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Compressive Sensing

@ Goal: recover signal « from noisy sub-Nyquist measurements
y=Az+w zecRY gyweRY M<N.

where x is K-sparse with K < M, or compressible.

@ With sufficient sparsity and appropriate conditions on the mixing
matrix A (e.g. RIP, nullspace), accurate recovery of x is possible
using polynomial-complexity algorithms.

@ A common approach (LASSO) is to solve the convex problem
min [ly — Az |3 + of|z|

where « can be tuned in accordance with sparsity and SNR.
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I
Phase Transition Curves (PTC)

@ The PTC identifies ratios (N, M) for which perfect noiseless recovery
of K-sparse x occurs (as M, N, K — oo under i.i.d Gaussian A).

@ Suppose {z,} are drawn i.i.d.

px () = M (wa) +(1-N)d(za)]
with known A\ & K/N. 08
>
@ LASSO's PTC is invariant to £
f(-). Thus, LASSO is robust Z
in the face of unknown f(-). S04
g
@ MMSE-reconstruction's PTC 02 oW b
is far better than Lasso's, but — theoretical LASSO
requires knowing f(-). 02 M/N (undersamplmg) 0

Wu and Verdd, “Optimal phase transitions in compressed sensing,” arXiv Nov. 2011.
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e
Motivations

For practical compressive sensing. . .

@ want minimal MSE

— distributions are unknown = can't formulate MMSE estimator
— but there is hope:

various algs seen to outperform Lasso for specific signal classes
— really, we want a universal algorithm: good for all signal classes

@ want fast runtime
— especially for large signal-length N (i.e., scalable).

@ want to avoid algorithmic tuning parameters,
— who has the patience to tweak yet another CS algorithm!
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Proposed Approach: “EM-GM-GAMP"

@ Model the signal and noise using flexible distributions:
— i.i.d Bernoulli Gaussian-mixture (GM) signal

L
p(an) = )\sz N (@n; 01, ¢1) + (1 = N)d(zn) Vn
=1

— i.i.d Gaussian noise with variance v

@ Learn the prior parameters g = {A,wl,el,@,w}le
— treat as deterministic and use expectation-maximization (EM)

@ Exploit the learned priors in near-MMSE signal reconstruction
— use generalized approximate message passing (GAMP)
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I
Approximate Message Passing (AMP)

@ AMP methods infer  from y = Ax 4+ w using loopy belief
propagation with carefully constructed approximations.

@ The original AMP [Donoho, Maleki, Montanari '09] solves the LASSO
problem (i.e., Laplacian MAP) assuming i.i.d matrix A.

@ The Bayesian AMP [Donoho, Maleki, Montanari '10] framework tackles
MMSE inference under generic signal priors.

@ The generalized AMP [Rangan '10] framework tackles MAP or MMSE
inference under generic signal & noise priors and generic A.
@ AMP is a form of iterative thresholding, requiring only two
applications of A per iteration and =~ 25 iterations. Very fast!
@ Rigorous large-system analyses (under i.i.d Gaussian A) have
established that (G)AMP follows a state-evolution trajectory with
optimal properties [Bayati, Montanari '10], [Rangan '10].
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I
AMP Heuristics (Sum-Product)

© Message from y; node to x; node:

N(yr: [Az)1, ) px(z1)

N (ys; [Az]a, v) px(x2)
~ N via CLT
—
pimi(xi) < [ N(yi; 2, airar ;) [T,z picr (@)
{@r}rz; N(yar; [A]ar, ) px(zN)

PN (TN)

[ N ) N (i a), i () ~ N

To compute Z;(z;), v7(x;), the means and variances of {p;,}r»; suffice,
thus Gaussian message passing!

Remaining problem: we have 2M N messages to compute (too many!).

@ Exploiting similarity among the messages
{picj}M,, AMP employs a Taylor-series A4zl v)
approximation of their difference whose
error vanishes as M — oo for dense A (and
similar for {p;;}}¥| as N — o).
Finally, need to compute only O(M+N)  xiyy:(40]us,v)
messages! Parcn(zn)

proa(xy)

—1(T1
AN

px (1)

N(ya: [Azl]y. ) px(z2)

px(aN)
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I ——
Expectation-Maximization

@ We use expectation-maximization (EM) to learn the signal and noise
prior parameters q = {\,w, 0, ¢, v}

@ The missing data is chosen to be the signal and noise vectors (x, w).

@ The updates are performed coordinate-wise.

o For example, updating A at the i** EM iteration involves

N
(E-step) Q(Alg") =Y E{Inp(za; N, o', 60", ¢")|y;q"}

n=1
(M-step) AT = argmax Q(\|q").
AE(0,1)

The updates of (w, 8, ¢, 1) are similar (details in paper).

@ All quantities needed for the EM updates are provided by GAMP!
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Parameter Initialization

Initialization matters; EM can get stuck in a local max. We suggest. ..
@ initializing the sparsity A according to the theoretical LASSO PTC.

@ initializing the noise and active-signal variances using known energies
lyl13, | Al|% and user-supplied SNR® (which defaults to 20 dB):

W0 = lyll3 (0%)° = lyll3 — My°
(SNR? 4 1) M’ A0JA|12,

o fixing L (e.g., L = 3) and initializing the GM parameters (w, 0, ¢) as

the best fit to a uniform distribution with variance 2.

We have also developed
@ a “splitting” mode that adds one GM component at a time.

@ a “heavy tailed” mode that forces zero-mean GM components.

Philip Schniter and Jeremy Vila (OSU) EM-GM-GAMP CISS @ Princeton — 3/23/12 9 /19



I ——
Examples of Learned Signal-pdfs

The following shows the Gaussian-mixture pdf learned by EM-GM-GAMP
when the true active-signal pdf was uniform (left) and £1 (right):
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I
Empirical PTCs: Bernoulli-Rademacher (£1) signals

@ We now evaluate noiseless reconstruction performance via
phase-transition curves constructed using N =1000-length signals,
i.i.d Gaussian A, and 100 realizations.

o We see EM-GM-GAMP
performing significantly
better than LASSO for this
signal class.

@ We also see EM-GM-GAMP
performing nearly as well as
GM-GAMP under genie-aided
parameter settings.

— EM-GM-GAMP
—— EM-BG-GAMP
----- Laplacian-AMP
— theoretical LASSO| |

012 O:4 0.
M/N

Empirical noiseless Bernoulli-Rademacher PTCs

6 0.8
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I
PTCs for Bernoulli-Gaussian and Bernoulli signals
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For these signals, we see EM-GM-GAMP performing. ..
@ significantly better than LASSO,
@ nearly as well as genie-aided GM-GAMP,

@ on par with our previous “EM-BG-GAMP" algorithm.

Philip Schniter and Jeremy Vila (OSU)

EM-GM-GAMP

Empirical noiseless Bernoulli PTCs

CISS @ Princeton — 3/23/12

12 /19



I ——
Noisy Recovery: Bernoulli-Rademacher (£1) signals

@ We now compare the normalized MSE of EM-GM-GAMP to several
state-of-the-art algorithms (SLO, T-MSBL, BCS, Lasso via SPGL1)
for the task of noisy signal recovery under i.i.d Gaussian A.

@ For this, we fixed N=1000, K =100, SNR=25dB and varied M.

@ For these Bernoulli-Rademacher -3
signals, we see EM-GM-GAMP -5}

outperforming the other S -10p
algorithms for all undersampling -1
ratios M/N. = 200 [0 ]
ol : gen;e Lasso }
. . - BC!
@ Notice that our previous ol | twecae
EM-BG-GAMP algorithm T TMseL '
_35 |~ EM-GM-GAMP
cannot accurately model the ‘ ‘ L YV v eg
. . 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Bernoulli-Rademacher prior. M/N

Noisy Bernoulli-Rademacher recovery NMSE.
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I
Noisy Recovery: Bernoulli-Gaussian and Bernoulli signals
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@ For Bernoulli-Gaussian and Bernoulli signals, EM-GM-GAMP again
dominates the other algorithms.

@ We attribute the excellent performance of EM-GM-GAMP to its
ability to learn and exploit the true signal prior.
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Noisy Recovery of Heavy-tailed (Student’s-t) signals
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@ Algorithm rankings on heavy-tailed signals are often the reverse of
those for sparse signals!
@ In its "heavy tailed” mode, EM-GM-GAMP performs on par with the
best algorithms for all M/N.
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I
Runtime versus signal-length NV

o We fix M/N=0.5, K/N=0.1, SNR=25dB, and average 50 trials.
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o For all N > 1000, EM-GM-GAMP has the fastest runtime!
@ EM-GM-GAMP can also leverage fast operators for A (e.g., FFT).
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Extension to structured sparsity (Justin Ziniel)

@ Recovery of an audio signal sparsified via DCT ¥ and compressively
sampled via i.i.d Gaussian ® (so that A = ®W).

@ Exploit persistence of support across time via discrete Markov chains
and turbo AMP.

Magnitude (in dB) of DCT Coefficients of Audio Signal

= -20
g -30
E 10
§| -50
-60
1200 _70
140 20
20 30
Timestep [{]
algorithm M/N =1/5 M/N =1/3 M/N =1/2
EM-GM-AMP -9.04dB | 8.77s | -12.72dB | 10.26s | -17.17dB | 11.92 s
turbo EM-GM-AMP | -12.34dB | 9.37s | -16.07dB | 11.05s | -20.94dB | 12.96 s
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Conclusions

@ We proposed a sparse reconstruction alg that uses EM to learn
GM-signal and AWGN-noise priors, and that uses GAMP to exploit
these priors for near-MMSE signal recovery.

@ Advantages of EM-GM-GAMP:

@ State-of-the-art NMSE performance for all tested signal types.
@ State-of-the-art complexity for signals of length N = 1000.
@ Minimal tuning: choose between “sparse” or “heavy-tailed” modes.

@ Ongoing related work:

Theoretical performance guarantees of EM-GM-GAMP.

Extension to non-Gaussian noise.

Universal learning/exploitation of structured sparsity.

Extensions to matrix completion, dictionary learning, robust PCA.

¢ & ¢ ¢
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Matlab code is available at
http://ece.osu.edu/~vilaj/EMGMAMP/EMGMAMP . html

Thanks!
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