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KI'he Sparse Reconstruction Problem:

From the M-length observation
y = Ax + e,
where

A is known and
e is AWGN,

we desire to estimate the N-length signal x, which is
1. under-determined: x has N > M coefficients, and

2. sparse: x has K < M non-zero coefficients (K unknown).
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parse Reconstruction as Optimization in RY:

Many techniques treat sparse reconstruction as optimization over € R:

& = arg min ||z s.t. |y — Az[3 <e Basis Pursuit
xERN

& = arg min |y — Az|3 st. |lz|1 <t Lasso
xRN

& = arg min ||y — Az|3 + o°7||z| GPSR
xRN

=71

p(x) x e

p(e) X e_”a?H%/a2 Laplacian MAP

— arg min p(x S.t.
g min p(z|y) {

r:c\a ~ indep N (0, ;1)

) | . a ~ iid T(0,0)

T = argwrgﬂl%r}vp(w\y,aML,mAL) s.t. < el ~ N0, 51 RVM
8~ T(0,0
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/Sparse Reconstruction via Model Selection: \

For true active-coefficient indices Sy, we can write
y = Ag,xs, + e.

This motivates two-step sparse reconstruction procedures such as

1) Svap = argrggécp(S]y) “*MAP model selection”
2) Lo Gume (A£MAPASMAP)_1 gMAPy “conditional LS estimation”
and
1) S, = {SeS:p(Sly) >71} “soft model selection”
2)  Dygvse N Z p(S|Y) Zumse|s “MMSE estimation”

SeS,

where S denotes the set of admissible models S. (known K = restricted S.)
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We now show that the model selection
is closely related to noncoherent decoding. . .
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/Noncoherent Decoding: \

Consider observations y € RM  channel h € R®, and codeword matrix B;:
y = Bh+e, i€{l,...,J}.

In noncoherent decoding, we attempt to infer the codeword index ¢ from y
without knowing the channel state h.

Sometimes we assume known channel statistics

= 0 for Rayleigh fadi
h ~ N(uR) with I or Rayleigh fading
p #= 0 for Ricean fading

and noise statistics e ~ N(0, 021).
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/Examples of vectorized model y = B;h + e: \
1. MIMO flat-fading:
Y=CH+E for HeCY" C;eC”yeC
= vec(Y) = (In, ® C;)vec(H) + vec(FE)
W] W e
yi b by ho e1
2. SISO with ISI: yo | = bg) bgz) béz) [h1] + | eo
Y3 i) ol | Lhe €3
L Y4 | i béi) i | €4 _
oo
| h1,0
Y1 bgb) bgz) ho,1 e1
3. SISO Wlth TV—ISl Y2 — béz) bgl) bg) hl,l + (D)
Y3 Bl Bl h2,1 €3
| Y4 » bgz) _ h072 | €4 ]
h1,2
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/Noncoherent Decoding as Model Selection: \

Notice that we can rewrite
y = Bh+e, ic{l,...,J}

as the familiar sparse reconstruction problem:

y = [Bl...Bi...BJ}

A\ - 7

+ e

A

8{:@..;....@:

for K-sparse € R/%. Thus

noncoherent decoding < model selection
under S = {(1,...,K), (K+1,...,2K), -+ (KJ-K+1,...,KJ)}.
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/Noncoherent Decoding — Typical Approaches: \

Known channel/noise statistics, non-equal codeword priors:
Imap = arg m?Xp(ﬂy)
= argmax { Inp(yli) + Inp(i)}  where p(y|i) = [p(yli, h)p(h)dh
1

I ={i:Inp(yli) + Inp(i) > In7} ... soft decoding

Known channel/noise statistics, equal codeword priors:

I = arg mzaxp(y\i)

Unknown channel/noise statistics:
loLrT = arg m?Xp(y‘ia hML|z’) where hy,; = BZLy

= argminy’ I3 y
7
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/I\/Iodel Selection — Typical Approaches:

Known signal/noise statistics, non-equal model priors:

SMAP = argmax p(S|y)
SeS

SeS
S, ={S :Inp(y|S) +Inp(S) > In7}
Known signal /noise statistics, equal model priors:

Sy = S
" argrgggp(y!)

Unknown signal/noise statistics:
SeLrr = arg Iglgéip(yfs, £L5|S) where aAZLS‘S = Agy

. Tyy L
= arominy’ 11
g o Yy AsY

.

= argmax { Inp(y|S) + Inp(S)} where p(y|S) = [ p(y|S, zs) p(xs) dxs

N

... Bayesian model averaging

... fails for nested S!

/
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/Leveraging the Connection — PWEP Analysis: \

e Pair-wise error probability (PWEP) of noncoherent decoding, e.g.,

Py, = Pr{p(ylj) > p(yli) | i} for ML
has been thoroughly studied.

e The results apply directly to model selection under the constraint
s ={(1, J(K+1,...,2K),- (KJ-K+1,...,KJ)}.

Note: Since this S is non-nested, can use GLRT.

e PWEP results can be extended to cover the case of “unrestricted” S,

where [S| = 2%,
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/I\/Iodel Selection via “Generalized Information Criteria”: \

For general S, model selection often takes the form

A

S = argmin {%Hy — Asdgss + nIS\}-

This includes “information theoretic’ model-order selection criteria, e.g.,

Naic = 2 Akiake's information criterion
Neic = In M Bayesian information criterion
Nrc = 21In N Risk inflation criterion

as well as MAP model selection under the Zellner/iid-Bernoulli model:
( unrestricted S (i.e., S| =2%)
Tvap = VTﬂln (1+7)(552)?) for { p(S) = AlSI(1 — \)(N=ISD
| T5 ~ N(0,70%(A5As)™Y).

. /
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/PWEP of Model Selection: \

Lemma 1 For generic S, the PWEP of

A

. 5 2
S = argmin | ||y — As@gs||, +n|S|; under xg|S ~ N (0,701
SeS

has the upper bound (tight as v — o0):
— K
Py < (agg7) " "Cru k()

where K., and K¢ denote the # of missed and false-alarm coefficients, and

( Kf—l k k
e f kz_:() S K. K., < K;,

Ck, k() = < K.

(Km—K¢)"n* (Kn+Ki—1—k
K K.
\kz_o ! Ke—1 m > B
Qg g = Amin(Aﬂﬂngm) ... Restricted Isometry Property

(An extension of Brehler & Varanasi TIT 2001.)

o
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/Performance Guarantees for MAP Model Selection: \

Assuming that A has unit-norm columns and satisfies a Restricted Isometry
Property (RIP), we've recently shown that the following properties hold with high
probability for reasonably small constants K1, Ko, K3, K4:

1. The energy of the missed signal coefficients is upper bounded by KiMo?.
2. No active coefficients are missed when |u| > 4071 + Kov/ Mo?2.

3. No coefficients are falsely detected when |u| > K3vV Moy + K4/ Mo?.
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/Leveraging the Connection — A Sparse-Reconstruction Algorithm: \

Optimal model selection under known statistics and non-equal priors is
wp = arg max p(Sly) = argmin { —Inp(y|S) —Inp(S)}
where, for xg ~ N (u, R),

Zuwse)s — 1| pit In|AsRAL + 01| + C

~Inp(ylS) = Ly — As@umseis||: +

As in soft noncoherent decoding, can use tree search to find the set of models S
with significant posterior probability. The “per-survivor’ nuisance parameter
estimates {Zyuse|s | gcg €an then be combined for MMSE estimation:

Trmse ~ Zp(S\y) Zmise|S ...Bayesian model averaging.
seS

Using O(M N K )-complexity tree search, “Fast Bayesian Matching Pursuit” yields

near-optimal performance with OMP-like complexity.

. /
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/Numerical Experiments — “Compressible” Signal: \
Setup: N = 512
M = 128
A : iid N(0,1) with columns scaled to unit norm
x : shuffled z,, = e=" with sparsity p € (0, 1)
SNR = 15dB
Algorithms: OMP — Tropp & Gilbert

StOMP — Donoho, Tsaig, Drori & Starck
GPSR-Basic — Figueiredo, Nowak & Wright (ming ||y —Ax||3 + 7||z||1)
SparseBayes — Wipf & Rao (RVM)
BCS — Ji & Carin (RVM)
VB-BCS - Ji & Carin (RVM)
FBMP — Schniter, Potter & Ziniel (BMA)

|2 — =3

Performance: NMSE = Avg{ } over 2500 random trials.

I3
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/NMSE versus decay rate p: \

N=512,M =128, SNR=15dB,D__ =5E__ =20, T=2000
-8 T \
+FBMPmmse (w/ EM update)
-10 ~—FBMP__(w/EM update) | |
—v— SparseBayes
~12 ——OMP .
StOMP
——GPSR
—14r . BCS i
_ ‘ ——VB-BCS
8 -16- -
L v A4 v —
(n S 4
= -18F .
Z
_207 -
_227 -
_247 -
_28.1 0‘.2 013 0.‘4 0p5 O.‘6 0‘.7 018 0.9
FBMP outperformed GPSR and OMP by 2 dB and others by much more.
Note: The signal priors favor GPSR!

. /

17




Phil Schniter The Ohio State University

KI'he Relevance Vector Machine (RVM): \

The RVM is an alternate Bayesian approach to sparse reconstruction:

e For coefficient activity, RVM uses continuous “precisions” o € (RT):

x|a ~ independent A(0,a, ') and «a ~iid I'(0,0)
eld ~ N(0,57'T) and 3~ T(0,0)

e The RVM's gamma hyperpriors lead to the convenient posterior
p = Ay

paly o) = M@ D) for {E7 PEN

and thUS iI\/II\/ISE — I,L

e The EM algorithm can be used to estimate {c, 3} jointly with {fi, }.
Can implement with an O(NK?) recursion after an O(N?M) initialization.

[1] Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Machine Learning Res., 2001.

[2] Wipf and Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Processing, 2004.

\\[3] Ji, Xue, and Carin, “Bayesian Compressive Sensing,” IEEE Trans. Signal Processing, 2008. /
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/Bayesian Model Averaging versus the Relevance Vector Machine: \

e Both are Bayesian approaches to sparse parameter estimation.

e For coefficient activity, RVM uses the continuous parameterization «, while
BMA uses the discrete parameterization S.

e Implementations have roughly the same complexity (recall that FBMP is
O(NMK) and RVM has O(NK?) recursion plus O(N2M) initialization).

e Upon termination, the RVM posterior is Gaussian

p(zly) ~ N (@, %)

whereas the BMA posterior is a Gaussian mixture:

p(x|y) ~ ZN wMMSE\SaZS) p(Sly).

Thus, the BMA posterior can be more informative.

e Simulation results show advantages of BMA over RVM.
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/Conclusions: \

e Sparse reconstruction can be viewed as (discrete) model selection followed by

(continuous) parameter estimation.

e Noncoherent decoding is (discrete) codeword selection under (continuous)
nuisance parameters.

e Noncoherent decoding becomes equivalent to sparse reconstruction under a
particular admissible model set S.

e Noncoherent decoding techniques can be exploited for sparse reconstruction:

— PWEP analyses for noncoherent decoding can be extended to yield
PWEP analyses for model selection under general S.

— Noncoherent decoding algorithms based on soft tree search inspire
low-complexity near-optimal sparse reconstruction algorithms like
Fast Bayesian Matching Pursuit.
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/Sparsity of estimate versus decay rate p: \
N =512, M =128, SNR = 15 dB, Dm =5 Emax =20, T =2000

—e—FBMPmmse (w/ EM update)

+FBMPmap (w/ EM update)

ax
60

50 —¥— SparseBayes N
—— OMP
StOMP
——GPSR
40 BCS B

v

w
of

recovery| I0

|Ix

N
o

10

The estimates returned by FBMP are among the sparsest.

. /
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/Runtime versus decay rate p: \

N =512, M =128, SNR =15 dB, Dm

=5E =20, T =2000
ax max

Runtime [s]

—o—FBMP (w/ EM update)
——FBMP (w/o EM update)
—v— SparseBayes
——OMP

StOMP
——GPSR

BCS
——VB-BCS

0.7 0.8 0.9

FBMP (without EM iterations) is on par with other Bayesian algorithms, and a
bit slower than other matching pursuit and convex programming algorithms.
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