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Compressive Sensing

Goal: recover signal x from noisy sub-Nyquist measurements

y = Ax+w x ∈ R
N y,w ∈ R

M M < N.

where x is K-sparse with K<M , or compressible.

With sufficient sparsity and appropriate conditions on the mixing
matrix A (e.g. RIP, nullspace), accurate recovery of x is possible
using polynomial-complexity algorithms.

A common approach (LASSO) is to solve the convex problem

min
x

‖y −Ax‖22 + α‖x‖1

where α can be tuned in accordance with sparsity and SNR.
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Phase Transition Curves (PTC)

The PTC identifies ratios (MN ,
K
M ) for which perfect noiseless recovery

of K-sparse x occurs (as M,N,K → ∞ under i.i.d Gaussian A).

Suppose {xn} are drawn i.i.d.

pX(xn) = λf(xn)+(1−λ)δ(xn)

with known λ , K/N .

LASSO’s PTC is invariant to
f(·). Thus, LASSO is robust
in the face of unknown f(·).

MMSE-reconstruction’s PTC
is far better than Lasso’s, but
requires knowing f(·). 0.2 0.4 0.6 0.8
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Wu and Verdú, “Optimal phase transitions in compressed sensing,” arXiv Nov. 2011.
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Motivations

For practical compressive sensing. . .

want minimal MSE

– distributions are unknown ⇒ can’t formulate MMSE estimator
– but there is hope:

various algs seen to outperform Lasso for specific signal classes
– really, we want a universal algorithm: good for all signal classes

want fast runtime

– especially for large signal-length N (i.e., scalable).

want to avoid algorithmic tuning parameters,

– who has the patience to tweak yet another CS algorithm!
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Proposed Approach: “EM-GM-GAMP”

Model the signal and noise using flexible distributions:

– i.i.d Bernoulli Gaussian-mixture (GM) signal

p(xn) = λ

L∑

l=1

ωl N (xn; θl, φl) + (1− λ)δ(xn) ∀n

– i.i.d Gaussian noise with variance ψ

Learn the prior parameters q , {λ, ωl, θl, φl, ψ}
L
l=1

– treat as deterministic and use expectation-maximization (EM)

Exploit the learned priors in near-MMSE signal reconstruction

– use generalized approximate message passing (GAMP)
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Approximate Message Passing (AMP)

AMP methods infer x from y = Ax+w using loopy belief
propagation with carefully constructed approximations.

The original AMP [Donoho, Maleki, Montanari ’09] solves the LASSO
problem (i.e., Laplacian MAP) assuming i.i.d matrix A.

The Bayesian AMP [Donoho, Maleki, Montanari ’10] framework tackles
MMSE inference under generic signal priors.

The generalized AMP [Rangan ’10] framework tackles MAP or MMSE
inference under generic signal & noise priors and generic A.

AMP is a form of iterative thresholding, requiring only two
applications of A per iteration and ≈ 25 iterations. Very fast!

Rigorous large-system analyses (under i.i.d Gaussian A) have
established that (G)AMP follows a state-evolution trajectory with
optimal properties [Bayati, Montanari ’10], [Rangan ’10].
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AMP Heuristics (Sum-Product)
pX(x1)

pX(x2)

pX(xN )

x1

x2

xN

p1→1(x1)

pM←N (xN )

N (y1; [Ax]1, ψ)

N (y2; [Ax]2, ψ)

N (yM ; [Ax]M , ψ)

...
...

...

1 Message from yi node to xj node:

pi→j(xj) ∝

∫

{xr}r 6=j

N
(
yi;

≈ N via CLT
︷ ︸︸ ︷∑

r
airxr , ψ

)∏

r 6=j
pi←r(xr)

≈

∫

zi

N (yi; zi, ψ)N
(
zi; ẑi(xj), ν

z
i (xj)

)
∼ N

To compute ẑi(xj), ν
z
i (xj), the means and variances of {pi←r}r 6=j suffice,

thus Gaussian message passing!

Remaining problem: we have 2MN messages to compute (too many!).

2 Exploiting similarity among the messages
{pi←j}

M
i=1

, AMP employs a Taylor-series
approximation of their difference whose
error vanishes as M→∞ for dense A (and
similar for {pi←j}Ni=1

as N→∞).
Finally, need to compute only O(M+N)
messages!

pX(x1)

pX(x2)

pX(xN )

x1
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xN

p1→1(x1)

pM←N (xN )
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N (yM ; [Ax]M , ψ)

...
...

...
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Expectation-Maximization

We use expectation-maximization (EM) to learn the signal and noise

prior parameters q , {λ,ω,θ,φ, ψ}

The missing data is chosen to be the signal and noise vectors (x,w).

The updates are performed coordinate-wise.

For example, updating λ at the ith EM iteration involves

(E-step) Q(λ|qi) =

N∑

n=1

E
{
ln p(xn;λ,ω

i
,θ

i
,φ

i)
∣
∣y; qi

}

(M-step) λ
i+1 = argmax

λ∈(0,1)

Q(λ|qi).

The updates of (ω,θ,φ, ψ) are similar (details in paper).

All quantities needed for the EM updates are provided by GAMP!
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Parameter Initialization

Initialization matters; EM can get stuck in a local max. We suggest. . .

initializing the sparsity λ according to the theoretical LASSO PTC.

initializing the noise and active-signal variances using known energies
‖y‖2

2
, ‖A‖2F and user-supplied SNR0 (which defaults to 20 dB):

ψ0 =
‖y‖2

2

(SNR0 + 1)M
, (σ2)0 =

‖y‖2
2
−Mψ0

λ0‖A‖2F

fixing L (e.g., L = 3) and initializing the GM parameters (ω,θ,φ) as
the best fit to a uniform distribution with variance σ2.

We have also developed

a “splitting” mode that adds one GM component at a time.

a “heavy tailed” mode that forces zero-mean GM components.
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Examples of Learned Signal-pdfs

The following shows the Gaussian-mixture pdf learned by EM-GM-GAMP
when the true active-signal pdf was uniform (left) and ±1 (right):
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Empirical PTCs: Bernoulli-Rademacher (±1) signals

We now evaluate noiseless reconstruction performance via
phase-transition curves constructed using N=1000-length signals,
i.i.d Gaussian A, and 100 realizations.

We see EM-GM-GAMP
performing significantly
better than LASSO for this
signal class.

We also see EM-GM-GAMP
performing nearly as well as
GM-GAMP under genie-aided
parameter settings. 0.2 0.4 0.6 0.8
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PTCs for Bernoulli-Gaussian and Bernoulli signals
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For these signals, we see EM-GM-GAMP performing. . .

significantly better than LASSO,

nearly as well as genie-aided GM-GAMP,

on par with our previous “EM-BG-GAMP” algorithm.
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Noisy Recovery: Bernoulli-Rademacher (±1) signals

We now compare the normalized MSE of EM-GM-GAMP to several
state-of-the-art algorithms (SL0, T-MSBL, BCS, Lasso via SPGL1)
for the task of noisy signal recovery under i.i.d Gaussian A.

For this, we fixed N=1000, K=100, SNR=25dB and varied M .

For these Bernoulli-Rademacher
signals, we see EM-GM-GAMP
outperforming the other
algorithms for all undersampling
ratios M/N .

Notice that our previous
EM-BG-GAMP algorithm
cannot accurately model the
Bernoulli-Rademacher prior.
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Noisy Recovery: Bernoulli-Gaussian and Bernoulli signals
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For Bernoulli-Gaussian and Bernoulli signals, EM-GM-GAMP again
dominates the other algorithms.

We attribute the excellent performance of EM-GM-GAMP to its
ability to learn and exploit the true signal prior.
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Noisy Recovery of Heavy-tailed (Student’s-t) signals
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Algorithm rankings on heavy-tailed signals are often the reverse of
those for sparse signals!

In its “heavy tailed” mode, EM-GM-GAMP performs on par with the
best algorithms for all M/N .
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Runtime versus signal-length N

We fix M/N=0.5, K/N=0.1, SNR=25dB, and average 50 trials.
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For all N > 1000, EM-GM-GAMP has the fastest runtime!

EM-GM-GAMP can also leverage fast operators for A (e.g., FFT).
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Extension to structured sparsity (Justin Ziniel)

Recovery of an audio signal sparsified via DCT Ψ and compressively
sampled via i.i.d Gaussian Φ (so that A = ΦΨ).

Exploit persistence of support across time via discrete Markov chains
and turbo AMP.
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algorithm M/N = 1/5 M/N = 1/3 M/N = 1/2
EM-GM-AMP -9.04 dB 8.77 s -12.72 dB 10.26 s -17.17 dB 11.92 s

turbo EM-GM-AMP -12.34 dB 9.37 s -16.07 dB 11.05 s -20.94 dB 12.96 s
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Conclusions

We proposed a sparse reconstruction alg that uses EM to learn
GM-signal and AWGN-noise priors, and that uses GAMP to exploit
these priors for near-MMSE signal recovery.

Advantages of EM-GM-GAMP:

State-of-the-art NMSE performance for all tested signal types.
State-of-the-art complexity for signals of length N & 1000.
Minimal tuning: choose between “sparse” or “heavy-tailed” modes.

Ongoing related work:

Theoretical performance guarantees of EM-GM-GAMP.
Extension to non-Gaussian noise.
Universal learning/exploitation of structured sparsity.
Extensions to matrix completion, dictionary learning, robust PCA.
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Matlab code is available at
http://ece.osu.edu/~vilaj/EMGMAMP/EMGMAMP.html

Thanks!
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