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The Sparse Reconstruction Problem:

From the M -length observation

y = Ax + e,

where

A is known and

e is AWGN,

we desire to estimate the N -length signal x, which is

1. under-determined : x has N > M coefficients, and

2. sparse: x has K < M non-zero coefficients (K unknown).
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Sparse Reconstruction as Optimization in R
N :

Many techniques treat sparse reconstruction as optimization over x ∈ R
N :

x̂ = arg min
x∈RN

‖x‖1 s.t. ‖y − Ax‖2
2 ≤ ǫ Basis Pursuit

x̂ = arg min
x∈RN

‖y − Ax‖2
2 s.t. ‖x‖1 ≤ t Lasso

x̂ = arg min
x∈RN

‖y − Ax‖2
2 + σ2τ‖x‖1 GPSR

= arg min
x∈RN

p(x|y) s.t.

{

p(x) ∝ e−τ‖x‖1

p(e) ∝ e−‖x‖2
2/σ2

Laplacian MAP

x̂ = arg min
x∈RN

p(x|y, α̂ML, β̂ML) s.t.







x|α ∼ indep N (0, α−1
n )

α ∼ iid Γ(0, 0)

e|β ∼ N (0, β−1I)

β ∼ Γ(0, 0)

RVM
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Sparse Reconstruction via Model Selection:

For true active-coefficient indices S0, we can write

y = AS0xS0 + e.

This motivates two-step sparse reconstruction procedures such as

1) ŜMAP = arg max
S∈S

p(S|y) “MAP model selection”

2) x̂
LS|ŜMAP

= (AT
ŜMAP

AŜMAP
)−1AT

ŜMAP
y “conditional LS estimation”

and

1) Ŝτ = {S ∈ S : p(S|y) > τ} “soft model selection”

2) x̂MMSE ≈
∑

S∈Ŝτ

p(S|y) x̂MMSE|S “MMSE estimation”

where S denotes the set of admissible models S. (known K ⇒ restricted S.)
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We now show that the model selection

is closely related to noncoherent decoding . . .
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Noncoherent Decoding:

Consider observations y ∈ R
M , channel h ∈ R

K , and codeword matrix Bi:

y = Bih + e, i ∈ {1, . . . , J}.

In noncoherent decoding, we attempt to infer the codeword index i from y

without knowing the channel state h.

Sometimes we assume known channel statistics

h ∼ N (µ,R) with

{

µ = 0 for Rayleigh fading

µ 6= 0 for Ricean fading

and noise statistics e ∼ N (0, σ2I).
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Examples of vectorized model y = Bih + e:

1. MIMO flat-fading:

Y = CiH + E for H ∈ C
Nt×Nr ,Ci ∈ C

L×Nt ,Y ∈ C
L×Nr

⇒ vec(Y ) = (INr ⊗ Ci) vec(H) + vec(E)

2. SISO with ISI:
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3. SISO with TV-ISI:
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Noncoherent Decoding as Model Selection:

Notice that we can rewrite

y = Bih + e, i ∈ {1, . . . , J}

as the familiar sparse reconstruction problem:

y =
[

B1 · · ·Bi · · ·BJ

]

︸ ︷︷ ︸

A








0...
h...
0








︸︷︷︸

x

+ e

for K-sparse x ∈ R
JK . Thus

noncoherent decoding ⇔ model selection

under S =
{
(1, . . . , K), (K+1, . . . , 2K), · · · , (KJ−K+1, . . . , KJ)

}
.
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Noncoherent Decoding – Typical Approaches:

Known channel/noise statistics, non-equal codeword priors:

ı̂MAP = arg max
i

p(i|y)

= arg max
i

{
ln p(y|i) + ln p(i)

}
where p(y|i) =

∫
p(y|i,h) p(h) dh

Îτ = {i : ln p(y|i) + ln p(i) > ln τ} . . . soft decoding

Known channel/noise statistics, equal codeword priors:

ı̂ML = arg max
i

p(y|i)

Unknown channel/noise statistics:

ı̂GLRT = arg max
i

p(y|i, ĥML|i) where ĥML|i = B+
i y

= arg min
i

yT
Π

⊥
Bi

y.
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Model Selection – Typical Approaches:

Known signal/noise statistics, non-equal model priors:

ŜMAP = arg max
S∈S

p(S|y)

= arg max
S∈S

{
ln p(y|S) + ln p(S)

}
where p(y|S) =

∫
p(y|S, xS) p(xS) dxS

Ŝτ = {S : ln p(y|S) + ln p(S) > ln τ} . . .Bayesian model averaging

Known signal/noise statistics, equal model priors:

ŜML = arg max
S∈S

p(y|S)

Unknown signal/noise statistics:

ŜGLRT = arg max
S∈S

p(y|S, x̂LS|S) where x̂LS|S = A+
S y

= arg min
S∈S

yT
Π

⊥
AS

y . . . fails for nested S!
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Leveraging the Connection – PWEP Analysis:

• Pair-wise error probability (PWEP) of noncoherent decoding, e.g.,

Pj|i = Pr
{

p(y|j) > p(y|i) | i
}

for ML

has been thoroughly studied.

• The results apply directly to model selection under the constraint

S =
{
(1, . . . , K), (K+1, . . . , 2K), · · · , (KJ−K+1, . . . , KJ)

}
.

Note: Since this S is non-nested, can use GLRT.

• PWEP results can be extended to cover the case of “unrestricted” S,

where |S| = 2N .
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Model Selection via “Generalized Information Criteria”:

For general S, model selection often takes the form

Ŝ = arg min
S∈S

{
1
σ2

∥
∥y − ASx̂LS|S

∥
∥2

2
+ η|S|

}

.

This includes “information theoretic” model-order selection criteria, e.g.,

ηAIC = 2 Akiake’s information criterion

ηBIC = lnM Bayesian information criterion

ηRIC = 2 lnN Risk inflation criterion

as well as MAP model selection under the Zellner/iid-Bernoulli model:

ηMAP = γ+1
γ ln

(
(1+γ)(1−λ

λ )2
)

for







unrestricted S (i.e., |S| = 2N )

p(S) = λ|S|(1 − λ)(N−|S|)

xS ∼ N
(
0, γσ2(AT

SAS)−1
)
.
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PWEP of Model Selection:

Lemma 1 For generic S, the PWEP of

Ŝ = arg min
S∈S

{
1
σ2

∥
∥y − ASx̂LS|S

∥
∥2

2
+ η|S|

}

under xS |S ∼ N (0, γσ2I |S|)

has the upper bound (tight as γ → ∞):

PŜ|S ≤ (αŜ,Sγ)−KmCKm,Kf
(η),

where Km and Kf denote the # of missed and false-alarm coefficients, and

CKm,Kf
(η) =







e(Km−Kf)η
Kf−1
∑

k=0

(Kf−Km)kηk

k!

(
Km+Kf−1−k

Km

)

Km ≤ Kf,

Km∑

k=0

(Km−Kf)
kηk

k!

(
Km+Kf−1−k

Kf − 1

)

Km > Kf.

αŜ,S = λmin(A
T
mΠ

⊥
A

Ŝ
Am) . . .Restricted Isometry Property

(An extension of Brehler & Varanasi TIT 2001.)
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Performance Guarantees for MAP Model Selection:

Assuming that A has unit-norm columns and satisfies a Restricted Isometry

Property (RIP), we’ve recently shown that the following properties hold with high

probability for reasonably small constants K1, K2, K3, K4:

1. The energy of the missed signal coefficients is upper bounded by K1Mσ2
e .

2. No active coefficients are missed when |µ| > 4σ1 + K2

√
Mσ2

e .

3. No coefficients are falsely detected when |µ| > K3

√
Mσ1 + K4

√
Mσ2

e .
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Leveraging the Connection – A Sparse-Reconstruction Algorithm:

Optimal model selection under known statistics and non-equal priors is

ŜMAP = arg max
S∈S

p(S|y) = arg min
S∈S

{
− ln p(y|S) − ln p(S)

}

where, for xS ∼ N (µ,R),

− ln p(y|S) = 1
σ2

∥
∥y − ASx̂MMSE|S

∥
∥2

2
+

∥
∥x̂MMSE|S − µ

∥
∥2

R
−1+ ln

∣
∣ASRAT

S + σ2I
∣
∣ + C

As in soft noncoherent decoding, can use tree search to find the set of models Ŝ
with significant posterior probability. The “per-survivor” nuisance parameter

estimates {x̂MMSE|S}S∈Ŝ can then be combined for MMSE estimation:

x̂MMSE ≈
∑

S∈Ŝ

p(S|y) x̂MMSE|S ...Bayesian model averaging.

Using O(MNK)-complexity tree search, “Fast Bayesian Matching Pursuit” yields

near-optimal performance with OMP-like complexity.
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Numerical Experiments — “Compressible” Signal:

Setup: N = 512

M = 128

A : i.i.d. N (0, 1) with columns scaled to unit norm

x : shuffled xn = e−ρn with sparsity ρ ∈ (0, 1)

SNR = 15dB

Algorithms: OMP – Tropp & Gilbert

StOMP – Donoho, Tsaig, Drori & Starck

GPSR-Basic – Figueiredo, Nowak & Wright (minx ‖y−Ax‖2

2
+ τ‖x‖1)

SparseBayes – Wipf & Rao (RVM)

BCS – Ji & Carin (RVM)

VB-BCS – Ji & Carin (RVM)

FBMP – Schniter, Potter & Ziniel (BMA)

Performance: NMSE , Avg

{‖x̂ − x‖2
2

‖x‖2
2

}

over 2500 random trials.
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NMSE versus decay rate ρ:
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FBMP outperformed GPSR and OMP by 2 dB and others by much more.

Note: The signal priors favor GPSR!
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The Relevance Vector Machine (RVM):

The RVM is an alternate Bayesian approach to sparse reconstruction:

• For coefficient activity, RVM uses continuous “precisions” α ∈ (R+)N :

x|α ∼ independent N (0, α−1
n ) and α ∼ iid Γ(0, 0)

e|β ∼ N (0, β−1I) and β ∼ Γ(0, 0)

• The RVM’s gamma hyperpriors lead to the convenient posterior

p(x|y,α, β) ∼ N (µ̄, Σ̄) for

{
µ̄ = βΣAT y

Σ̄ =
(
βAT A + D(α)

)−1

and thus x̂MMSE = µ̄.

• The EM algorithm can be used to estimate {α, β} jointly with {µ̄, Σ̄}.
Can implement with an O(NK2) recursion after an O(N2M) initialization.

[1] Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Machine Learning Res., 2001.

[2] Wipf and Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Processing, 2004.

[3] Ji, Xue, and Carin, “Bayesian Compressive Sensing,” IEEE Trans. Signal Processing, 2008.
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Bayesian Model Averaging versus the Relevance Vector Machine:

• Both are Bayesian approaches to sparse parameter estimation.

• For coefficient activity, RVM uses the continuous parameterization α, while

BMA uses the discrete parameterization S.

• Implementations have roughly the same complexity (recall that FBMP is

O(NMK) and RVM has O(NK2) recursion plus O(N2M) initialization).

• Upon termination, the RVM posterior is Gaussian

p(x|y) ∼ N (µ̄, Σ̄)

whereas the BMA posterior is a Gaussian mixture:

p(x|y) ∼
∑

S

N
(
x̂MMSE|S ,ΣS

)
p(S|y).

Thus, the BMA posterior can be more informative.

• Simulation results show advantages of BMA over RVM.
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Conclusions:

• Sparse reconstruction can be viewed as (discrete) model selection followed by

(continuous) parameter estimation.

• Noncoherent decoding is (discrete) codeword selection under (continuous)

nuisance parameters.

• Noncoherent decoding becomes equivalent to sparse reconstruction under a

particular admissible model set S.

• Noncoherent decoding techniques can be exploited for sparse reconstruction:

– PWEP analyses for noncoherent decoding can be extended to yield

PWEP analyses for model selection under general S.

– Noncoherent decoding algorithms based on soft tree search inspire

low-complexity near-optimal sparse reconstruction algorithms like

Fast Bayesian Matching Pursuit.
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Sparsity of estimate versus decay rate ρ:
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The estimates returned by FBMP are among the sparsest.
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Runtime versus decay rate ρ:
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FBMP (without EM iterations) is on par with other Bayesian algorithms, and a

bit slower than other matching pursuit and convex programming algorithms.
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