Clearly,

then, QdN complete codewords are transmitted over each epoch of Nc frames.

In this dissertation, a transmit power constraint ensures that E
{
s(i1)s(i2)

H
}

=

INδi1−i2 when i1, i2 ∈ Id and ||s(i)||2 = N when i ∈ Ip.
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3.2 Pilot-Aided Reception

The receiver is assumed to know the channel and noise statistics, but not their re-

alizations, and as well as the transmitted pilot symbols. At each multicarrier symbol

interval, the receiver collects a multicarrier observation vector r(i). Once the mul-

ticarrier observation vectors {r(i)}QcNc−1
i=0 for an Nc frame epoch has been collected,

the receiver generates pilot-aided LMMSE estimates of the dominant ICI coefficients

of data-bearing multicarrier symbols, i.e., {Ĥ(ifQc+ io) : 0 ≤ if < Nc, io ∈ Id} using

the procedure detailed in Section 3.3. These estimates are then used to (coherently)

decode data on the subcarriers sequentially (i.e., in the order k = 0, 1, 2, · · · ). To

decode the Qd codewords transmitted on the kth subcarrier, the receiver generates

estimates of {sk(ifQc + io) : 0 ≤ if < Nc, io ∈ Id}, one-at-a-time under an LSP con-

straint (described in Section 3.4), deinterleaves the sequence of estimates and, finally,

sorts and sends these estimates to Qd optimal decoders. Recall that the code rates

are chosen with the aim of facilitating error-free decoding. Hence, previously decoded

subcarriers are accurately known. The detection of data transmitted on the k-th sub-

carrier {sk(ifQc + io) : 0 ≤ if < Nc, io ∈ Id} is consequently aided by the knowledge

of these previously decoded subcarriers
{
sd(ifQc + io) : 0 ≤ if < Nc, io ∈ Id

}k−1

d=0
.

3.3 Channel Estimation

Here we outline the salient features of pilot-aided LMMSE estimation of the ICI

coefficients. Recall that we assumed uncorrelated spatial paths as well as independent

noise at each receive antenna. Then the estimation of channel coefficients can be

decoupled into Nr estimations, one for each receive antenna. Here, we consider the
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estimation of channel coefficients for the nr-th receive antenna, nr ∈ {1, · · · , Nr}, for

generality.

For channel estimation purposes, we find it useful to define

g(nr)(i) :=
[
diag0(H

(nr)(i, 0))T · · · diagN−1(H
(nr)(i, 0))T

]T
, (3.1)

where diagk(·) creates a vector from the kth sub-diagonal of its matrix argument

via diagk(H) :=
[
[H ]k,0, [H ]k+1,1, . . . , [H ]k+N−1,N−1

]T
with modulo-N indexing as-

sumed. Using ĝ(nr)(i) to denote the pilot-aided LMMSE estimate of g(nr)(i), and

g̃(nr)(i) := g(nr)(i) − ĝ(nr)(i) to denote the corresponding estimation error, the CEE

term can be written as

w(nr)
cee (i) = S(i)g̃(nr)(i) (3.2)

S(i) :=
[
Θ0 D(s(i)) · · · ΘN−1 D(s(i))

]
, (3.3)

where

Θ :=
[

0T
N−1 1

IN−1 0N−1

]

(3.4)

is the cyclic down-shift matrix, and D(·) creates a diagonal matrix from its vector

argument.

The ICI coefficients for the data multicarrier symbols in each frame are estimated

jointly, and each frame is handled individually. Recall from Section 3.1 the assumption

that the first multicarrier symbol in each frame is a pilot multicarrier symbol. We

use the pilots in the if -th frame as well as the first (pilot) multicarrier symbol of the

(if + 1)-th frame to estimate the ICI coefficients for the data multicarrier symbols

in the if -th frame. Specifically, for the if -th frame, we estimate {g(nr)(i) : i =

ifQc+ io, io ∈ Id} from the pilot observations {r(nr)(i) : i = ifQc+ io, io ∈ I ′
p}, where
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I ′
p := Ip

⋃{Qc}. Since each frame is treated identically, we consider the if = 0-th

frame w.l.o.g. here on.

Note that, with a causal length-Na modulation pulse, the transmitted sequence

{tn} for the Qc + 1 multicarrier symbols with index i ∈ {0, · · · , Qc} is causal with

length Nt := Na + QcNs. Thus, from (2.2), the antenna-nr time-domain channel

coefficients that affect these (Qc + 1) multicarrier symbols are {h(nr)
n,l }Nt−1

n=0 for l ∈

{0, . . . , Nh − 1}. For later use, we collect them into h(nr) ∈ CNtNh , defined element-

wise as

[h(nr)]n = h
(nr)
〈n〉Nt

,⌊ n
Nt

⌋. (3.5)

Note that Σ
h

(nr) := E{h(nr)h(nr)H} is easily written in terms of {σ2
l }Nh−1

l=0 and {φn}Nt−1
n=0 .For

i ∈ I ′
p, S(i) is a known pilot, and (2.20) and (A.9) imply

r(nr)(i) = S(i)g(nr)(i) + w
(nr)
isi (i) + w(nr)(i). (3.6)

The ICI coefficients can be related to the time-domain coefficients via

g(nr)(i) = C(i)h(nr), (3.7)

where (2.17) implies that C(i) ∈ CN2×NtNh obeys

[C(i)]n,l :=
1

N
b〈l〉Nt

−iNs
a〈l〉Nt

−iNs−⌊ l
Nt

⌋e
−j 2π

N
⌊ l

Nt
⌋n
e−j

2π
N

⌊ n
N
⌋(〈l〉Nt

−iNs−No). (3.8)

Using P (i) := S(i)C(i), we can rewrite (2.20) as

r(nr)(i) = P (i)h(nr) + w
(nr)
isi (i) + w(nr)(i). (3.9)

Stacking the pilot observations {r(nr)(i)}i∈I′
p

into the vector r(nr) ∈ CN(Qp+1), the

ISI and noise terms into w
(nr)
isi and w(nr), respectively, and {P (i)}i∈I′

p
into the block
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diagonal matrix P ∈ C
N(Qp+1)×NtNh, we have

r(nr) = Ph(nr) + w
(nr)
isi + w(nr). (3.10)

Recall that the goal is the estimation of {g(nr)(i)}i∈Id
from r(nr). Due to the linear

relationship in (3.7), the LMMSE estimates ĝ(nr)(i) and ĥ
(nr)

are related via

ĝ(nr)(i) = C(i)ĥ
(nr)

. (3.11)

Thus, we first focus on the estimation of h(nr). It is well known [73] that the LMMSE

estimate

ĥ
(nr)

= Σ
h

(nr),r(nr)Σ
−1
r(nr)r

(nr), (3.12)

where

Σ
h

(nr),r(nr) := E
{
h(nr)r(nr)H

}
, (3.13)

Σr(nr) := E
{
r(nr)r(nr)H

}
. (3.14)

Consequently, the estimation error covariance is given by

Σ
h̃

(nr) = Σ
h

(nr) − Σ
h

(nr),r(nr)Σ
−1
r(nr)Σ

H
h

(nr),r(nr). (3.15)

To proceed further, we must investigate the joint statistics of {h(nr),w
(nr)
isi ,w(nr)}.

Recall the assumption that there exist at least max(Lpre, Lpst) data symbols between

any pair of pilot symbols. Then, for any i ∈ I ′
p, w

(nr)
isi (i) is a function of the data

multicarrier symbols {s(i)}i∈Id
but not the pilot multicarrier symbols {s(i)}i∈I′

p
. Also

recall that the channel, the codebooks and the additive noise are zero mean Gaussian

distributed and are mutually independent. Then, {h(nr),w
(nr)
isi ,w(nr)} are mutually

uncorrelated. Moreover, Σ
w

(nr)
isi

:= E{w(nr)
isi w

(nr)H
isi } can be constructed from covari-

ance matrices in the set
{
Σ

w
(nr)
isi

(i1),w
(nr)
isi

(i2)
:= E{w(nr)

isi (i1)w
(nr)
isi (i2)

H} : i1, i2 ∈ I ′
p

}
.
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Note that Σ
w

(nr)
isi

(i1),w
(nr)
isi

(i2)
6= 0 only when |i1 − i2| < Lpre + Lpst. Now, consider

constructing Σw(nr) := E{w(nr)w(nr)H}. Noting that E{w(nr)(i1)w
(nr)(i2)

H} = 0 if

|i1 − i2| ≥ Lpre and that there are at least Lpre ≤ max(Lpre, Lpst) data multicarrier

symbols between every pair of pilot multicarrier symbols, E{w(nr)(i1)w
(nr)(i2)

H} = 0

for all {i1, i2 : i1 6= i2} ⊂ I ′
p. Then

Σw(nr) = I(Qp+1) ⊗ Σw(nr). (3.16)

The MMSE quantities can then be written

Σ
h

(nr),r(nr) = Σ
h

(nr)P
H , (3.17)

Σr(nr) = PΣ
h

(nr)PH + Σ
w

(nr)
isi

+ Σw(nr). (3.18)

Taking the eigenvalue decomposition Σ
h

(nr) = UhΛhU
H
h , with invertible Λh and

UH
h Uh = I, we see that the estimation error covariance can be obtained as

Σ
h̃

(nr) = Σ
h

(nr) − Σ
h

(nr)PH ×
(

PΣ
h

(nr)PH + Σ
w

(nr)
isi

+ Σw(nr)

)−1

PΣ
h

(nr) (3.19)

= U h

(

Λh − ΛhU
H
h PH×

(PUhΛhU
H
h PH + Σ

w
(nr)
isi

+ Σw(nr))−1PUhΛh

)

UH
h (3.20)

= U h

(

Λ−1
h + UH

h PH
(
Σ

w
(nr)
isi

+ Σw(nr)

)−1
PUh

)−1

UH
h , (3.21)

where for (3.21) we used the matrix inversion lemma. To ensure that the estimation

error varies inversely with SNR in Regime 1 (see Section 4.2), we assume that pilots are

chosen so that PUh is full column rank (FCR). While specifying a design procedure

for {S(i)}i∈Ip
that guarantees FCR PUh is outside the scope of this dissertation, it

is easy to verify whether a particular design will suffice, since Uh and {C(i)}i∈Ip
are
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known. Finally, the estimation error for the ICI coefficients is given by

E{g̃(nr)(i)g̃(nr)(i)H} = C(i)Σ
h̃

(nr)C(i)H . (3.22)

3.4 Local Subcarrier Processing

Our goal is to analyze the performance limits imposed by the local subcarrier pro-

cessing (LSP) constraint on multicarrier reception. The LSP constraint allows use of

only the local observations 1 {r(nr)
k−Dr

, . . . , r
(nr)
k+Dr

}Nr

m=1 when estimating sk(i). Clearly,

increasing (decreasing) Dr results in an increase (decrease) in complexity as well as

performance. Hence, 0 ≤ Dr < ⌊N−1
2

⌋ can be interpreted as a processing radius that

affects both performance and complexity. This is in contrast to global subcarrier

processing (GSP) reception where the “global observations” {r(nr)
0 , . . . , r

(nr)
N−1}Nr

m=1 are

used when estimating sk(i). For practical reasons, we will assume the availability of

pilot-aided estimates of only the ICI coefficients covering a radius of Dh ≥ 0 subcar-

riers, i.e., {H(nr)
d,k (i, 0)}Dh

d=−Dh
. Henceforth, we refer to these channel coefficients as the

dominant ones. We demonstrate in Section 4.2 that given a band-limited Doppler

spectrum, it is possible to choose the dominant ICI (DICI) radius Dh in conjunction

with the MCM design parameters {bn, an, N,Ns, No} and the pilot pattern {s(i)}i∈Ip

to make interference from the residual channel coefficients arbitrarily small. In prac-

tice, these residual coefficients are ignored in receiver processing either to reduce

computation or because they are below the resolution allowed by quantization for

fixed point processing. From our viewpoint, dominant channel-coefficient estimation

and the LSP constraint captures the essence of practical multicarrier reception. For

1Throughout, the subcarrier index is treated as cyclic with period N .
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example, classical CP-OFDM reception for time-invariant channels [72] is character-

ized by Dr = Dh = 0, in which case the complexity of estimating s(i) is O(N).

Here, we do not include the complexity incurred in the computation of r(nr)(i), which

typically consumes O(N logN) operations via FFT.

We now provide a more explicit description of LSP. Say that Ĥ
(nr)

(i) denotes a

Dh-quasi-banded estimate of H(nr)(i, 0), such that elements inside the shaded region

of Fig. 4.1 are estimated from pilots and those outside the shaded region are set to

zero. Note that Ĥ
(nr)

(i) contains estimates of the dominant ICI coefficients, i.e.,

those within a radius of Dh subcarriers. Then (2.20) can be written as

r(nr)(i) = Ĥ
(nr)

(i)s(i) + v(nr)(i) (3.23)

v(nr)(i) = w(nr)
cee (i) + w

(nr)
rici (i) + w

(nr)
isi (i) + w(nr)(i), (3.24)

where v(nr)(i) is treated as interference when decoding. In (3.24), this interference

is partitioned into channel estimation error (CEE), residual ICI (RICI), ISI, and

additive noise. We give explicit expressions for, and characterize the statistics of,

these terms in Appendix A. As in Section 2.5.1, we can combine the observations,

frequency domain noise and channel coefficients across the Nr antennas via

r(i) :=
Nr∑

nr=1

r(nr)(i) ⊗ e
(nr)
Nr

, (3.25)

v(i) :=
Nr∑

nr=1

v(nr)(i) ⊗ e
(nr)
Nr

, (3.26)

Ĥ(i) :=

Nr∑

nr=1

Ĥ
(nr)

(i) ⊗ e
(nr)
Nr

. (3.27)

Using the definitions above, we obtain

r(i) = Ĥ(i)s(i) + v(i). (3.28)
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As previously defined, an LSP-constrained estimate of sk(i) is generated using re-

ceived subcarriers within a “processing radius” of Dr around the kth subcarrier, i.e.,

r
(nr)
k (i) := [r

(nr)
k−Dr

, . . . , r
(nr)
k+Dr

]T for nr ∈ {1, · · · , Nr}. Due to the Dh-quasi-banded

structure of Ĥ
(nr)

(i), only the symbols sk(i) := [sk−Dh−Dr
, . . . , sk+Dh+Dr

]T contribute

(coherently) to r
(nr)
k (i), so that we can write

r
(nr)
k (i) = Ĥ

(nr)

k (i)sk(i) + v
(nr)
k (i), (3.29)

where v
(nr)
k (i) := [v

(nr)
k−Dr

, . . . , v
(nr)
k+Dr

]T and Ĥ
(nr)

k (i) is the sub-matrix composed from

rows {k−Dr, . . . , k+Dr} and columns {k−Dh−Dr, . . . , k+Dh +Dr} of Ĥ
(nr)

(i).

Combining the receptions from the Nr antennas, we get the LSP observation

rk(i) = Ĥk(i)sk(i) + vk(i). (3.30)

The terms in (3.30) are defined in similar fashion to the terms in (3.28) as

rk(i) :=

Nr∑

nr=1

r
(nr)
k (i) ⊗ e

(nr)
Nr

, (3.31)

vk(i) :=

Nr∑

nr=1

v
(nr)
k (i) ⊗ e

(nr)
Nr

, (3.32)

Ĥk(i) :=

Nr∑

nr=1

Ĥ
(nr)

k (i) ⊗ e
(nr)
Nr

. (3.33)

It will sometimes be useful to write

rk(i) = ĥk,ksk(i) +
∑

d∈Kd
k

ĥk,d(i)sd(i) + vk(i), (3.34)

where Kd
k contains the subcarrier indices that contribute dominant ICI (DICI) to

rk(i) and and can be formally expressed as

Kd
k := {k −Dh −Dr, . . . , k +Dh +Dr} \ {k}. (3.35)
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Moreover, ĥk,d(i) characterizes the influence of sd(i) on rk(i), and can be expressed

in terms of its single antenna components as

ĥk,d(i) =

Nr∑

m=1

ĥ
(nr)

k,d (i) ⊗ e
(nr)
Nr

. (3.36)

In (3.36), ĥ
(nr)

k,d (i) ∈ C(2Dr+1)Nr is composed from rows {k − Dr, . . . , k + Dr} and

column d of Ĥ
(nr)

(i). It will also be convenient to store the dominant interference

subcarriers {sd(i)}d∈Kd
k

in the vector s̄k(i) ∈ C2(Dh+Dr) and the DICI coefficient vec-

tors {ĥk,d(i)}d∈Kd
k

in the corresponding dominant ICI matrix ˆ̄Hk(i), so that

rk(i) = ĥk,ksk(i) + ˆ̄Hk(i)s̄k(i) + vk(i). (3.37)

As before, expressing in terms of single antenna components, we obtain

ˆ̄Hk(i) =
Nr∑

m=1

ˆ̄H
(nr)

k (i) ⊗ e
(nr)
Nr

. (3.38)

Figure 3.2 illustrates the structure of Ĥk(i) and its various component matrices used

for modeling reception under the LSP constraint. This completest the discussion on

modeling reception under the LSP constraint.
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P P P P P PD D D D D D D D D D D D... ... ... ... ... ... ... ... ... ...

...

≥ max(Lpre, Lpst) Qp pilot MCM symbols Qd data MCM symbols

Qc MCM symbol frameQc MCM symbol frameQc MCM symbol frame

s(i) for i = ifQc + io

s0(i) s1(i) s2(i) sN−1(i)

ψ(io)N-th code
ψ(io)N + 1-th code

ψ(io)N + 2-th code
ψ(io)N +N − 1-th code

NcQc MCM symbols = 1 epoch

Figure 3.1: Transmission epoch and frame structure. Pilot MCM symbols and data
MCM symbols are denoted by P and D, respectively.
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(Dh + 1) Dh

DhNr

(Dh + 1)Nr

1

Nr

ĥk,k(i)

2(Dh +Dr) + 1

(2Dr + 1)Nr

{ĥk,d(i)}
d∈K

−

k

{ĥk,d(i)}
d∈K

+

k

Ĥk(i)

Figure 3.2: Estimation for the kth subcarrier under the LSP constraint only uses
coefficients within the dashed rectangle, i.e., the matrix Ĥk(i). After the column
vector ĥk,k(i) (dotted rectangle) is removed, the remaining columns within Ĥk(i)

form the dominant ICI matrix ˆ̄Hk(i).
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CHAPTER 4

LSP-CONSTRAINED PERFORMANCE ANALYSIS

The LSP constraint for MCM reception was introduced in Chapter 3. We now

characterize the ergodic achievable-rate of SIMO-MCM systems under the LSP con-

straint. In this direction, we first introduce a “surrogate” system model that makes

this analysis tractable. Recall from Chapter 3 that the interference observed in LSP-

based decoding has many constituents. We define SNR regimes to characterize the

effect of the interference (and its constituents) at various SNRs. We then derive a

lower-bound on the LSP constrained achievable-rate of SIMO-MCM systems, and use

it to evaluate the LSP-constrained spectral efficiency of MCM transmission. We cor-

roborate our results through numerical examples and also discuss an inherent trade-off

between performance and computational complexity.

4.1 Analysis Via Surrogate System

To understand the performance limitations of LSP, we pursue a lower-bound to

the ergodic achievable rate of LSP-constrained schemes, motivated by the availability

of “good” coding strategies. Furthermore, we focus on high-SNR since this is the

practical operating regime for most MCM systems.
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In deriving our lower-bounds, we assume the use of the Gaussian-coded pilot-

aided transmission strategy described in Section 3.1 and the reception strategy de-

scribed in Section 3.2. Even with these simplifications, the statistical properties of

the interference v(m)(i) in (2.20) make achievable-rate analysis difficult. In partic-

ular, Appendix A shows that the sequence of interference vectors {v(m)(i)} is not

quite Gaussian, mutually uncorrelated, and uncorrelated with the signal component

Ĥ
(m)

(i)s(i). Thus, to proceed, we consider a surrogate system wherein {v(m)(i)} is

replaced by sequence of uncorrelated Gaussian random vectors that otherwise pre-

serve the statistics of v(m)(i). In Appendix B.1, we detail the steps that lead us to

this surrogate-based approximation of the system model. We use the surrogate model

to derive expressions for, and study the high SNR asymptotes of, lower-bounds on

the LSP-constrained achievable rate via the approach of [40, 42].

4.2 SNR Regimes

We define the signal-to-noise ratio (SNR) ρ as the ratio of received signal power

to received additive-noise power at each receive antenna. Because we have assumed a

unit-power source, energy preserving modulation and demodulation pulses, an energy-

preserving channel, and a σ2-power additive-noise, SNR ρ := σ−2.

As can be seen from (3.24), as SNR increases, i.e., σ2 → 0, the interference

covariance Σv(i) := E{v(i)v(i)H} contains some components that will vanish, but

other components (e.g., ISI and RICI) that will not vanish. Formally, we state this

as follows.
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Lemma 1. Consider the MCM system for pilot-aided transmission over the WSSUS

doubly selective channel. Define σ-invariant C and ǫ as

C := tr
(
J D(b)2JH

)
+ 2αpλb, (4.1)

ǫ :=
tr
(
Σwisi(i) + Σwrici(i)

)
+ 2αpλisi

C
, (4.2)

where λb is the largest eigenvalue of J D(b)2JH , λisi the largest eigenvalue of Σwisi(i)

and αp is a function of the pilot pattern, the source statistics and the channel statistics.

Then, the interference covariance obeys

tr
(
Σv(i)

)
≤ C(ǫ+ σ2), i ∈ Id. (4.3)

Proof. See Appendix B.2.

The term Cǫ bounds the power of the non-vanishing component of the interference.

We show in the sequel that, over a range of σ2 that includes very small values (i.e.,

high SNRs), it is possible to guarantee ǫ < σ2 via suitable choice of MCM design

parameters {Dh, bn, an, N,Ns, No} and pilot pattern {s(i) : i ∈ Ip}. Thus, the regime

where simultaneously ǫ < σ2 and σ2 → 0 (which we call “Regime 1,” reminiscent

of [49]) is of practical interest. However, there exists a range of extremely small

values of σ2 for which it may be impossible to guarantee ǫ < σ2 under practical MCM

design parameters. Thus, the regime where σ2 → 0 with fixed small ǫ (which we call

“Regime 2”) may also be of practical interest. In analyzing the achievable rate, we

consider each of these regimes separately.

Lemma 1 also shows that channel estimation error affects the SNR regimes. Con-

sequently, choosing a good pilot pattern is of critical importance.

Note that the boundary between the SNR regimes would depend on the term

Cǫ. We now outline a procedure for choosing system parameters for a target Cǫ.
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Recall that the DICI radius Dh affects Σwrici(i), but not Σwisi(i) and αpλisi. Thus, first

we choose {an, bn, N,Ns, No} and a pilot pattern to satisfy tr(Σwisi(i)) + αpλisi ≤ Cǫ
2

.

Then, realizing that increasing Dh will reduce the RICI, we choose a large enough Dh

to ensure that tr
(
Σwrici(i)

)
≤ Cǫ

2
. Having seen how to design the system for a target

Cǫ, we now consider each regime individually.

When operating in Regime 1, additive noise will overshadow RICI and ISI. Thus,

both the channel estimation and LSP-constrained decoding will behave as if RICI

and ISI were absent and performance will improve with increasing SNR. Recalling

that ǫ < σ2 in Regime 1, we further bound (4.3) as

tr
(
Σv(i)

)
≤ 2Cσ2, i ∈ Id (4.4)

and utilize (4.4) in analyzing the LSP-constrained achievable-rates in Regime 1.

On the other hand, when operating in Regime 2, RICI and ISI will dominate the

additive noise. Under these circumstances, the LSP-constrained achievable rate hits

a ceiling, i.e., it becomes invariant to changes in SNR. Though an achievable-rate

ceiling might seem discouraging, we show by examples in Section 4.5 that Regime

2 is encountered at SNRs well outside the typical operating SNR range of practical

wireless systems.

4.3 Lower Bound on LSP-Constrained Achievable-Rate

Recall from Section 3.2 that each frame is processed in identical fashion with

LSP. Thus the achievable rate of the system can be analyzed by considering the 0-th

frame w.l.o.g. The average mutual information between the observations and the
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transmitted data multicarrier symbols in a frame can be written as 2

Rsys =
1

QcNs

∑

i∈Id

E
Ĥ(i) I

(
r(i); s(i)

)
“per channel use” (4.5)

=
1

QcNs

∑

i∈Id

E
Ĥ(i)

[

I(r(i); s0(i)) +

N−1∑

k=1

I
(
r(i); sk(i)|{sd(i)}k−1

d=0

)

]

, (4.6)

where (4.6) is obtained by applying the chain rule [74]. However, LSP generates

estimates of sk(i) using only rk(i), the observations within a processing radius of

Dr subcarriers around the kth subcarrier. Then, the LSP-constrained achievable rate

with processing radius Dr is

RDr
=

1

QcNs

∑

i∈Id

E
Ĥ(i)

[

I(r0(i); s0(i)) +
N−1∑

k=1

I
(
rk(i); sk(i)|{sd(i)}k−1

d=0

)

]

. (4.7)

We lower-bound the LSP-constrained achievable rate by that of the two-step strat-

egy now described. During the interference-cancellation (IC) step, dominant ICI from

previously decoded subcarriers is removed from the observation:

yk(i) = rk(i) −
∑

d∈K−

k

ĥk,d(i)sd(i) (4.8)

= ĥk,k(i)sk(i) +
∑

d∈K+
k

ĥk,d(i)sd(i) + vk(i). (4.9)

In (4.8)-(4.9), the set K−
k contains indices of previously decoded subcarriers that cause

dominant ICI to rk(i), whereas K+
k contains indices of subcarriers to be decoded in

the future that cause dominant ICI to rk(i). Recall that Kd
k, defined in Section 3.4

as

Kd
k := {k −Dh −Dr, . . . , k +Dh +Dr} \ {k}, (4.10)

2The mutual information calculated here is conditioned on the estimate Ĥ(i). However, we omit
it from the notation for brevity.
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contains indices of all subcarriers that cause dominant ICI to rk(i). Then K−
k and

K+
k can be formally defined as

K−
k := Kd

k ∩ {d : 0 ≤ d < k}, (4.11)

K+
k := Kd

k \ K−
k

= Kd
k ∩ {d : k < d ≤ N − 1}. (4.12)

After IC, a linear-combination (LC) of the post-IC observation using the combiner

zk(i) generates the estimate

ŝk(i) = zHk (i)yk(i). (4.13)

The efficacy of the combiner zk(i) is measured by the post-LC signal-to-interference-

plus-noise ratio (SINR) defined as

γk(zk(i)) =
zHk (i)ĥk,k(i)ĥ

H

k,k(i)zk(i)

zHk (i)

(

∑

d∈K+
k

ĥk,d(i)ĥ
H

k,d(i) + Σvk(i)

)

zk(i)

. (4.14)

Henceforth, we call this strategy the IC-LC-LSP strategy. An important property of

this IC-LC-LSP strategy is the following.

Theorem 1. Consider the surrogate MCM system (i.e., where the interference is

Gaussian and uncorrelated with the signal). The IC-LC-LSP strategy using processing

radius Dr and the max-SINR combiner

zm
k (i) = α




∑

d∈K+
k

ĥk,d(i)ĥ
H

k,d(i) + Σvk(i)





−1

ĥk,k(i), (4.15)
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where α scales zm
k (i) to ensure ||zm

k (i)|| = 1, achieves the rate RDr
and is achievable-

rate-optimal. Then for the surrogate MCM system,

RDr
=

1

QcNs

∑

i∈Id

N−1∑

k=0

E
Ĥ(i) log

[

1 + ĥk(i)
H

×
(∑

d∈K+
k

ĥk,d(i)ĥ
H

k,d(i) + Σvk(i)

)−1

ĥk(i)
]

. (4.16)

Proof. See Appendix B.3.

4.4 Spectral Efficiency

The spectral efficiency of a system with achievable rate R(ρ) is defined as

η := lim
ρ→∞

R(ρ)

log ρ
. (4.17)

We characterize the LSP-constrained spectral efficiency with the aid of the Gaussian-

coded pilot-aided surrogate MCM system. Because we are interested in analyzing

LSP-constrained frequency domain reception, we focus on the Dh > 0 case, i.e., when

there is significant coupling between subcarriers. The degenerate case of Dh = 0, i.e.,

when subcarrier coupling is negligible, can be investigated as a case of reception (in

correlated noise) of transmission over a time- and frequency-flat fading channel.

We first characterize the LSP-constrained spectral efficiency in Regime 1. Consider

the LC-LSP strategy wherein the symbol estimates for the scalar symbols modulated

on the k-th subcarrier are generated by linear-combining of the LSP observation rk(i),

i.e., ŝk(i) = zk(i)
Hrk(i). In the absence of interference cancellation, the signal, ICI

and noise statistics will be uniform across subcarriers. Since the ergodic rates are

only a function of channel and noise statistics, all the subcarriers should be allocated

identical code rates. The achievable-rate of this LC-LSP strategy on the surrogate
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system is then

R′
Dr

=
N

QcNs

∑

i∈Id

E
Ĥ(i) log (1 + γ′0(z0(i))) (4.18)

γ′k(zk(i)) =
zk(i)

Hĥk,k(i)ĥk,k(i)
Hzk(i)

zk(i)H
(

ˆ̄Hk(i)
ˆ̄Hk(i)H + Σvk(i)

)

zk(i)
, (4.19)

where we used (3.37) to calculate the SINR. Now, consider LC-LSP with a zero-forcing

(ZF) combiner zzf
k (i) with ||zzf

k (i)|| = 1 that suppresses dominant ICI perfectly, i.e.,

zzf
k (i)H ˆ̄Hk(i) = 0T , and has a non-zero projection along the signal direction, i.e.,

zzf
k (i)Hĥk,k(i) 6= 0. When such a zzf

k (i) exists, the post-combining SINR can be

bounded using (4.4) as

γ′k
(
zzf
k (i)

)
=

zzf
k (i)H ĥk,k(i)ĥk,k(i)

Hzzf
k (i)

zzf
k (i)H

(
ˆ̄Hk(i)

ˆ̄Hk(i)H + Σvk(i)

)

zzf
k (i)

(4.20)

=
zzf
k (i)H ĥk,k(i)ĥk,k(i)

Hzzf
k (i)

zzf
k (i)HΣvk(i)z

zf
k (i)

(4.21)

≥ |zzf
k (i)Hĥk,k(i)|2

2Cσ2
(4.22)

≥ |zzf
k (i)Hĥk,k(i)|2ρ

2C
. (4.23)

Consequently, the k-th subcarrier of the i-th data multicarrier symbol will have a

spectral efficiency of 1. Assume that ZF combiners exist for each of the N subcarriers

on each of the Qd data multicarrier symbols in each frame. Then the LSP-constrained

spectral efficiency of the surrogate system is

lim
ρ→∞

RDr
(ρ)

log ρ
≥ QdN

QcNs

. (4.24)

Now consider that the spectral efficiency of a genie-aided global subcarrier processing

(GGSP) strategy that uses the entire observation r(i) to decode each codeword opti-

mally under perfect CSI cannot exceed QdN
QcNs

since only QdN codewords are transmit-

ted per frame. Therefore, the existence of ZF combiners for each subcarrier of each
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data multicarrier symbol would imply that the LSP-constrained spectral efficiency

equals QdN
QcNs

. Next, we show that for cases of practical interest, ZF combiners exist

only when multiple antennas are used.

Theorem 2. Consider a surrogate MCM system with DICI radius Dh > 0 em-

ploying LC-LSP with processing radius Dr. ZF combiners exist for each subcarrier

k ∈ {0, · · · , N − 1} and for each data multicarrier symbol i ∈ Id with probability one

(w.p.1.) if

Nr > 1 +
2Dh − 1

2Dr + 1
. (4.25)

Moreover, for Nr = 1 and any choice of Dr ≤ ⌊N−1
2

⌋−Dh, ZF combiners do not exist

w.p.1 for any subcarrier 0 ≤ k ≤ N − 1 on any data multicarrier symbol i ∈ Id.

Proof. See Appendix B.4

Note that 2Dh−1
2Dr+1

> 0 when Dh > 0. Then Theorem 2 states that multiple antennas

are sufficient to ensure the existence of ZF combiners when Dh > 0. Further, it states

that when Nr = 1 and Dh > 0, there is no hope of finding ZF combiners for LC-LSP

for small values of processing radius (2Dr + 1 ≪ N). When Dr > ⌊N−1
2

⌋ −Dh, LSP

uses more than N − 2Dh observations for each subcarrier. Given that Dh ≪ N ,

these choices of processing radii are of little interest from the LSP perspective. In

light of previous discussion, Theorem 2 implies that LSP should achieve the spectral

efficiency of QdN
QcNs

when Nr > 1 and Dh > 0. This is established by the following

theorem:

Theorem 3. Consider a Gaussian-coded pilot-aided surrogate MCM system with

Nr > 1 receive antennas. Let Qd data multicarrier symbols be transmitted in each
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frame consisting of Qc multicarrier symbols. Let the DICI radius be Dh > 0 and the

processing radius be Dr ≥ Dh. Then, in Regime 1, the achievable rate RDr
of the

system obeys

lim
ρ→∞

RDr
(ρ)

log ρ
=

QdN

QcNs
. (4.26)

Proof. See Appendix B.5.

On the other hand, we reckon from previous discussion that the spectral efficiency

of LSP on a SISO (Nr = 1) system will be less than the corresponding SIMO (Nr > 1)

system when Dh > 0. This is established by the following theorem:

Theorem 4. Consider a Gaussian-coded pilot-aided surrogate MCM system with

Nr = 1 receive antenna. Let Qd data multicarrier symbols be transmitted in each

Qc multicarrier symbol long frame. Let the DICI radius be Dh > 0 and the processing

radius be Dr ≤ ⌊N−1
2

⌋−Dh Then, in Regime 1, the achievable rate RDr
of this system

can be bounded by

lim
ρ→∞

RDr
(ρ)

log ρ
<

QdN

QcNs
(4.27)

Proof. See Appendix B.6.

Note that this theorem demonstrates that a SISO system has a lower spectral

efficiency when Gaussian-codebooks are used. However, the proof technique reveals

that this happens because the performance of the system becomes “dominant-ICI

limited,” rather than due to properties of Gaussian codebooks. Hence, it is unlikely

that non-Gaussian codebooks would achieve the spectral efficiency of QdN
QcNs

. However,

a detailed proof for all continuously distributed codebooks is beyond the scope of this

dissertation.
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Theorem 3 and Theorem 4 reveal that when Nr > 1 and Dh > 0, LSP will attain

the same spectral efficiency as a global subcarrier processing (GSP) strategy. It then

becomes important to study the performance gap between LSP and GSP in Regime

1 when Nr > 1 and Dh > 0. We characterize this performance gap between LSP

and GSP as a function of the processing radius Dr through a simulation study in

Section 4.5. This concludes the discussion on Regime 1.

In Regime 2, the performance of the MCM system is determined by the power

of the non-vanishing components of interference. Thus, we expect LSP to hit a

achievable-rate ceiling in this regime, as established by the following theorem:

Theorem 5. Consider a Gaussian-coded pilot-aided surrogate MCM system with

Nr ≥ 1 receive antennas. Let Qd data multicarrier symbols be transmitted in each

Qc multicarrier symbol long frame. Let the DICI radius be Dh > 0 and the processing

radius be Dr ≥ 0. The LSP-constrained achievable-rate of the system is bounded in

Regime 2. Consequently, LSP-constrained spectral efficiency in Regime 2 is zero.

Proof. See Appendix B.7.

This completes the discussion on spectral efficiency.

4.5 Numerical Examples

We design and simulate a MCM system to illustrate the obtained theoretical

results. We design a MCM system with N = 64 subcarriers without time domain

guards, so that Ns = N = 64. Transmission is over spatially independent, energy

preserving DS channels with delay spreads of Nh = 8 chips, uniform power-delay

profiles and chip-rate normalized single-sided maximum Doppler spreads of FDopTs =
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0.014. These could correspond to, for instance, a system with a bandwidth of 1.5 MHz

and a carrier frequency of 60 GHz operating over channels with 5.4 µs delay spreads

and mobile and reflector velocities of 138 km/h in a “triple-Doppler” scenario [75].

This triple-Doppler scenario arises, e.g., when the mobile is moving away from the

transmitter, and the reflector is moving towards the transmitter at 138 km/h. For

our tests, the channels are modeled to simulate Jakes’ spectrum [1].

We first design suitable modulation and demodulation pulses. For our system, we

use the max-SINR pulse design technique of [23]. We design the system to ensure

that Regime 1 extends to at least ρmax = 85 dB This also ensures that Regime 2

is sufficiently beyond the operating SNR range of typical wireless systems. We set

the max-SINR pulse design SNR to ρmax = 85 dB. Additionally, following guidelines

in [23], we set the modulation and demodulation pulse lengths to Na = 96 and

Nb = 100 chips, respectively. We then choose the smallest DICI radius Dh for which

the variance of RICI as well as ISI (observed at each subcarrier output) is below

−ρmax = −85 dB, i.e., tr(Σwrici(i))/N < −ρmax and tr(Σwisi(i))/N < −ρmax. We find

the choice of DICI radius Dh = 4 leads to a RICI variance of −89.1 dB and an ISI

variance of −94.7 dB. The resulting pulses are shown in Fig. 4.2.

We choose Qc = 2 and Qp = Qd = 1 for our frames. By design, io = 0 ∈ Ip. Then

io = 1 ∈ Id. We make these choices for simplicity. Though large frames with more

complex structure could lead to lower channel estimation errors, such designs would

incur higher estimation complexity as well.

We choose a suitable pilot pattern next. Again, for simplicity, we transmit the

same pilot pattern on each pilot multicarrier symbol. Motivated by the optimal pilot

patterns for CE-BEM DS channels in [48], we choose our pilot pattern as a sequence
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of Kronecker impulses spaced Np samples apart, i.e.,

sk(io) =

√

N

Np
δ<k>Np

io ∈ Ip. (4.28)

Fig. 4.3 shows the variance of the effect of the estimation error observed at each

subcarrier output, tr(Σcee)/N , for impulse spacings Np = 4, Np = 8, and Np = 16,

respectively. Clearly, Np = 8 is the best choice. This agrees with [48] where the

optimal impulse spacing Np is matched to the DICI spread (2Dh + 1).

We now examine the variance of the interference at each subcarrier output given

by tr(Σv(i))/N , and its constituents: the variance of the additive noise, RICI, ISI

and the effect of estimation error, i.e., tr(Σw(i))/N , tr(Σwrici(i))/N , tr(Σwisi(i))/N , and

tr(Σcee)/N , respectively. Fig. 4.4 shows these interference components at various

SNRs. Clearly, the effect of the channel estimation error, tr(Σcee)/N , is the dom-

inant interference component up to SNR=120 dB. At higher SNRs, tr(Σwisi(i))/N

and tr(Σwrici(i))/N dominate. Note that, for this pilot pattern, the threshold for the

estimation error to decay inversely with SNR is about 35 dB and that tr(Σv(i))/N

decays inversely with SNR between SNR=35 dB and SNR=115 dB. Thus, Regime 1

extends to SNR = 115 dB. On the other hand, the ISI covariance Σwisi(i) is highly

rank deficient for the MCM system used here. Consequently, the channel estimation

error does not floor at high SNR. Thus, the boundary between the SNR regimes is not

affected by the influence of ISI on channel estimation error. The boundary between

Regime 1 and Regime 2 occurs around SNR= 115 dB. As the SNR grows beyond

120 dB, tr(Σv(i)) floors off, heralding Regime 2. A wireless system designed with the

chosen parameters would almost certainly never operate in Regime 2.
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We study the lower-bounds on LSP-constrained achievable-rate on this system

next. Recall that Theorem 3 showed that LSP achieves the maximum spectral effi-

ciency in Regime 1 when Dr ≥ Dh and Nr > 1. Thus, for our tests, we set Dr = Dh

to verify our results. As a benchmark for LSP, we consider the GSP scheme that

uses the entire observations r(i) in generating all symbol estimates. We simulate

the surrogate MCM system. Fig. 4.5 shows the lower-bound on the LSP-constrained

achievable-rate for the surrogate MCM system with (a) Nr = 1, (b) Nr = 2 and

(c) Nr = 3 receive antennas. The traces for LSP and GSP on a surrogate system

are labeled LSP and GSP, respectively. In order to measure spectral efficiency, we

measure the slope of a least squares line fit on the achievable rate traces between the

SNRs of 50 dB and 90dB. This analysis tells us that when Nr = 1, the measured

spectral efficiency of LSP is about 88% of that for GSP. However, when Nr = 2 the

spectral efficiency of LSP is more than 98% of that for GSP. When the number of

receive antennas is increased further to Nr = 3, the spectral efficiency of LSP is un-

changed. However, the additional antenna does provide a 2 dB SNR gain. The trends

demonstrate that LSP obtains the maximum spectral efficiency of QdN
QcNs

for Dh > 0

only when multiple receive antennas are used.

4.6 Rate-Complexity Trade-Off

We characterize the gap between lower-bounds on achievable rates of LSP and

GSP as a function of the processing radius Dr for a multi-antenna receiver. This

provides a means of choosing a suitable Dr by characterizing a trade-off between IC-

LC-LSP’s achievable-rate and computational-complexity at a given SNR. We refer

to this as the rate-complexity trade-off (RCT). The achievable-rate for IC-LC-LSP is
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RDr
. Meanwhile, IC-LC-LSP’s complexity is O

(
(2Dr+1)3N3

rN
)

per data multicarrier

symbol, which is cubic in Dr. Thus the RCT for a MCM system at a given SNR can

be described by the pair (RDr
, Dr). The RCTs for the MCM system with Nr = 2

at SNRs of 40 dB and 70 dB are plotted in Fig. 4.6. The RCT trends are similar at

both SNRs. When Dr ≤ Dh, the achievable-rate RDr
grows quickly with increasing

Dr. However, when Dr > Dh, RDr
grows much more slowly with Dr. In conclusion,

there exists a “sweet spot” on the RCT corresponding to Dr = Dh, and this choice

of processing radius provides a good trade-off for LSP-constrained reception.

4.7 Comparing MCM Schemes under A Complexity Con-
straint

We compare the lower-bound on LSP-constrained achievable-rate of three MCM

schemes. By choosing the same processing radius, we ensure that all three schemes

have identical receiver processing complexity. In Fig. 4.7, MSINR refers to the jointly

optimized max-SINR pulses from [23, 53], while GP refers to the MCM scheme with

Gaussian prototype pulses that are dilated to minimize out-of-target ICI/ISI, and

OFDM refers to standard CP-OFDM [72] described in Section 2.4. For this experi-

ment, transmission is over channels with Nh = 16 chip delay spreads, uniform power

profiles, and FDopTs = 0.008. The DICI radius and processing radius are chosen to

be unity, i.e., Dh = Dr = 1. Each data point is an average of measurements over 103

channel realizations. Additionally, to make the results of this experiment indepen-

dent of the pilot pattern chosen, we assume perfect CSI at the receiver by setting the

channel estimation error to zero, i.e., Σ
w

(nr)
cee (i)

= 0 for all nr ∈ {1, · · · , Nr}.

In Fig. 4.7, it is clear that the MSINR scheme outperforms CP-OFDM, which,

in turn, performs better than the Gaussian prototype pulsed (GPP) scheme. Recall
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that performance is limited by RICI and ISI in Regime 2. The results in Fig. 4.7 can

directly be related to RICI/ISI suppression capabilities of these MCM schemes. For

instance, the MSINR pulses provide the best RICI/ISI suppression, and consequently,

support the highest rate of the three. Note that the RICI and ISI suppression ability

of GPP depends on the spread of the modulation and demodulation pulses used. The

GPP scheme used in Fig. 4.7 suppresses RICI better than CP-OFDM. However, CP-

OFDM suppresses ISI completely at the expense of spectral efficiency, whereas, the

the performance of GPP is hampered by ISI. For our setup, the loss in rate due to

the guards in CP-OFDM is smaller than the rate loss due to uncanceled ISI in the

GPP scheme. Thus for our setup, CP-OFDM performs better than GPP MCM.

In a nutshell, the schemes compared here are designed according to different

philosophies and have different spectral efficiencies. Yet, the lower-bound on LSP-

constrained achievable-rate provides a fair means of comparing them under the prac-

tical assumption of LSP-constrained reception.
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Figure 4.1: Quasi-banded channel matrix.

55



10 20 30 40 50 60 70 80 90

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 
{a

n
}

{b
n
}

Figure 4.2: The modulation pulse {an} and demodulation pulse {bn} used.
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Figure 4.3: The effect of channel estimation error tr(Σcee)/N on the observations for
pilot spacing Np = 4, Np = 8 and Np = 16.

57



20 40 60 80 100 120 140

−100

−80

−60

−40

−20

0

SNR  (dB)

P
ow

er
  (

dB
)

 

 
Noise
RICI
ISI
CEE
Eff. Noise
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Figure 4.5: Performance of LSP and GSP on the surrogate MCM system for (a)
Nr = 1, (b) Nr = 2 and (c) Nr = 3.
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CHAPTER 5

BEAMFORMING FOR MIMO-OFDM

An extension of the LSP-constrained achievable rate idea to beamforming MIMO

systems is considered here. Starting at the MIMO-MCM system model from Sec-

tion 2.5.2, the MIMO-OFDM system model is obtained by making certain parameter

choices. We then extend the definition of the LSP-constraint to a beamforming MIMO

system, derive an expression for the lower-bound on LSP-constrained achievable rate,

and use it design beamforming and combining vectors.

5.1 LSP on Beamforming MIMO-OFDM System

From Chapter 2, recall (2.45) where the observation r(i) ∈ CNNr can be expressed

in terms of the MIMO subcarrier coupling matrices {H(i, q) ∈ CNNr×NNt : i ∈

Z}Lpst

q=−Lpre
, the beamforming vectors {ck(i) ∈ CNt : i ∈ Z}N−1

k=0 , and the MCM symbols

{s(i) : i ∈ Z} by

r(i) =

Lpst∑

q=−Lpre

H(i, q)sma(i− q) + w(i) (5.1)

=

Lpst∑

q=−Lpre

H(i, q)Db

(

c0(i− q), · · · , cN−1(i− q)
)

s(i− q) + w(i). (5.2)

62



For the discussion on beamforming, we make the following assumptions: We con-

sider a MIMO-OFDM system, i.e., a MIMO-MCM system using the CP-OFDM mod-

ulation and demodulation technique described in Section 2.4. Moreover, recall from

Section 2.4 that ISI is absent, i.e., H(i, q) = 0, ∀q 6= 0. Consequently, (5.2) can be

simplified to

r(i) = H(i, 0)Db

(

c0(i), · · · , cN−1(i)
)

s(i) + w(i) (5.3)

for a MIMO-OFDM system. Furthermore, recall from Section 2.4 that the MIMO-

OFDM generates white frequency-domain noise, i.e., Σw(i) = σ2INNr
. Additionally,

we assume that perfect channel estimates are available at the transmitter and receiver,

so that the system sees no channel estimation errors, i.e., Σwcee(i) = 0. With these

assumptions, the surrogate model for the MIMO-OFDM system can be expressed as

r(i) = Ĥ(i)Db

(

c0(i), · · · , cN−1(i)
)

s(i) + v(i), (5.4)

where, Ĥ(i) ∈ CNNr×NNt is the Dh-quasi-block banded matrix with DICI coefficients,

and our assumptions imply that the interference vector v(i) can be expressed as

v(i) = wrici(i) + w(i). (5.5)

Consequently,

Σv(i) = Σwrici(i) + Σw(i). (5.6)

Recall from Section 4.6 that matching the processing radius with the DICI ra-

dius provides a lucrative compromise between LSP performance and complexity.

Thus for this chapter, we restrict our discussion of LSP to this choice, Dr = Dh.

As a result, rk(i) ∈ C(2Dh+1)Nr , constructed from the single antenna components
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r
(nr)
k (i) :=

[
r
(nr)
k−Dh

(i), · · · , r(nr)
k+Dh

(i)
]T

for nr ∈ {1, · · · , Nr}, is used to estimate scalar

data symbols on the kth subcarrier. Furthermore, from the definition of Kd
k in (3.35),

rk(i) experiences DICI from subcarriers with indices in the set

Kd
k = {k ± 1, · · · , k ± 2Dh} (5.7)

only. Then rk(i) can be written in terms of the information symbols as

rk(i) =
∑

k′∈Kd
k

⋃
{k}

Ĥk,k′(i)ck′(i)sk′(i) + vk(i), (5.8)

where Ĥk,k′(i) ∈ C(2Dh+1)Nr×Nt represents the influence of sma
k′ (i) = ck′(i)sk′(i) on

rk(i), as depicted in Fig. 5.1, and where vk(i) is comprised of interference samples

that affect rk(i) and has covariance Σvk(i). In the LSP-constrained reception strategy

considered, linear combining (LC) is performed to generate estimates of scalar sym-

bols on the first subcarrier (k = 0). The obtained estimates are fed to the decoder(s).

Assuming judicious rate allocation and consequent error-free decoding, the DICI due

to the first subcarrier can be regenerated and removed from observations for neigh-

boring subcarriers. This process is called interference cancellation (IC). These steps

are then repeated for the second (k = 1) subcarrier, and so on. The effect of IC on

rk(i) can be represented as

yk(i) = rk(i) −
∑

k′∈K−

k

Ĥk,k′(i)ck′(i)sk′(i) (5.9)

=
∑

k′∈K+
k
∪{k}

Ĥk,k′(i)ck′(i)sk′(i) + vk(i). (5.10)

In (5.9) and (5.10), the set of subcarrier indices K−
k and K+

k are defined as K−
k =

Kd
k ∩ {l : l < k} and K+

k = Kd
k ∩ {l : l > k}, respectively. Linear combining for the

kth subcarrier with combiner zk(i) can be written as

ŝk(i) = zk(i)
Hyk(i). (5.11)
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This chapter presents novel approaches for the design of BVs {ck(i)}N−1
k=0 and com-

biners {zk(i)}N−1
k=0 using the simplified system model in (5.8) with the aim of (approx-

imately) maximizing a lower-bound on the (ergodic) LSP-constrained achievable-rate

(AR) for the system. As a result of using (5.8), the BV and combiner designs as well

as all receiver processing use only a few neighboring DICI coefficients. (See Fig. 5.1.)

Using details in Section 4.3, the lower-bound on LSP-constrained achievable-rate for

the surrogate MIMO-OFDM system can be expressed as

Rlb =
N−1∑

k=0

1

N +Nh − 1
EH(i,0)

[

log (1 + γk(i))
]

, (5.12)

where the signal to interference-plus-noise ratio (SINR) for the kth subcarrier (after

LC) is given by

γk(i) =
zk(i)

HĤk,k(i)ck(i)ck(i)
HĤk,k(i)

Hzk(i)

zk(i)H
(
∑

k′∈K+
k

Ĥk,k′(i)ck′(i)ck′(i)HĤk,k′(i)H + Σvk(i)

)

zk(i)

. (5.13)

In the next section, we present the combiner and BV designs aimed at maximizing

Rlb.

5.2 Combiner and Beamforming Vector Designs

A combiner design for a given set of BVs is presented in Section 5.2.1, a BV

design is presented in Section 5.2.2, and a joint combiner/BV design is presented in

Section 5.2.3.

5.2.1 Combiner Design

Here, we design combiners {zk(i)}N−1
k=0 to maximize Rlb given a set of BVs {ck(i)}N−1

k=0 .

In this regard, notice that combiner zk(i) does not affect {γl(i)}l 6=k. Then maximizing
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Rlb w.r.t. combiner zk(i) reduces to maximizing γk(i). It is well known that γk(i) in

(5.13) is maximized by the choice

zk(i) = αk

(
∑

k′∈K+
k

Ĥk,k′(i)ck′(i)ck′(i)
HĤk,k′(i)

H + Σvk(i)

)−1

×Ĥk,k(i)ck(i), (5.14)

where w.l.o.g., we choose αk to ensure ||zk(i)|| = 1. We use (5.14) to design all

combiners in this chapter. Note that this choice is often referred to as the “max-

SINR” combiner in literature (e.g., in [76]).

5.2.2 Max-SNR Beamforming for DS Channels

Traditional BV designs for MIMO-OFDM over time-invariant channels maximize

subcarrier SNRs. A similar max-SNR BV design is possible for MIMO-OFDM over

DS channels, too. However, the DS channel spreads the energy of each subcarrier

into neighboring subcarriers. Taking this spreading into account, the max-SNR BV

can be written as the principal eigenvector of the matrix Ĥ
H

k,k(i)Ĥk,k(i), i.e.

ck(i) = u∗

(

Ĥk,k(i)
HĤk,k(i)

)

. (5.15)

The solution in (5.15) is called the max-SNR-DS BV design. The designed BV ck(i)

maximizes the energy from sk(i) in ŝk(i). However, in doing so, the max-SNR-DS

BVs potentially increase the ICI caused to neighboring subcarriers (i.e., energy from

sk(i) in {ŝl(i)}l 6=k). Therefore, performance can be improved if DICI suppression can

be incorporated into the BV design process. In Section 5.2.3, we propose one such

solution.
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5.2.3 Approximate Max-AR Beamforming and Combining

In this section, BVs and combiners are jointly designed to (approximately) maxi-

mize Rlb. First, we consider the design of BVs given a set of combiners {zk(i)}N−1
k=0 .

Realize that each BV ck(i) affects several {γl(i)}l 6=k and directly computing ck(i) to

maximize Rlb in (5.12) is difficult. Instead, we intuit properties of Rlb-optimal BVs

and use these to construct an alternative cost function that is optimized to calculate

the BVs. In this regard, notice that ŝk(i) in (5.11) has a “signal” component ϕs
k(i)

and a “DICI plus noise” component ϕi
k(i) given by

ϕs
k(i) = zk(i)

HĤk,k(i)ck(i)sk(i), (5.16)

ϕi
k(i) = zk(i)

H

(
∑

k′∈K+
k

Ĥk,k′(i)ck′(i)sk′(i) + vk(i)

)

. (5.17)

Then γk(i) = E(|ϕs
k(i)|2)/E(|ϕi

k(i)|2), where the expectations are taken over the

joint distribution of s(i) and vk(i). Observe that BV ck(i) appears in ϕs
k(i) and

in {ϕi
l(i)}l∈K−

k
. In the low SNR regime, additive noise dominates DICI and RICI.

Therefore, ignoring the DICI terms and setting Σvk(i) ≈ σ2I at low-SNR, (5.13) can

be approximated by

γk(i) ≈ ck(i)
HĤk,k(i)

Hzk(i)zk(i)
HĤk,k(i)ck(i)

σ2||zk(i)||2
(5.18)

=
ck(i)

HĤk,k(i)
Hzk(i)zk(i)

HĤk,k(i)ck(i)

σ2||ck(i)||2
. (5.19)

Here (5.18) yields (5.19) since we assumed ||zk(i)|| = ||ck(i)|| = 1. Then ck(i) only af-

fects γk(i). Thus, an AR-optimal BV ck(i) should maximize E(|ϕs
k(i)|2). On the other

hand, uncanceled DICI outweighs noise at high SNR. In this case, an AR-optimal BV

ck(i) should maximize E(|ϕs
k(i)|2) and minimize each element of {E(|ϕi

l(i)|2)}l∈K−

k

simultaneously.
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These intuitions suggest that a “good” BV should maximize E s
k(i) and minimize

E i
k(i) simultaneously, where

E s
k(i) = E

(

|zk(i)HĤk,k(i)ck(i)sk(i)|2
)

, (5.20)

E i
k(i) = E

(∣
∣
∣

∑

k′∈K−

k

zk′(i)
HĤk′,k(i)ck(i)sk(i) + zk(i)

Hvk(i)
∣
∣
∣

2
)

. (5.21)

This prompts us to define the cost function γbv
k (i) = E s

k(i)/E i
k(i). Recalling that

||zk(i)|| = 1 = ||ck(i)||, the cost function can be simplified to

γbv
k (i) =

ck(i)
HĤk,k(i)

Hzk(i)zk(i)
HĤk,k(i)ck(i)

ck(i)H
(
∑

k′∈K−

k

Ĥk′,k(i)Hzk′(i)zk′(i)HĤk′,k(i) + Σvk(i)

)

ck(i)

. (5.22)

Given a set of combiners {zk(i)}N−1
k=0 , the γbv

k (i)-optimal BV is

ck(i) = βk

(
∑

k′∈K−

k

Ĥk′,k(i)
Hzk′(i)zk′(i)

HĤk′,k(i) + Σvk(i)

)−1

Ĥk,k(i)
Hzk(i), (5.23)

where βk can be chosen w.l.o.g. to ensure ||ck(i)|| = 1.

Combining the combiner design from Section 5.2.1 and the BV design above,

we propose an iterative approximate max-AR (AMAR) algorithm as follows. The

algorithm is initialized by choosing a set of BVs {c(0)
k (i)}N−1

k=0 . For our experiments,

we found that the max-SNR-DS initialization

c
(0)
k (i) = u∗

(

Ĥk,k(i)
HĤk,k(i)

)

(5.24)

leads to good results. Each iteration ni ∈ {1, . . . , Ni} consists of two stages. First,

combiners {z(ni)
k (i)}N−1

k=0 are computed using BVs {c(ni−1)
k (i)}N−1

k=0 via (5.14). Next,

BVs {c(ni)
k (i)}N−1

k=0 are recalculated using the new combiners {z(ni)
k (i)}N−1

k=0 via (5.23).

The system then uses {z(ni)
k (i)}N−1

k=0 and {c(Ni)
k (i)}N−1

k=0 as the BVs and combiners,

respectively.
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It is easy to see that the combiner design complexity is O ((2Dh + 1)3N3
rNNi) per

MCM symbol, whereas the BV design complexity is O (N3
t N) per MCM symbol, for

a MIMO-OFDM system. Thus, the complexity of the AMAR algorithm has the same

scaling w.r.t. the number of subcarriers N , the number of transmit antennas Nt, and

the number of receive antennas Nr as traditional max-SNR designs for MIMO-OFDM

over time-invariant channels [61–63].

5.3 Numerical Results and Discussion

In this section, we present results of numerical experiments that verify the utility

of our designs. Specifically, we measure, using (5.12), Rlb of a MIMO-OFDM sys-

tem that employs our designs. Tests are performed on a MIMO-OFDM system with

Nr = 2 receive antennas and N = 128 subcarriers. Transmission is over channels

with Nh = 16 chip delay spreads and uniform power-delay profiles, and each data

point is an average of measurements for 103 channel realizations. In all our experi-

ments, we compare our schemes, i.e. , the max-SNR-DS BVs from Section 5.2.2 and

combiners from Section 5.2.1 (labeled as MSNR-DS) and the joint AMAR BVs and

combiners from Section 5.2.3 (labeled as AMAR), to two benchmarks. First, we com-

pare our designs with ICI-ignoring max-SNR beamforming and combining (labeled as

MSNR), intended for time-invariant channels, from [61–63]. Second, we also compare

our designs with an upper bound (labeled as UB). The upper bound corresponds to

performance on a system using max-SNR-DS BVs, where the receiver, aided by a

genie, cancels all ICI perfectly. Thus, such a receiver harnesses all available Doppler

diversity while completely avoiding the ill effects of ICI.
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Fig. 5.2 shows a plot of achievable rate versus subcarrier SNR for (a) Nt = 4,

(b) Nt = 6 and (c) Nt = 8 transmit antennas, respectively, and a (chip normalized

single-sided) maximum Doppler spread of FDopTs = 0.008. We choose the DICI

spread as Dh = ⌈FDopTsN⌉ = 1. The results show that both of our designs are

significantly superior to ICI-ignoring max-SNR designs. The iterative AMAR design

provides additional rate gains over the max-SNR-DS design at the expense of slightly

higher design complexity. Further, our designs perform close to the UB at low and

moderate SNRs. On the other hand, neglecting strong ICI components creates a

significantly lower performance ceiling for the ICI ignoring max-SNR schemes. When

the SNR is high, the gap between the UB and the performance of both our proposed

schemes grows due to RICI. However, RICI only produces pronounced performance

degradation at high SNRs that may be beyond the normal operating SNR range

of most practical systems. Finally, we observe that performance can be enhanced

by increasing the number of transmit antennas. This is expected as more transmit

antennas provide more freedom to the BV designs in choosing directions rich in signal

energy and low in interference energy.

Next, we study the effect of Doppler spread (i.e., mobility) on our system. First,

realize that when there is no Doppler spread (Dh = 0), our designs reduce to a max-

SNR design and hence, perform optimally. A plot of achievable rate versus subcarrier

SNR can be found in Fig. 5.3 for Nt = 4 transmit antennas and a maximum Doppler

spread of (a) FDopTs = 0.008 (Dh = 1), and (b) FDopTs = 0.016 (Dh = 2), respectively.

These could correspond to, for instance, a channel with bandwidth of 1.5 MHz, carrier

frequency of 60 GHz, delay spread of 10.8 µs, and mobile and reflector velocities of

(a) 69 km/h and (b) 138 km/h, respectively, in a “triple Doppler” scenario [75].
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The assumption of transmit CSI may be unrealistic for a rapidly varying channel.

However, approximate transmit CSI can be attained in systems operating in a time

division duplex (TDD) mode via prediction from channel measurements made during

the previous TDD epoch. To test this idea, we assume that, when in reception mode,

the node has near-perfect CSI (via, e.g., pilot aided or decision directed estimation).

The node then predicts the channel for the next OFDM symbol duration, when it

operates as a transmitter. A MMSE channel predictor that exploits the correlation

structure arising from the the WSSUS Rayleigh fading is used. In Fig. 5.3, traces

labeled MSNR-DS-P and AMAR-P refer to versions of the max-SNR-DS BV design

and the joint AMAR design, respectively, that use predicted transmitter CSI. The

general trends are similar to that of Fig. 5.2. In addition, we observe that, whereas our

schemes adapt well to channels with large Doppler spreads, the max-SNR design loses

significantly. This behavior results from the fact that the max-SNR scheme completely

neglects ICI. Furthermore, we see that, even in a highly mobile environment with

large Doppler spreading, the predicted-CSI case achieves rates only slightly less than

the perfect-CSI case. This establishes the robustness of our designs to imperfect

transmitter CSI.
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k′∈K

+

k

Figure 5.1: Structure of MIMO subcarrier coupling matrix Ĥ(i) for the surrogate
MIMO-OFDM system. Rectangle (in dotted lines) indicates the channel coefficients
used for LSP and BV design for the kth subcarrier.
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Figure 5.2: Lower-bound Rlb on LSP-constrained achievable rate versus SNR for (a)
Nt = 4, (b)Nt = 6 and (c)Nt = 8 transmit antennas.
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Figure 5.3: Lower-bound Rlb on LSP-constrained achievable rate on a system in TDD
mode with predicted CSI at the transmitter for (a) FDopTs = 0.008, and (b)FDopTs =
0.016.
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CHAPTER 6

INCORPORATING CHANNEL RE-ESTIMATION

Until now, we have considered the channel estimation strategy described in Sec-

tion 3.3. In this penultimate chapter, channel re-estimation is incorporated into the

reception strategy for a communication system operating on DS channels. The results

here are developed for generic communication schemes operating over the DS chan-

nel. We formulate an achievable-rate lower-bound for reception incorporating channel

re-estimation, and use it to study high-SNR spectral efficiency. A pilot-data power

allocation strategy for pilot-aided transmissions over DS channels is also discussed.

6.1 System Model

Because this chapter considers a generic communication system and is not limited

to an MCM system, using the system model from Chapter 2 is difficult. Thus, we

derive the system model from scratch and use it in this penultimate chapter only.

6.1.1 Transmission Model

Consider a scheme in which information is transmitted through Ns substreams,

each of which uses the channel Nb times. In particular, say that sk(i) denotes the

ith sample of the kth substream. The first Np substreams (i.e., {sk(i)}Nb−1
i=0 for k =
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0 . . .Np − 1) are dedicated to pilots while the remaining Ns − Np substreams (i.e.,

{sk(i)}Nb−1
i=0 for k = Np . . . Ns − 1) are dedicated to data. The data substreams are

independently encoded at rates that ensure reliable decoding, as will be discussed

later. For this, we assume that the transmitter knows the channel statistics, but not

the channel state.

The average transmission power is constrained to Etot joules per-channel-use, Ep

of which is allocated to pilots and the remainder of which is divided equally among

the data substreams. Thus, each data substream has power

σ2
s =

Etot − Ep
Ns −Np

. (6.1)

For analytical tractability, we assume the use of i.i.d. Gaussian codebooks. With this

assumption, the power constraints can be expressed as

Np−1
∑

k=0

|sk(i)|2 = Ep ∀i (6.2)

E{sNp
(i1)sNp

(i2)
H} = σ2

sINs−Np
δi1−i2 (6.3)

where

sk(i) := [sk(i), . . . , sNs−1(i)]
T . (6.4)

In this chapter, we will also make frequent use of the notation

sk(i) := [s0(i), . . . , sk−1(i)]
T (6.5)

s(i) := [s0(i), . . . , sNs−1(i)]
T = [sk(i)

T , sk(i)
T ]T . (6.6)
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6.1.2 Channel Model

We assume that the receiver observes the noisy inter-substream-interference (ISSI)

corrupted samples {yk(i)}Nb−1
i=0 , for k ∈ {0, . . . , N − 1}, where

yk(i) =

Nh−1∑

l=0

hk,l(i)sk−l(i) + wk(i). (6.7)

Here, N := Ns + Nh − 1, where Nh denotes the ISSI length, and sk(i) := 0 for

k /∈ {0, . . . , Ns − 1}. The observations can be written in vector form as y(i) =

[y0(i), . . . , yN−1(i)]
T , where

y(i) = H(i)s(i) + w(i) (6.8)

for w(i) = [w0(i), . . . , wN−1(i)]
T and

H(i) =










h0,0(i)
...

. . .

hNh−1,Nh−1(i) hNs−1,0(i)
. . .

...
hN−1,Nh−1(i)










. (6.9)

Notice that the channel model suffices to describe either single-carrier or multi-carrier

transmission. In the single-carrier case, (6.7) corresponds to Nb blocks of (Nh − 1)-

zero-padded Ns-block transmission through a doubly selective fading channel with

time-varying inter-symbol interference (ISI) of length Nh. In the multi-carrier case,

(6.7) corresponds to Nb symbols of an N -subcarrier system with Ns active subcarriers

and an inter-carrier interference (ICI) response of length Nh.

It will sometimes be convenient to write the system model as

y(i) = S(i)h(i) + w(i) (6.10)
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with h(i) ∈ C
NsNh such that

h(i) := [h0,0(i), . . . , hNs−1,0(i), h1,1(i), . . . , hNs,1(i), · · ·

hNh−1,Nh−1(i), . . . , hN−1,Nh−1(i)]
T , (6.11)

and with

S(i) :=












s0(i) 0 · · · 0 0 · · · 0
. . . s0(i) · · · ...

...

sNs−1(i)
. . . 0 · · · 0

0 · · · 0 sNs−1(i) s0(i)
...

... 0 · · · 0 · · · . . .

0 · · · 0 0 · · · 0 sNs−1(i)













.(6.12)

In this chapter, we make frequent use of

yk(i) := [y0(i), . . . , yk−1(i)]
T , (6.13)

wk(i) := [w0(i), . . . , wk−1(i)]
T , (6.14)

and Sk(i) defined as the matrix formed by the first k rows of S(i). Note that

yk(i) = Sk(i)h(i) + wk(i), (6.15)

where the entries in Sk(i) come from sk(i) but not from sk(i).

We assume that the channel coefficients h(i) are zero-mean circular Gaussian with

E{h(i)h(i)H} = Σh, where rank(Σh) = Nm < Ns and where tr(Σh) = Ns (i.e., the

channel is energy-preserving). Similarly, we assume that the noise coefficients are

zero-mean circular Gaussian with E{w(i)w(i)H} = σ2IN and independent across i.
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6.2 Non-Coherent Pilot-and-Data-Aided Communication

6.2.1 Description of Scheme

We now summarize the non-coherent communication scheme, elaborating on the

details after the summary.

0. The MMSE estimate of h(i) from yNp
(i) is computed for each i ∈ {0, . . . , Nb −

1}, leveraging the fact that yNp
(i) is a function of the pilots sNp

(i) but not the

unknown data sNp
(i). Denoting this pilot-aided channel estimate by ĥ

(Np)
(i),

the first data substream {sNp
(i)}Nb−1

i=0 is then coherently decoded using the pilot-

aided channel estimate ĥ
(Np)

(i). With large enough Nb and suitable choice of

code rate, this data substream can be reliably decoded.

1. Using the decoded substream in conjunction with pilots, a refined MMSE chan-

nel estimate ĥ
(Np+1)

(i) is computed from yNp+1(i) for each i ∈ {0, . . . , Nb − 1},

leveraging the fact that yNp+1(i) is not a function of the not-yet-decoded data.

The next data substream {sNp+1(i)}Nb−1
i=0 is then coherently decoded using the

refined channel estimate ĥ
(Np+1)

(i). With a suitable choice of code rate, this

second data substream can also be reliably decoded.

2. Using the two decoded substreams in conjunction with pilots, the refined MMSE

channel estimate ĥ
(Np+2)

(i) is computed from yNp+2(i) for each i ∈ {0, . . . , Nb−

1}. The next data substream {sNp+2(i)}Nb−1
i=0 is then coherently decoded using

the most recent channel estimate ĥ
(Np+2)

(i), where decoding can be made reli-

able via proper rate selection.
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*. The procedure continues this way until all Ns data substreams have been de-

coded.

Next we elaborate on the channel estimation and data decoding procedures. Rate

allocation will be detailed in Section 6.2.2.

The MMSE channel estimate ĥ
(k)

(i), i.e., the estimate of h(i) from yk(i) given

perfect knowledge of Sk(i), can be written as [73]

ĥ
(k)

(i) = ΣhSk(i)
H

×
(
Sk(i)ΣhSk(i)

H + σ2Ik
)−1

yk(i). (6.16)

Conditioned on sk(i), the estimation error h̃
(k)

(i) := h(i)− ĥ
(k)

(i) has covariance [73]

Σ
h̃

(k)
(i)|sk(i)

= Σh − ΣhSk(i)
H

×
(
Sk(i)ΣhSk(i)

H + σ2Ik
)−1

Sk(i)Σh. (6.17)

Now we describe the decoding of data substream {sk(i)}Nb−1
i=0 for k ∈ {Np, . . . , Ns−

1}. In doing so, we make use of the partition H(i) = [Hk(i),hk(i),Hk+1(i)], where

Hk(i) ∈ CN×k, hk(i) ∈ CN×1, and Hk+1(i) ∈ CN×(Ns−k−1), so that (6.8) becomes

y(i) = Hk(i)sk(i) + hk(i)sk(i)

+ Hk+1(i)sk+1(i) + w(i). (6.18)

In addition, we construct Ĥ
(k)

(i) from ĥ
(k)

(i), and H̃
(k)

(i) from h̃
(k)

(i), in the same

way that we constructed H(k)(i) from h(k)(i), and we make the corresponding parti-

tion Ĥ
(k)

(i) = [Ĥ
(k)

k (i), ĥ
(k)

k (i), Ĥ
(k)

k+1(i)]. The first stage of decoding involves inter-

ference cancellation and linear combining:

r(k)(i) = y(i) − Ĥ
(k)

k (i)sk(i) (6.19)

zk(i) = c(k)(i)Hr(k)(i). (6.20)
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Recall that we have assumed that, at the time of decoding {sk(i)}Nb−1
i=0 , the substreams

{sk(i)}Nb−1
i=0 are known through reliable decoding or as pilots. Using (6.18) and (6.19),

we see that

r(k)(i) = ĥ
(k)

k (i)sk(i) + v(k)(i), (6.21)

v(k)(i) = Ĥ
(k)

k+1(i)sk+1(i) + H̃
(k)

(i)s(i) + w(i) (6.22)

from which the post-combining SINR γ(k)(i) becomes

γ(k)(i) =
|c(k)(i)Hĥ

(k)

k (i)|2σ2
s

c(k)(i)HΣ
v(k)(i)|sk(i),ĥ

(k)
(i)

c(k)(i)
(6.23)

for Σ
v(k)(i)|sk(i),ĥ

(k)
(i)

:= E{v(k)(i)v(k)(i)H |sk(i), ĥ
(k)

(i)}. The combiner output can

then be written as

zk(i) = gk(i)sk(i) + nk(i), (6.24)

for gk(i) := c(k)(i)Hĥ
(k)

k (i) and nk(i) := c(k)(i)Hv(k)(i). After having computed

{zk(i)}Nb−1
i=0 and {gk(i)}Nb−1

i=0 , coherent decoding based on (6.24) can be applied.

6.2.2 Achievable-Rate Analysis

Notice that, for k ∈ {Np, . . . , Ns − 1}, the effective noise nk(i) is non-Gaussian:

nk(i) = c(k)(i)H
(
Ĥ

(k)

k+1(i)sk+1(i)

+ H̃
(k)

(i)s(i)
︸ ︷︷ ︸

non-Gaussian

+w(i)
)
. (6.25)

Medard [40] and Hassibi [42] showed that the worst-case noise distribution with re-

spect to mutual information is the Gaussian one. Additionally, the achievable rate

for Gaussian signaling in the presence of Gaussian distributed noise can be expressed

in terms of the post-combining SINR [76]. Therefore, assuming adequately large Nb,
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the achievable rate across data substream k ∈ {Np, . . . , Ns−1} can be bounded from

below, in units of nats-per-(scalar)-channel-use, as

Rk ≥ E
{
log
(
1 + γ(k)(i)

)}
, (6.26)

where the SINR γ(k)(i) was given in (6.23) and the expectation in (6.26) is taken over

the joint distribution of ĥ
(k)

(i) and sk(i). Note that the bound in (6.26) holds for

general linear combiners c(k)(i). The tightest bound can be obtained by choosing the

max-SINR combiner

c(k)(i) = Σ−1

v(k)(i)|sk(i),ĥ
(k)

(i)
ĥ

(k)

k (i), (6.27)

in which case the bound (6.26) becomes

Rk ≥ E

{

log
(

1 + σ2
s ĥ

(k)

k (i)HΣ−1

v(k)(i)|sk(i),ĥ
(k)

(i)
ĥ

(k)

k (i)
)}

(6.28)

leading to the following bound on the overall achievable rate, given in nats-per-

channel-use.

Rtot ≥ 1

N

Ns−1∑

k=Np

E

{

log
(

1 + σ2
s ĥ

(k)

k (i)HΣ−1

v(k)(i)|sk(i),ĥ
(k)

(i)
ĥ

(k)

k (i)
)}

. (6.29)

To facilitate reliable decoding, the data substream rates should be chosen in accor-

dance with (6.28).

6.2.3 Asymptotic Achievable-Rate Analysis

In this section, we analyze the achievable rate Rtot at high SNR. For this, we

define the SNR ρ := Etot

Nσ2 and examine Rtot(ρ) as ρ→ ∞.

To provide some intuition on the high-SNR behavior, consider for the moment

choosing a zero-forcing (ZF) combiner c(k)(i), ||c(k)(i)|| = 1, such that

c(k)(i)HĤ
(k)

k+1(i) = 0. (6.30)
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which implies that gk(i) = c(k)(i)Hĥ
(k)

k (i) and (via (6.25))

nk(i) = c(k)(i)H
(
H̃

(k)
(i)s(i) + w(k)(i)

)
. (6.31)

Note that this ZF combiner exists w.p.1. We reason that, for a “well-designed” chan-

nel estimation procedure, the covariance of the channel estimation error Σ
h̃

(k)
(i)|sk(i)

(defined in (6.17)) should vanish as σ2 → 0. In particular, there should exist a pilot

pattern sNp
that, for fixed Etot and Np < Ns, guarantees the existence of σ-invariant

A such that Σ
h̃

(k)
(i)|sk(i)

≤ σ2A for all σ > 0 and for all k ∈ {Np, . . . , Ns − 1}. When

this is the case, the use of a zero-forcing combiner ensures that σ2

nk(i)|sk(i),ĥ
(k)

(i)
:=

E
{
|nk(i)|2

∣
∣sk(i), ĥ

(k)
(i)
}

will also vanish as σ2 → 0 for each information substream.

In particular, there will exist σ-invariant α such that σ2

nk(i)|sk(i),ĥ
(k)

(i)
≤ σ2α for all

σ > 0 and for all k ∈ {Np, . . . , Ns − 1}. Then we see that γ(k)(i) ≥ |gk(i)|2σ2
s

ασ2 =

|gk(i)|2N
α(Ns−Np)

(1 − Ep

Etot
)ρ for each k ∈ {Np, . . . , Ns − 1}. When this is the case, (6.26)

implies

lim
ρ→∞

Rtot(ρ)

log ρ
≥ Ns −Np

N
. (6.32)

We now make these statements more precise.

The condition under which the covariance of the estimation error Σ
h̃

(k)
(i)|sk(i)

van-

ishes with increasing SNR is given by the following lemma.

Lemma 2. Let the columns of B ∈ CNhNs×Nm be the eigenvectors corresponding to

non-zero eigenvalues of Σh. Then there exists σ-invariant A such that, for every

k ∈ {Np, . . . , Ns − 1},

Σ
h̃

(k)
(i)|sk(i)

≤ σ2A ∀σ > 0 (6.33)
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if and only if

rank
(
SNp

(i)B
)

= Nm. (6.34)

Proof. See Appendix C.1

In the sequel, we refer to condition (6.34) as the “rank condition.” Lemma 2 says

that the Np pilot substreams must excite all Nm channel modes in order to obtain

channel estimates whose error vanishes with increasing SNR.

Theorem 6. For the class of channels that enable pilots SNm
(i) to yield

rank (SNm
(i)B) = Nm, (6.35)

the achievable rate of our scheme obeys

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (6.36)

Proof. See Appendix C.2

6.3 Illustrative Example

We now consider the specific case of a doubly selective fading channel which

obeys a complex-exponential basis expansion model (CE-BEM) [7, 9]. In particular,

the channel coefficients in h(i) are parameterized by Nm = (2D + 1)Nh uncorrelated

Gaussian random variables
{
φm,l(i) : m ∈ {−D, . . . , D}, l ∈ {0, . . . , Nh − 1}

}
via

hk,l(i) =
1√
Ns

D∑

m=−D
φm,l(i) e

j 2π
Ns
m(k−l). (6.37)

For simplicity, we assume that the random variables {φm,l(i)}m,l have equal variance.

Hence E
[
φm1,l1(i1)φ

∗
m2,l2

(i2)
]

= Ns

(2D+1)Nh
δm1−m2δl1−l2δi1−i2 . In (6.37), D ≈ ⌈FDopTsNs⌉
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where FDopTs is the single-sided normalized Doppler spread. For this CE-BEM chan-

nel, the eigenvector matrix B (defined in Lemma 2) has the form B = INh
⊗F , where

the Ns × (2D + 1) matrix F is defined element-wise as [F ]m1,m2
= 1√

Ns
ej

2π
Ns
m1(m2−D).

We first address the issue of choosing a suitable pilot pattern for this example.

Estimating the channel coefficients {hk,l(i)}Ns+l−1
k=l for each l is equivalent to estimating

the (2D+1) random variables {φm,l}Dm=−D. This can be accomplished by exciting the

channel with a set of (2D + 1) impulse sequences of length Nh − 1. This motivates

the use of the Np = Nm = (2D + 1)Nh-length pilot pattern

sk(i) =

√

NhEp
Nm

δ〈k〉Nh
, 0 ≤ k < Nm. (6.38)

The proposed scheme, in conjunction with this pilot pattern, leads to the following

achievable-rate characterization.

Proposition 1. For the CE-BEM doubly selective fading channel, the achievable rate

of our scheme obeys

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (6.39)

Proof. See Appendix C.3.

Interestingly, [47, 71] has shown that, under continuously distributed inputs, the

maximum spectral efficiency than can be achieved on the CE-BEM doubly selective

block-fading channel is Ns−Nm

N
. Thus, using the pilot pattern (6.38), the proposed

scheme becomes “spectrally-efficient”.

Next, we tackle the issue of power allocation between pilot and data substreams.

Let Ep = αpEtot for some αp ∈ (0, 1). Then σ2
s = (1 − αp)Etot/(Ns − Np). We

propose a “minimax” approach whereby we choose αp to maximize a lower-bound
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on the achievable rate of the weakest data substream. Though this power allocation

strategy can be used with an arbitrarily chosen pilot pattern, we restrict ourselves

to the pilot pattern (6.38) for simplicity. Recall that the channel estimate is refined

after decoding each data substream, thereby increasing the effective SINR. Thus, the

first data substream {sNp
(i)}Nb−1

i=0 must be the weakest. Recalling that e
(Np)
N denotes

the N th
p column of IN , we have the following result.

Proposition 2. For the CE-BEM doubly selective fading channel, the pilot power

allocation

αp,∗ = arg max
αp∈(0,1)

σ̂2
Np
σ2
s

σ̃2
Np
σ2
s + σ2

, (6.40)

where

σ̂2
Np

:=
[
Σ

ĥ
(Np)

(i)|sNp (i)

]

Np,Np
(6.41)

σ̃2
Np

:=
[
Σ

h̃
(Np)

(i)|sNp (i)

]

Np,Np
, (6.42)

maximizes a lower-bound on the achievable-rate of the weakest data substream, in

particular, the lower bound that follows from the use of the (sub-optimal) combiner

c(Np)(i) = e
(Np)
N in (6.26).

Proof. See Appendix C.4

Figure 6.1 plots the power allocation parameter αp,∗ versus SNR for single-carrier

transmission with Ns = 128 substreams across the CE-BEM doubly selective fading

channel with Nh = 8 taps of ISSI and D ∈ {1, 2}. These parameters correspond

to, e.g., a channel with bandwidth 1.5 MHz, carrier frequency 60 GHz, delay spread

5.4 µs, and mobile and reflector velocities of {69, 138} km/h, in a “triple Doppler”

scenario [75]. Figure 6.1 suggests that, at low values of SNR, additive noise level
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dictates performance and more power is allocated to the data substreams. However,

as the SNR grows, the effect of channel estimation error on performance becomes

more pronounced, and the pilots are given more power to keep the estimation error

in check.

87



10 15 20 25 30 35 40 45 50 55 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SNR  (dB)

α p,
*

 

 

D=2
D=1

Figure 6.1: Power allocation parameter αp,∗ at various SNRs for aNs = 128-substream
spectrally efficient transmission over a CE-BEM doubly selective fading channel with
Nh = 8 taps of ISSI and D ∈ {1, 2}.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Our Work

We characterized the performance of local subcarrier processing (LSP)-constrained

MCM reception on multi-antenna channel-estimation based reception for MCM pilot-

aided transmission over WSSUS DS channels. It was found that the statistics of the

observed interference make information-theoretic analysis difficult. We derived a

surrogate model as an approximation for the MCM system.

With the use of i.i.d. Gaussian codebooks, we derived a lower-bound on the

LSP-constrained achievable-rate of the surrogate MCM system for pilot aided MCM

transmissions. This lower-bound was used to analyze the performance of the surrogate

MCM system under the LSP constraint at high-SNR.

In doing so, we found it useful to split the analysis into two regimes of high-

SNR based on the characteristics of observed interference. Most practical wireless

systems are likely to operate in Regime 1, where additive noise and channel estimation

errors dominate residual ICI and ISI components. In this regime, we established that

multiple receive antennas are necessary and sufficient for spectrally efficient LSP-

constrained MCM reception when i.i.d. Gaussian codebooks are used. Furthermore,
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we demonstrated that the lower-bound could be tightened by increasing the LSP

processing radius. However, tightening the bound also resulted in an increase in LSP

implementation complexity since more observations and ICI coefficients were being

used. The resulting trade-off suggested matching LSP’s processing radius with the

DICI radius for a lucrative compromise between performance and complexity. There

also exists Regime 2 of yet higher SNRs where practical wireless systems are unlikely

to operate in. In Regime 2, non-vanishing RICI and ISI components of interference

dominate over additive noise. We showed that an achievable-rate ceiling for LSP-

constrained reception existed in Regime 2.

The derived LSP-constrained achievable-rate metric provides a valuable MCM

system design tool. For instance, it was used to compare MCM schemes over DS

channels under a constraint on receiver complexity.

As another instance of the utility of the LSP-constrained achievable-rate metric,

we presented beamforming vector and linear combiner designs for a MIMO-OFDM

system appropriate for high mobility scenarios. Three novel designs: a SNR maxi-

mizing beamforming vector design, a linear combiner design, and a joint approximate

max-achievable-rate design, were discussed. Results of numerical experiments sug-

gested that our designs provided large gains over traditional designs, and remained

robust to large Doppler spreads and predicted transmitter CSI, in spite of having

the same complexity orders as traditional designs. Thus, they provide attractive

alternatives to traditional ICI-ignoring beam formers/ combiners for MIMO-OFDM

systems.

We also designed and analyzed a communication scheme for the DS channel based

on pilot-aided transmission and successive-decoding with channel re-estimation. We
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derived a lower-bound on the achievable rate and characterized the pre-log factor

of the high-SNR achievable rate expression. For the special case of the CE-BEM

doubly selective fading channel, we found the proposed communication system to be

spectrally efficient. Finally, we designed a pilot/data power allocation strategy based

on the maximization of an achievable-rate lower-bound.

7.2 Future Research Directions

In this dissertation, we derived a lower-bound on the LSP-constrained achievable

rate of Gaussian coded Pilot-Aided MCM systems, and evaluated the performance

gap between this lower-bound on LSP-constrained performance and global subcarrier

processing (GSP) by means of simulations. However, in order to get a clearer picture

of LSP-constrained performance, a theoretical analysis of the coding gain could be

carried out. Such an analysis, for instance, could yield valuable insights into the design

of MCM system parameters. A similar characterization of the coding gain would

be interesting for the channel re-estimation and successive-decoding based reception

strategy presented in Chapter 6.

The lower-bound on LSP-constrained achievable rates was used to design beam-

forming vectors and combiners for a MIMO-OFDM system. It is well known that

a beamforming system does not fully exploit all the “degrees of freedom” provided

by the MIMO setup. Thus, another possible extension of this work would be to

extend the theoretical formulation and results from Chapter 4 from a single-input

multiple-output (SIMO) setup to a spatial-multiplexing MIMO setup.

In practice, MCM is often used as a part of a communication system serving mul-

tiple users simultaneously. Information theory suggests that orthogonal multi-access,
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e.g., OFDMA, is sub-optimal (see [76] and references therein). In this direction, inter-

carrier interference (ICI) on MCM systems over DS channel could be advantageous

if considered carefully. For instance, ICI could also be interpreted as spreading the

inputs over subcarriers or the “frequency” resource. However, non-trivial multi-user

receivers will be required in the presence of ICI. LSP-constrained multi-user recep-

tion on the up-link of multi-user MCM systems operating over DS channels could be

investigated using the tools developed in this dissertation.
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APPENDIX A

DERIVATION OF INTERFERENCE STATISTICS

In this appendix, we examine the properties of the interference term v(nr)(i) in

(3.23). Before expanding the terms in (3.24), we find it useful to recall

g(nr)(i) :=
[

diag0(H
(nr)(i, 0))T · · · diagN−1(H

(nr)(i, 0))T
]T
, (A.1)

where diagk(·) creates a vector from the kth sub-diagonal of its matrix argument

via diagk(H) :=
[
[H ]k,0, [H ]k+1,1, . . . , [H ]k+N−1,N−1

]T
with modulo-N indexing as-

sumed. Using ĝ(nr)(i) to denote the pilot-aided LMMSE estimate of g(nr)(i), and

g̃(nr)(i) := g(nr)(i) − ĝ(nr)(i) to denote the corresponding estimation error, the CEE

term can be written as

w(nr)
cee (i) = S(i)g̃(nr)(i) (A.2)

S(i) :=
[
Θ0 D(s(i)) · · · ΘN−1 D(s(i))

]
, (A.3)

where

Θ :=
[

0T
N−1 1

IN−1 0N−1

]

(A.4)

is the cyclic down-shift matrix, and D(·) creates a diagonal matrix from its vector

argument. Using the expression derived for the covariance of g̃(nr)(i), we find that
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for i ∈ Id,

Σ
w

(nr)
cee (i)

:= E
{
w(nr)

cee (i)w(nr)
cee (i)H

}

= E
{

S(i)g̃(nr)(i)g̃(nr)(i)HS(i)H
}

= E

{

S(i)Uh

(

Λ−1
h + UH

h PH
(
Σ

w
(nr)
isi

+ Σw(nr)

)−1
PUh

)−1

×UH
h S(i)H

}

. (A.5)

The RICI term can then be written as

w
(nr)
rici (i) = SDh

(i)ĝ
(nr)
Dh

(i) (A.6)

SDh
(i) :=

[
ΘDh+1 D(s(i)) · · · ΘN−1−Dh D(s(i))

]
(A.7)

ĝ
(nr)
Dh

(i) :=
[
[ĝ(nr)(i)]N(Dh+1), . . . , [ĝ

(nr)(i)]N(N−Dh)−1

]T
. (A.8)

Alternatively, we could also have defined w
(nr)
rici (i) from the true RICI coefficients

{diagk(H
(nr)(i, 0))}N−Dh−1

k=Dh+1 and defined w
(nr)
cee (i) from DICI coefficient estimation er-

ror, we found it convenient to include the fictitious RICI estimation error component

{diagk(H̃
(nr)

(i, 0))}N−1−Dh

k=Dh+1 in w
(nr)
cee (i) instead of w

(nr)
rici (i). We refer to this quantity

as “fictitious” because, in practice, the RICI coefficient estimates would never be

computed.

The ISI term as

w
(nr)
isi (i) =

∑

q∈{−Lpre,...,Lpst}\0
H(nr)(i, q)s(i− q). (A.9)

Note that, in general, w
(nr)
cee (i) and w

(nr)
isi (i) are non-Gaussian when i ∈ Id.

We now examine the statistics of v(nr)(i). Due to the orthogonality principle

of MMSE estimation, w
(nr)
cee (i) is uncorrelated with Ĥ

(nr)
(i)s(i) as well as w

(nr)
rici (i),

and, due to zero-mean uncorrelated symbols, it is also uncorrelated with w
(nr)
isi (i)
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and w(nr)(i). However, the autocovariance of w
(nr)
cee (i) may vary with i, as seen from

(A.5). Zero-mean uncorrelated symbols also imply that w
(nr)
rici (i) is uncorrelated with

w
(nr)
isi (i) and w(nr)(i). But, w

(nr)
rici (i) is correlated with Ĥ

(nr)
(i)s(i) via the common

symbol s(i) and correlation among the ICI coefficients. Finally, w
(nr)
isi (i) and w(nr)(i)

are uncorrelated with each other as well as with Ĥ
(nr)

(i)s(i). In summary, the four

components of v(nr)(i) identified in (3.24) are mutually uncorrelated, so that, with

Σv(nr)(i) := E{v(nr)(i)v(nr)(i)H}, (A.10)

Σ
w

(nr)
cee (i)

:= E{w(nr)
cee (i)w(nr)

cee (i)H}, (A.11)

Σ
w

(nr)
isi

(i)
:= E{w(nr)

isi (i)w
(nr)
isi (i)H}, (A.12)

Σ
w

(nr)
rici

(i)
:= E{w(nr)

rici (i)w
(nr)
rici (i)H}, (A.13)

Σw(nr)(i) := E{w(nr)(i)w(nr)(i)H}, (A.14)

we can write

Σv(nr)(i) = Σ
w

(nr)
cee (i)

+ Σ
w

(nr)
isi

(i)
+ Σ

w
(nr)
rici

(i)
+ Σw(nr)(i). (A.15)

Note, however, that v(nr)(i) is correlated with the signal term Ĥ
(nr)

(i)s(i) through

w
(nr)
rici (i). In addition, v(nr)(i1) may be correlated with v(nr)(i2) for i1 6= i2.

Finally note that the true channel coefficients as well as the noise at each receive

antenna is uncorrelated. Then all the constituents of v(nr)(i) are also uncorrelated

across receive antennas. Consequently, noting that Σv(nr)(i) is invariant with nr, we

obtain

Σv(i) = E

{
( Nr∑

nr=1

v(nr)(i) ⊗ e
(nr)
Nr

)( Nr∑

nr=1

v(nr)(i) ⊗ e
(nr)
Nr

)H
}

= Σv(0)(i) ⊗ INr
. (A.16)
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APPENDIX B

LSP-CONSTRAINED ACHIEVABLE RATE ANALYSIS

B.1 Surrogate System

We can rewrite (3.28) using (3.23) and (3.24) as

r(i) = Ĥ(i)s(i) + Ĥ rici(i)s(i) + H̃(i)s(i) +
∑

q 6=0

H(i, q)s(i− q)

︸ ︷︷ ︸

non-Gaussian

+w(i), (B.1)

where, Ĥ(i) contains estimates of the dominant ICI coefficients, Ĥ rici the estimates

of RICI coefficients, and H̃(i) is the respective estimation error. The last two terms

on the r.h.s. show the effect of ISI and additive noise, respectively. We now wish

to characterize I
(
r(i); s(i)|Ĥ(i)

)
. ISI affects performance in two ways. It acts as

uncorrelated interference during decoding as seen in (B.1). It also acts as a source

of uncorrelated non-Gaussian noise during channel estimation as seen in (3.9). By

replacing the ISI term by a Gaussian random vector that otherwise preserves the

statistics, we ensure that the channel estimate is a MMSE estimate. We note from

[42] that when MMSE channel estimates are used, a lower-bound on the mutual

information can be calculated by replacing the non-Gaussian effect of estimation error,

H̃(i)s(i), by a Gaussian random vector that otherwise preserve the statistics. Hence,

I
(
r(i); s(i)|Ĥ(i)

)
≥ I
(
r′(i); s(i)|Ĥ(i)

)
with r′(i) defined for a Gaussian distributed
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v′(i) as

r′(i) = Ĥ(i)s(i) + Ĥ rici(i)s(i) + v′(i), (B.2)

Σv′(i) = Σwcee(i) + Σwisi(i) + Σw(i). (B.3)

As mentioned before, RICI is treated as interference in LSP. However, this is difficult

to incorporate in achievable rate calculations since it is correlated with the signal

component Ĥ(i)s(i). Hence, to make the analysis tractable, we replace the RICI

by a Gaussian random vector uncorrelated with the signal component that otherwise

preserves the statistics of the RICI. With this substitution, we obtain the surrogate

system

r′′(i) = Ĥ(i)s(i) + v′′(i), (B.4)

Σv′′(i) = Σwcee(i) + Σwrici(i) + Σwisi(i) + Σw(i). (B.5)

For the surrogate system (B.4) to well approximate (B.2), the power of the RICI must

be significantly lower than that of signal component. This approximation works well

for our setup since, by definition, the dominant ICI coefficients contain almost all of

the channel energy, and only traces remain in the RICI coefficients. For instance, in

the test system used in Section 4.5, the ratio of powers of the dominant and residual

ICI coefficients is in excess of 70 dB.

B.2 Proof of Lemma 1

In this proof we consider Nr = 1 receive antennas. The extension to Nr > 1

receive antennas requires identical steps but with more complex expressions. Recall
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from (3.24) that for i ∈ Id

tr
(
Σv(i)

)
= tr

(
Σw(i) + Σwisi(i) + Σwrici(i) + Σwcee(i)

)
(B.6)

= σ2 tr
(
J D(b)2JH

)
+ tr

(
Σwisi(i) + Σwrici(i)

)
+ tr

(
Σwcee(i)

)
. (B.7)

Furthermore, recall from Section 3.3 that

Σwcee(i) = E
[

P (i)Uh

(
Λ

−1
h + UH

h PH
(
Σ

w
(m)
isi

+ Σ
w(m)

)−1
P Uh

)−1
UH
h P (i)H

]

.(B.8)

Here the expectation is with respect to the distribution of the data symbols. Note

that estimation in the presence of stronger noise will result in an increase in estimation

error. Since 2λisiI > Σ
w

(m)
isi

and 2λbσ
2I > Σw(m) , we have 2(λisi + λbσ

2)I > Σ
w

(m)
isi

+

Σw(m) . Then channel-estimation in the presence of noise with covariance 2(λisi +

λbσ
2)I would result in higher estimation error than that for noise with covariance

Σ
w

(m)
isi

+ Σw(m) . This implies that

tr
(
Σwcee(i)

)
≤ tr E

[

P (i)Uh

(
Λ−1
h + UH

h PHPUh

×(λisi + λbσ
2)−1

2

)−1
UH
h P (i)H

]

, (B.9)

≤ 2(λisi + λbσ
2) tr

[

E
{
P (i)HP (i)

}

×U h

(
UH
h PHPUh

)−1
UH
h

]

. (B.10)

Equation (B.10) is obtained by applying Lemma 1 from [70] since we assumed in

Section 3.3 that PUh is full column rank. Then defining

αp := tr
[

E
{
P (i)HP (i)

}
Uh

(
UH
h PHPUh

)−1
UH
h

]

, (B.11)

and substituting (B.10) in (B.7), we obtain

tr
(
Σv(i)

)
≤ σ2

[
tr
(
J D(b)2JH

)
+ 2αpλb

]
+ tr

(
Σwisi(i) + Σwrici(i)

)

+2αpλisi. (B.12)

The result follows. This concludes the proof.
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B.3 Proof for Theorem 1

Under the assumptions of Section 3.2, codewords on each subcarrier are decoded

individually, and subcarriers are decoded in sequence. The rate allocated to the code

whose codewords are modulated on the kth subcarrier of the ith data multicarrier

symbol of each frame is given by E
Ĥ(i) I

(
rk(i); sk(i)|{sd(i)}k−1

d=0

)
. Then recalling IC

from (4.8) and noting that, by definition, K−
k ⊂ {d : 0 ≤ d < k}, we can write

E
Ĥ(i) I

(
rk(i); sk(i)|{sd(i)}k−1

d=0

)
= E

Ĥ(i) I
(

rk(i)

−
∑

d∈K−

k

ĥk,d(i)sd(i)
∣
∣
∣{sd(i)}k−1

d=0

)

(B.13)

= E
Ĥ(i) I

(
yk(i); sk(i)

)
. (B.14)

This shows that IC is information-lossless. Further, with the surrogate system, we

have Gaussian signaling in the presence of Gaussian interference and noise, in which

case max-SINR combining is shown to be information-lossless in [76,77]. Then using

the LC-optimal max-SINR combiner zm
k (i),

E
Ĥ(i) I

(
yk(i); sk(i)

)
= E

Ĥ(i) I
(
zm
k (i)Hyk(i); sk(i)

)
(B.15)

= E
Ĥ(i) I

(
ŝk(i); sk(i)

)
. (B.16)

Substituting (B.16) in (B.14) and the result in the definition of LSP-constrained

achievable rate in (4.7), we obtain

RDr
=

1

QcNs

∑

i∈Id

N−1∑

k=0

E
Ĥ(i) I

(
ŝk(i); sk(i)

)
. (B.17)

Clearly, IC-LC-LSP preserves mutual information and is achievable-rate-optimal for

the surrogate system. Further, mutual information can be related to post-combining

SINR for Gaussian signaling in the presence of Gaussian interference and noise [76],
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so that E
Ĥ(i) I

(
ŝk(i); sk(i)

)
= E

Ĥ(i) log (1 + γk(z
m
k (i))). Then from the definition of

max-SINR LC in (4.15),

E
Ĥ(i) I

(
ŝk(i); sk(i)

)
= E

Ĥ(i) log

(

1 + ĥk(i)
H

×
( ∑

m∈K+
k

ĥk,m(i)ĥ
H

k,m(i) + Σvk(i)

)−1

ĥk(i)

)

(B.18)

Substituting (B.18) in (B.17), we arrive at (4.16). This completes the proof.

B.4 Proof for Theorem 2

First we show that when (4.25) holds, ZF combiners exist w.p.1 for every com-

bination of k ∈ {0, · · · , N − 1} and i ∈ Id. Let us denote the left null space of the

dominant ICI matrix, ˆ̄Hk(i), by N ( ˆ̄Hk(i)), and its column space by C( ˆ̄Hk(i)). Recall

that ˆ̄Hk(i) ∈ C(2Dr+1)Nr×2(Dr+Dh). Rewriting (4.25) as (2Dr + 1)Nr > 2(Dr + Dh),

we find that ˆ̄Hk has more rows than columns, and hence that dim
(

N ( ˆ̄Hk(i))
)

≥

(2Dr+1)Nr−2(Dr+Dh) > 0. Thus, by choosing zzf
k (i) ∈ N ( ˆ̄Hk(i)) with ||zzf

k (i)|| = 1,

we ensure that zzf
k (i)H ˆ̄Hk(i) = 0.

We now need to show that ∃ zzf
k (i) ∈ N ( ˆ̄Hk(i)) for which zzf

k (i)H ĥk,k(i) > 0 w.p.1.

Recall that every vector in C(2Dr+1)Nr can be decomposed into orthogonal components

in N ( ˆ̄Hk(i)) and C( ˆ̄Hk(i)). Thus, we equivalently show that ĥk,k(i) /∈ C( ˆ̄Hk(i)) w.p.1

below. Clearly, from the definitions of ĥk,k(i) and ˆ̄Hk(i) in Section 3.4, there exists a

permutation matrix P for which P ĥk,k(i) =
[
ĥ

(1)

k,k(i)
T , ĥ

(2)

k,k(i)
T , · · · , ĥ(Nr)

k,k (i)T
]T

, and

P ˆ̄Hk(i) =
[ ˆ̄H

(1)

k (i)T , ˆ̄H
(2)

k (i)T , · · · , ˆ̄H
(Nr)

k (i)T
]T

. Then ĥ
(m)

k,k (i) ∈ C( ˆ̄H
(m)

k (i)), ∀m ∈

{1, · · · , Nr} are necessary conditions for ĥk,k(i) ∈ C( ˆ̄Hk(i)). These necessary con-

ditions imply that ∃ b
(m)
k (i) 6= 0 such that ĥ

(m)

k,k (i) = ˆ̄H
(m)

k (i)b
(m)
k (i), for each m ∈

{1, · · · , Nr}. Notice that ĥ
(m1)

k,k (i) and ĥ
(m2)

k,k (i) (as well as ˆ̄H
(m1)

k (i) and ˆ̄H
(m2)

k (i))
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are independent when m1 6= m2 due to independence of the spatial paths. Then the

random vectors b
(m1)
k (i) and b

(m2)
k (i) are independent when m1 6= m2 as well. How-

ever, for ĥk,k(i) ∈ C( ˆ̄Hk(i)), ∃ bk(i), such that ĥk,k(i) = ˆ̄Hk(i)bk(i). This can only

happen if b
(1)
k (i) = b

(2)
k (i) = · · · = b

(Nr)
k (i) = bk(i). But P

(
b

(1)
k (i) = b

(2)
k (i) = · · · =

b
(Nr)
k (i)

)
= 0 as vectors in the set {b(m)

k (i)}Nr

m=1 are mutually independent. Hence

ĥk,k(i) ∈ C( ˆ̄Hk(i)) with probability zero, or equivalently ĥk,k(i) /∈ C( ˆ̄Hk(i)) w.p.1.

Next, for the Nr = 1 case, we show in the following that dim
(

N ( ˆ̄Hk(i))
)

= 0

w.p.1, which implies that ZF combiners do not exist for Nr = 1 w.p.1. Note that

ˆ̄Hk(i) ∈ C(2Dr+1)×2(Dr+Dh) when Nr = 1. However, 2Dr + 1 ≤ 2(Dr +Dh) if Dh > 0.

Then ˆ̄Hk(i) has more columns than rows, and it suffices to show that the rows of

ˆ̄Hk(i) are linearly independent w.p.1. In this proof, we refer to the m-th row of ˆ̄Hk(i)

as h̆k,m(i)T so that ˆ̄Hk(i) =
[
h̆k,0(i), · · · , h̆k,2Dr

(i)
]T

. For ease of presentation, we

split the proof into two cases:

When Dh ≤ Dr ≤ ⌊N−1
2

⌋ −Dh: The structure of ˆ̄Hk(i) is shown in Fig. B.1 where

non-zero entries are only located in the shaded regions. We observe from Fig. B.1

that the (Dr −Dh + 1) topmost rows (i.e., rows above the dashed horizontal line in

Fig. B.1) are linearly independent w.p.1 because of the upper-triangular structure.

Next, observe that the (Dr+Dh) bottom-most rows (i.e., rows below horizontal dashed

line in Fig. B.1) are also linearly independent w.p.1 because of the lower-triangular

structure. Moreover, notice that on one hand, every element in and beyond the

(Dr + Dh)-th column (i.e., elements right of the vertical dashed line in Fig. B.1) in

each of the topmost (Dr − Dh + 1) rows is zero. On the other hand, each of the

bottom-most (Dr +Dh) rows has at least one element in and beyond the (Dr +Dh)-

th column (i.e., elements right of the vertical dashed line in Fig. B.1) that is non-zero
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w.p.1. Thus, we conclude that the rows of ˆ̄Hk(i) are linearly independent w.p.1. for

Dh ≤ Dr ≤ ⌊N−1
2

⌋ −Dh.

When Dr < Dh: The structure of ˆ̄Hk(i) is shown in Fig. B.2 where non-zero entries

are only located in the shaded regions. It is straightforward to see that the (2Dr +1)

rows of ˆ̄Hk(i) are linearly independent w.p.1 because of the upper-triangular struc-

ture. This completes the proof.

B.5 Proof for Theorem 3

We first show that the spectral efficiency of IC-LC-LSP is at least QdN
QcNs

on the

surrogate system. In order to do so, we first consider the LC-LSP strategy with ZF

combiners.

Let the rate allocated to the code whose symbols are transmitted on the k-th

subcarrier of the i-th data multicarrier symbol in every frame be denoted by R′′
k,i,Dr

.

Let us denote a ZF combiner for the k-th subcarrier of the i-th data multicarrier

symbol by zzf
k (i). Since we are considering LC-LSP with the ZF combiner on the

surrogate system,

R′′
k,i,Dr

= E
Ĥ(i)

[

log
(
1 + γ′k(zk(i))

)]

. (B.19)

Dominant ICI is perfectly suppressed by ZF combiners. Then, (4.19) indicates that

γ′k(z
zf
k (i)) =

∣
∣
∣zzf

k (i)H ĥk,k(i)
∣
∣
∣

2

zzf
k (i)HΣvk(i)z

zf
k (i)

, (B.20)
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Figure B.1: Structure of the dominant ICI matrix ˆ̄Hk(i) when Nr = 1 and Dh ≤
Dr ≤ ⌊N−1

2
⌋ −Dh.

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

2Dh

1

1
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Figure B.2: Structure of the dominant ICI matrix ˆ̄Hk(i) when Nr = 1 and Dr < Dh.
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Note that applying (4.4) for Regime 1, we obtain γ′k(z
zf
k (i)) ≥

∣
∣zzf
k (i)Hĥk,k(i)

∣
∣2/(2Cσ2).

Defining τk(i) :=
∣
∣zzf

k (i)H ĥk,k(i)
∣
∣2/(2C), we can say that γk(z

zf
k (i)) ≥ τk(i)ρ. Replac-

ing in (B.19) and dividing both sides by log ρ, we obtain

R′′
k,i,Dr

(ρ)

log ρ
≥

E
Ĥ(i) log

(
1 + τk(i)ρ

)

log ρ
(B.21)

≥ 1 +
E

Ĥ(i) log (ρ−1 + τk(i))

log ρ
. (B.22)

From the definition of ZF combiners,

lim
ρ→∞

log(ρ−1 + τk(i))

log ρ
=

{

0, τk(i) > 0

−1, τk(i) = 0
(B.23)

= 0 w.p.1 . (B.24)

Now, taking limit infimum on both sides of (B.22),

lim inf
ρ→∞

R′′
k,i,Dr

(ρ)

log ρ
= 1 + lim inf

ρ→∞

E
Ĥ(i) log (ρ−1 + τk(i))

log ρ
(B.25)

≥ 1 + E
Ĥ(i)

(

lim inf
ρ→∞

log(ρ−1 + τk(i))

log ρ

)

(B.26)

≥ 1. (B.27)

In the above, the penultimate step is an application of Fatou’s Lemma [78] and the

last step applies (B.24).

Note that interference-cancellation (IC) will only enhance performance and the

achievable-rate for IC-LC-LSP will exceed that of LC-LSP, implying that

RDr
(ρ) ≥ 1

QcNs

∑

i∈Id

N−1∑

k=0

R′′
k,i,Dr

(ρ). (B.28)

Therefore, we conclude from (B.27) and (B.28) that

lim inf
ρ→∞

RDr
(ρ)

log ρ
≥ QdN

QcNs
. (B.29)
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Now consider the genie-aided global subcarrier processing (GGSP) strategy where

each codeword is optimally decoded under perfect CSI. Since we transmit QdN codes

from a single transmit antenna over QcNs signaling dimensions, the spectral efficiency

of GGSP is less than QdN
QcNs

from standard results in [76]. But, the spectral efficiency

of GGSP bounds that of LSP from above. Thus we arrive at the following upper

bound for the spectral efficiency of LSP:

lim sup
ρ→∞

RDr
(ρ)

log ρ
≤ QdN

QcNs

. (B.30)

Finally, (B.29) and (B.30) leads us to the required result. This completes the proof.

B.6 Proof of Theorem 4

We consider LSP under the assumption of perfect CSI for this proof by setting

the estimation error to zero. Note that even with perfect CSI, the properties of

ZF combiners derived in Theorem 2 hold, and ZF combiners do not exist for the

MCM system with Nr = 1 since ˆ̄Hk(i) is full row-rank w.p.1. Additionally, we

assume that (aided by a genie), residual ICI and ISI are perfectly canceled. This

implies that vk(i) = wk(i) and hence that Σvk(i) = σ2Σ′, where Σ′ is a sub-matrix

of FNJ diag(b)2JHFH
N . Then vk(i) is Gaussian distributed and from Theorem 1,

IC-LC-LSP is the achievable-rate optimal LSP strategy.

Let the rate allocated (to ensure reliable decoding with IC-LC-LSP) to the code

whose symbols are transmitted on the 0-th subcarrier of the i-th data multicarrier

symbol in every frame be denoted by R′′
0,i,Dr

. Recall that no interference cancellation

is possible for the k = 0-th subcarrier, and IC-LC-LSP boils down to LC-LSP on the

k = 0-th subcarrier. Since the interference vk(i) is Gaussian distributed, Theorem 1
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tells us that

R′′
0,i,Dr

= E
Ĥ(i)

[

log(1 + ĥ0,0(i)
H( ˆ̄H0(i)

ˆ̄H0(i)
H + Σvk(i))

−1ĥ0,0(i))
]

(B.31)

≤ log




E

Ĥ(i)

(
1 + ĥ0,0(i)

H( ˆ̄H0(i)
ˆ̄H0(i)

H + ρ−1Σ′
w

)−1ĥ0,0(i)
︸ ︷︷ ︸

Q0(i)

)




, (B.32)

where (B.32) is obtained by applying Jensen’s inequality [74]. Let the eigen decom-

position of Σ′
w

= UwΛwUH
w . Then it is straightforward to show that

Q0(i) = h̄0(i)
H(H̄0(i)H̄0(i)

H + ρ−1I)−1h̄0(i), (B.33)

where, h̄0(i) := Λ
− 1

2
w UH

w ĥ0,0(i), and H̄0(i) := Λ
− 1

2
w UH

w
ˆ̄H0(i). We find that H̄0(i)

is full row-rank w.p.1 since Λ
− 1

2
w UH

w is invertible. Let the eigen-decomposition of

H̄0(i)H̄0(i)
H = Ū 0(i)Λ̄0(i)Ū 0(i)

H , where Λ̄0(i) = diag
(
λ̄max

0 (i), · · · , λ̄min
0 (i)

)
with

λ̄max
0 (i) ≥ · · · ≥ λ̄min

0 (i). Then note that λ̄min
0 (i) > 0 w.p.1 since H̄0(i) is full row-rank

w.p.1. Then

Q0(i) = h̄0(i)
H
[
Ū 0(i)(Λ̄k + ρ−1I)Ū 0(i)

H
]−1

h̄0(i)

= h̄0(i)
HŪ 0(i) diag

(
(λ̄max

0 (i) + ρ−1)−1, · · · , (λ̄min
0 (i) + ρ−1)−1

)
Ū 0(i)

H h̄0(i)

≤ ||h̄0(i)||2
λ̄min

0 (i) + ρ−1
(B.34)

≤ ||h̄0(i)||2
λ̄min

0 (i)
. (B.35)

Now E[λ̄min
0 (i)] = c1 > 0 since λ̄min

0 (i) > 0 w.p.1. It is clear that Q0(i) is bounded

from above by a constant independent of SNR. Consequently, R′′
0,i,Dr

is also bounded

from above by a constant independent of SNR. Then substituting (B.34) in (B.32),

dividing both sides with log ρ and taking limits as ρ→ ∞.

lim
ρ→∞

R′′
0,i,Dr

(ρ)

log ρ
≤ 0. (B.36)
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But R′′
0,i,Dr

(ρ) ≥ 0 and hence

lim
ρ→∞

R′′
0,i,Dr

(ρ)

log ρ
≥ 0. (B.37)

Clearly, (B.36) and (B.37) imply that

lim
ρ→∞

R′′
0,i,Dr

(ρ)

log ρ
= 0. (B.38)

Next, we assume the best case scenario that ∀k ∈ {1, · · · , N − 1} and i ∈ Id the rate

allocated to the code whose symbol is transmitted on the k-th subcarrier of the i-th

data multicarrier symbol obeys

lim
ρ→∞

R′′
k,i,Dr

(ρ)

log ρ
= 1. (B.39)

Considering this best case scenario under perfect CSI, combining (B.38) and

(B.39), we see that the spectral efficiency of IC-LC-LSP is

lim
ρ→∞

RDr
(ρ)

log ρ
= lim

ρ→∞

1

QcNs

∑

i∈Id

N−1∑

k=0

R′′
k,i,Dr

(ρ)

log ρ
(B.40)

≤ Qd(N − 1)

QcNs

(B.41)

<
QdN

QcNs
. (B.42)

This completes the proof.

B.7 Proof for Theorem 5

For this proof, we consider the availability of (Genie aided) perfect channel state

information (CSI) at the receiver. As before, we enforce this by setting the channel

estimation error to zero. Recall that in Regime 2, the noise variance σ2 → 0 for

a fixed finite variance of the non-vanishing interference components. Recalling that
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Σw > 0,

Σv(i) = Σw + Σwrici(i) + Σwisi(i) (B.43)

≥ Σwrici(i) + Σwisi(i). (B.44)

Consider Genie-aided global subcarrier processing (GGSP) where r(i) is used to de-

code information on each subcarrier under perfect CSI. Let the rate allocated to the

code with codewords transmitted on the (N −1)-th subcarrier of the i-th data multi-

carrier symbol, where i ∈ Id, be denoted by R
(g)
(N−1),i. Note that all dominant ICI has

been canceled since all previous subcarriers k ∈ {0, 1, · · · , N − 2} have been decoded

and are known to the receiver. Then the post combining SINR can be expressed as

γN−1(i)
(
zN−1(i)

)
=

|zN−1(i)
H ĥN−1,N−1(i)|2

zN−1(i)HΣv(i)zN−1(i)
(B.45)

≤ |zN−1(i)
HĥN−1,N−1(i)|2

zN−1(i)H
(
Σwrici(i) + Σwisi(i)

)
zN−1(i)

. (B.46)

This shows γN−1(i)
(
zN−1(i)

)
is bounded by a term independent of SNR. Clearly,

then, the achievable rate R
(g)
N−1,i = E

Ĥ(i) log
(
1 + γN−1(i)

)
is also bounded by a term

independent of SNR. The achievable rate on all other subcarriers is lower, since they

are affected by the dominant ICI from subcarriers that are to be decoded in the

future. Then {R(g)
k,i}N−2

k=0 are also bounded, and the achievable rate of the surrogate

MCM system with GGSP is also bounded in Regime 2. Since the achievable rate does

not grow with SNR, the spectral efficiency of the surrogate MCM system in Regime 2

with GGSP is zero. Then the spectral efficiency of LSP-constrained MCM reception

with imperfect channel estimates in Regime 2 is also zero. This completes the proof.
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APPENDIX C

ANALYSIS FOR CHANNEL RE-ESTIMATING
RECEPTION

C.1 Proof for Lemma 2

We know that rank(Σh) = Nm, so that Σh = BΛhB
H for some positive definite

diagonal matrix Λh ∈ CNm×Nm. We can then express h(i) using the Karhunen-Loeve

transform as

h(i) = Bλ(i), (C.1)

where λ(i) ∈ C
Nm is a zero-mean complex Gaussian random vector with covariance

Λh. Furthermore, there exists a unitary matrix U(i) and positive semi-definite di-

agonal matrix ΛNp
(i) such that BHSNp

(i)HSNp
(i)B = U (i)ΛNp

(i)U (i)H . Using

λ′(i) := U(i)Hλ(i), the observations yNp
(i) can be expressed as

yNp
(i) = SNp

(i)h(i) + wNp
(i) (C.2)

= SNp
(i)Bλ(i) + wNp

(i) (C.3)

= Λ
1
2
Np

(i)λ′(i) + wNp
(i). (C.4)

We first show that the rank condition is a necessary condition. Realize from (C.2)-

(C.4) that estimating h(i) is equivalent to estimating λ′(i). Let rank(SNp
B) = N ′

m <
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Nm. Then w.l.o.g. the first N ′
m entries along the diagonal of ΛNp

(i) are positive and

the rest are zero. Consequently, the MMSE estimates of the last Nm−N ′
m components

of λ′(i) are identically zero and the estimation error for these Nm −N ′
m components

of λ′(i) does not depend on the noise variance σ2. Then there is no hope of finding a

σ-invariant A satisfying Σ
h̃

(Np)
(i)|sNp (i)

≤ σ2A when rank(SNp
B) = N ′

m < Nm. This

establishes that the rank condition is a necessary condition.

We now show that the rank condition is a sufficient condition. We first write the

estimation error from (6.17) as

Σ
h̃

(Np)
(i)|sNp (i)

= Σh − ΣhSNp
(i)H

×
(
SNp

(i)ΣhSNp
(i)H + σ2INp

)−1
SNp

(i)Σh

= B
[

Λh − ΛhB
HSNp

(i)H
(
SNp

(i)BΛhB
HSNp

(i)H

+ σ2INp

)−1
SNp

(i)BΛh

]

BH

= B
(
Λ−1
h + σ−2BHSNp

(i)HSNp
(i)B

)−1
BH . (C.5)

The last step above is an application of the matrix inversion lemma [79]. Realize that

BHSNp
(i)HSNp

(i)B is σ-invariant, positive definite and invertible if rank(SNp
B) =

Nm. We choose A′ =
(
BHSNp

(i)HSNp
(i)B

)−1
, and apply the matrix inversion

lemma on (C.5) to obtain

Σ
h̃

(Np)
(i)|sNp (i)

=

B
(
σ2A′ − σ4A′(Λh + σ2A′)−1A′)BH . (C.6)

Then for the choice A = BA′BH , (C.6) shows that

Σ
h̃

(Np)
(i)|sNp(i)

− σ2A ≤ 0. (C.7)
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This shows that the rank condition is sufficient for k = Np. It remains to be shown

that the rank condition is sufficient for each k > Np. Let s̆k(i)
H be the kth row of

S(i), so that Sk+1(i) = [Sk(i)
H s̆k+1(i)]

H . Then

Σ
h̃

(k+1)
(i)|sk+1(i)

= B
(
Λ−1
h + σ−2BHSk+1(i)

HSk+1(i)B
)−1

BH

= B
[
Λ−1
h + σ−2BHSk(i)

HSk(i)B

+ σ−2BH s̆k+1(i)s̆k+1(i)
HB

]−1
BH

= Σ
h̃

(k)
(i)|sk(i)

− σ2
Σ

h̃
(k)

(i)|sk(i)
s̆k+1(i)s̆k+1(i)

HΣ
h̃

(k)
(i)|sk(i)

1 + σ2s̆k+1(i)HΣ
h̃

(k)
(i)|sk(i)

s̆k+1(i)
, (C.8)

where (C.8) results from applying the matrix inversion lemma to the penultimate

expression and then substituting (C.5) (with indices k instead of Np). This clearly

implies that

Σ
h̃

(k+1)
(i)|sk+1(i)

− Σ
h̃

(k)
(i)|sk(i)

≤ 0. (C.9)

We conclude from (C.7) and (C.9) that

Σ
h̃

(k)
(i)|sk(i)

≤ σ2A, Np ≤ k ≤ Ns − 1, (C.10)

which establishes that the rank criterion is also a sufficient condition and completes

the proof.

C.2 Proof for Theorem 1

We first show that the spectral efficiency of the proposed communication strategy

is at least Ns−Nm

N
when the rank criterion holds. Recall that

Rk(ρ) ≥ E
{
log
(
1 + γ(k)(i)

)}
. (C.11)
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Our approach will be to show that the required spectral efficiency can be achieved

by using a sub-optimal zero forcing combiner c(k)(i) = e
(k)
N , the kth column of IN .

Recall that we also used this combiner to split transmit power between pilot and data

substreams. This choice of combiner implies that only observations {yk(i)}Nb−1
i=0 are

used in decoding the kth data substream. Recall from the system model that yk(i) is

influenced by symbols {sm(i)}km=k−Nh+1, of which the symbols except sk(i) are known

(from previously decoded substreams or as pilots). There is no interference from

yet-to-be-decoded substreams. It can be shown that the combiner output is

zk(i) = [ĥ
(k)

k (i)]ksk(i) + nk(i) (C.12)

nk(i) = s̆k(i)
H h̃

(k)
(i) + wk(i), (C.13)

where s̆k(i)
H is the kth-row of S(i). First, we bound the variance of the noise term

in (C.13). In doing so, we can make use of Lemma 2 since we have assumed that

a suitable pilot pattern that satisfies the rank criterion is used. Then we can write

σ2

nk(i)|sk(i),ĥ
(k)

(i)
:= E

[
|nk(i)|2|sk(i), ĥ

(k)

k (i)
]

as

σ2

nk(i)|sk(i),ĥ
(k)

(i)
= E

[

s̆k(i)
HΣ

h̃
(k)

(i)|sk(i)
s̆k(i)

]

+ σ2

≤ E
[
σ2s̆k(i)

HAs̆k(i)
]
+ σ2

≤ σ2αk, (C.14)

for some positive semi-definite σ-invariant matrix A and σ-invariant αk > 1. Then

(C.14) can be used to express the SINR as

γ(k)(i) ≥

∣
∣
∣[ĥ

(k)

k (i)]k

∣
∣
∣

2

σ2
s

σ2αk
(C.15)

=
(1 − Ep

Etot
)

(Ns −Np)αk

∣
∣
∣[ĥ

(k)

k (i)]k

∣
∣
∣

2

ρ. (C.16)
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Then for the class of channels that enable pilots SNm
(i) to yield rank(SNm

(i)B) =

Nm, we first show that

lim inf
ρ→∞

Rk(ρ)

log ρ
≥ 1 ∀k ∈ {Np, · · · , Ns − 1}. (C.17)

In this direction, we define ψk := [ĥ
(k)

k (i)]k and qk := (1−Ep/Etot)
(Ns−Np)αk

to simplify the

notation. With these definitions, we can say that

Rk(ρ)

log ρ
≥ E log(1 + qk|ψk|2ρ)

log ρ
(C.18)

≥ 1 +
E log(ρ−1 + qk|ψk|2)

log ρ
. (C.19)

Notice that the estimate ψk = [ĥ
(k)

k (i)]k is zero-mean Gaussian distributed. Then

lim
ρ→∞

log(ρ−1 + qk|ψk|2)
log ρ

=

{

0, ψk 6= 0

−1, ψk = 0
(C.20)

= 0 w.p.1 . (C.21)

Taking limit infimum on both sides of (C.19), we see that

lim inf
ρ→∞

Rk(ρ)

log ρ
≥ 1 + lim inf

ρ→∞

E log (ρ−1 + qk|ψk|2)
log ρ

≥ 1 + E

(

lim inf
ρ→∞

log(ρ−1 + qk|ψk|2)
log ρ

)

≥ 1. (C.22)

In the above, the penultimate step is an application of Fatou’s Lemma [78] and the

last step applies (C.21). Using (C.22) and the fact that

Rtot(ρ) =
1

N

Ns−1∑

k=Nm

Rk(ρ), (C.23)

we obtain

lim
ρ→∞

Rtot(ρ)

log ρ
≥ Ns −Nm

N
. (C.24)
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Thus the proposed communication strategy attains a spectral efficiency of at least

(C.24).

On the other hand, consider that perfect CSI is available at the receiver through

a genie. In this situation, well known results in [51, 76] dictate that the spectral

efficiency of a communication strategy that transmits (Ns−Nm) data substreams over

N channel-uses cannot exceed Ns−Nm

N
even with optimal joint decoding. The proposed

communication strategy has poorer performance than the genie aided strategy since

it uses imperfect CSI, and can only have a poorer spectral efficiency. This observation

leads us to conclude that

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (C.25)

This completes the proof.

C.3 Proof for Proposition 1

We need to demonstrate that rank
(
SNp

(i)B
)

= Nm = Nh(2D + 1). Recall that

the pilot pattern used is

sk(i) =

√
NhEp
Nm

δ〈k〉Nh
, 0 ≤ k < Nm. (C.26)

Recalling the structure of S(i) and the fact that, for the CE-BEM channel, B =

INh
⊗ F , where the Ns × (2D + 1) matrix F is defined element-wise as [F ]m1,m2

=

1√
Ns
ej

2π
Ns
m1(m2−D). Under these conditions, it is straightforward to show that

SNp
(i)B =

√

NhEp
Nm

P (INh
⊗ M) , (C.27)

In (C.27), the (2D+1)Nh×(2D+1)Nh row-permutation matrix P is defined element-

wise by [P ]m1,m2(2D+1)+m3 = [I(2D+1)Nh
]m1,m3Nh+m2 where 0 ≤ m1 < (2D + 1)Nh,
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0 ≤ m2 < Nh and 0 ≤ m3 < (2D+1). Furthermore, the (2D+1)× (2D+1) complex

matrix M is defined element-wise as [M ]m1,m2 = 1√
Ns

exp( j2πNhm1m2

Ns
). Then,

rank
(
SNp

(i)B
)

= rank(P (INh
⊗ M)) (C.28)

= rank(INh
⊗ M ) (C.29)

= Nh rank(M) (C.30)

= Nh(2D + 1) = Nm. (C.31)

In the above, (C.28) is obtained using (C.27), (C.29) is a result of P being, by

definition, a permutation of the columns of I(2D+1)Nh
, (C.30) is a standard result

for block-diagonal matrices and the final step is a result of M being a full rank

Vandermonde matrix.

Then applying Lemma 2 and Theorem 6 we see that when the proposed commu-

nication strategy is used for single carrier transmission over doubly selective fading

channels,

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (C.32)

This concludes the proof.

C.4 Proof for Proposition 2

Recall that the post-combining SINR for the N th
p substream is

γ(Np)(i) =
|c(Np)(i)H ĥ

(Np)

Np
(i)|2σ2

s

c(Np)(i)HΣ
v

(Np)(i)|sk(i),ĥ
(k)

(i)
c(Np)(i)

. (C.33)

For the sub-optimal combiner c(Np)(i) = e
(Np)
N , the N th

p column of IN , only obser-

vations {yNp
(i)}Nb−1

i=0 are used to decode the N th
p substream. Recall from the system
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model that yNp
(i) is influenced by symbols {sm(i)}Np

m=Np−Nh+1, of which, all the sym-

bols except sNp
(i) are known as pilots. For the pilot pattern used (6.38), sk(i) = 0 for

Np−Nh+1 ≤ k ≤ Np−1. As a result, only the estimation error from the estimate of

hNp,0(i) affects yNp
(i). Under these circumstances, it is straightforward to show that

γ(Np)(i) ≥
σ̂2
Np
σ2
sζ

σ̃2
Np
σ2
s + σ2

. (C.34)

In (C.34), ζ is a zero-mean complex Gaussian random variable with unit variance, σ̂2
Np

is the variance of the estimate of hNp,0(i), and σ̃2
Np

the variance of the corresponding

estimation error. The variances σ̂2
Np

and σ̃2
Np

can be calculated as per their definitions

in (6.41) and (6.42). In doing so, the covariance matrices of the estimates used to

decode the N th
p substream and the corresponding estimation error for the pilot pattern

in (6.38) and the CE-BEM channel is given by

Σ
ĥ

(Np)
(i)|sNp (i)

= Σh(i) − Σ
h̃

(Np)
(i)|sNp (i)

(C.35)

Σ
h̃

(Np)
(i)|sNp (i)

= B

[
(2D + 1)Nh

Ns
INm

+
αpEtot

2D + 1

× INh
⊗ (MHM)

]−1

BH , (C.36)

where the (2D + 1) × (2D + 1) matrix M is defined element-wise as [M ]m1,m2 =

1√
Ns

exp( j2πNhm1m2

Ns
). (See Appendix C.3 for details.) The choice αp,∗ that maximizes

this lower-bound on the post-combining SINR and consequently the lower-bound on

the achievable rate is

αp,∗ = arg max
αp∈(0,1)

σ̂2
Np
σ2
s

σ̃2
Np
σ2
s + σ2

. (C.37)

This completes the proof.

116



BIBLIOGRAPHY
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