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Abstract—When recovering a sparse signal from noisy com- fact about Lasso’s noiseless PTC is that it is invariant o ai

pressive linear measurements, the distribution of the signal’s djstribution. In other words, if we consider the elementshef

non-zero coefficients can have a profound affect on recovery vector z to be drawn i.i.d from the marainal pdf
mean-squared error (MSE). If this distribution was apriori * o 9 P

known, one could use efficient approximate message passin

(AMP) techniques for nearly minirgﬁm MSE (MMSE? re?:ov— ? px(z) = Afx (@) + (1= A)d(x), 2)

ery. In practice, though, the distribution is unknown, motivat-

ing the use of robust algorithms like Lasso—which is nearly whered(-) is the Dirac delta,fx (-) is the active-coefficient

minimax optimal—at the cost of significantly larger MSE for  pdf (with zero probability mass at = 0), and A £ K/N,

non-leagt_—favorable_dlstrlbuthns. As an_alternatlve, We Propos  ihan the Lasso PTC is invariant #0x (). While this implies

an emp_lrlcaI-B.ayesw}n technique that .S|multar!eously Iearns the that L . bust to “difficult” o | distrious. it

signal distribution while MMSE-recovering the signal—according a .asslo IS robust 1o “driicu spar;e signal aistr . | .

to the learned distribution—using AMP. In particular, we model ~ @lso implies that Lasso cannot benefit from the sparse-signa

the non-zero distribution as a Gaussian mixture, and learn its distribution being an “easy” one.

Par?mete't'sththm“gh teﬁ,PeCtet‘tion NmaXi”?iZ?“O“r lJSi”gt A'V'Pf,to At the other end of the spectrum is minimum mean-squared

implement the expectation step. Numerical experiments confirm . ; .

thé) state-of-the-arﬁ performanc% of our approa?:h on a rangeof error (MMSE)-optimal signal recovery undenownmarginal

signal classes! 2 pdfs of the form (2). The PTC of MMSE recovery has been
recently characterized [5] and shown to be well above that of

. INTRODUCTION Lasso. In particular, fomany fx(:), the PTC on theM/N-

yersusi/M plane equals the lind(/M = 1 in both the

z € RN from M < N linear measurementg — Az + w € n0|sele.ss and noisy cases. Moreover, efficient algorittons f

RM, where A is known andw is additive white Gaussian approximate MMSE-recovery have been proposed, such as

noise (AWGN). For this problem, accurate (relative to thiy'e Bayesian version of Donoho, Maleki, and Montanari's

noise variance) signal recovery is possible with polynd>mia‘5‘ppr0)(imate message passifgMP) algorithm from [6],

complexity algorithms wher is sufficiently sparse and when:c’vhICh perf(;]rms_ loopy bellule_f—pror;])agatlon on th? uqdﬁrly|ng
A satisfies certain restricted isometry properties [1]. actor graph using central-limit-theorem approximatidhat

A well-known approach to the sparse-signal recovery proBECOMe exact in the large-system limit under iAdAlthough

lem is Lasso [2], which solves the convex problem MP’s cqmplexity IS remarl$ably I.OW (g.g., QOminqted by
one application ofA and A" per iteration with typically

Flasso = arg min ||y — AZ||3 + Nassol| &1, (1) < 50 iterations to convergence), it offers rigorous perfornenc
* guarantees in the large-system limit. To handle arbitraigen

with \jasso @ tuning parameter. Whed is constructed from distributions and a wider class of matricels Rangan pro-
i.i.d entries, the performance of Lasso can be sharply chppsed ageneralized AMRGAMP) [7] that forms the starting
acterized in the large system limit (i.e., & M, N — oo point of this work. (See Table 1.)
with fixed undersampling ratid/ /N and sparsity ratids</M) In practice, one desires a recovery algorithm that does not
using the so-called phase transition curve (PTC) [3]. Whefed to knowpx (-) a priori, yet offers performance on par
the observations are noiseless, the PTC bisectsMh&V- with MMSE recovery, which (by definition) knowgx(-)
versus# /M plane into the region where Lasso reconstructs priori. Towards this aim, we propose a recovery scheme
the signal perfectly (with high probability) and the regionhat aims tolearn the prior signal distributionpx () (as
where it does not. (See Figs. 1-3.) When the observatiopgll as the variance of the AWGN) while simultaneously
are noisy, the same PTC bisects the plane into the regiqasovering the signal vector from the noisy compressed
where Lasso’s noise sensitivity (i.e., the ratio of estiorat measurementg. To do so, we model the active component
error power to measurement-noise power under the WOI’SI-CgE%(.) in (2) using a generid.-term Gaussian mixture (GM)
signal distribution) is either finite or infinite [4]. An imp@nt and then learn the prior signal and noise parameters using

the expectation-maximization (EM) algorithm [8]. As we il
1This work has been supported in part by NSF-I/UCRC gran08B8910,

by NSF grant CCF-1018368, and by DARPA/ONR grant N66001-4D90. see, the EM. expecte_ltlon IS natur_a”y |mplem_ented using the
2Portions of this work were presented in a poster at the Dukekstiop CAMP algorithm, which also provides approximately MMSE

on Sensing and Analysis of High-Dimensional Data, July 2011. estimates ofr.

We consider estimating &-sparse (or compressible) signal



Since we treat the prior pdf parameters as deterministigefinitions:
Py |z (W2) N(z:2,17) (D)
= Lopy zWRD)N(E,u7)

unknowns, our proposed EM-GM-GAMP algorithm can be pzy (zly; 2, u*)
considered as an “empirical-Bayesian” approach. Compared go,(y, 2, 4*) = #%(Ez‘y{dy;é,uz}—é) (D2)
with previous empirical-Bayesian approaches (e.g., [H9P] gy 2p®) = L varz\y{zz\y;s,»ﬁ} _ 1) (03)
)
1)
1)

ours has a more flexible signal model, and thus is ab
to better match a wide range of signal pdfs(-), as we

demonstrate numerically in the sequel. Moreover, due to the
computationally efficient nature of GAMP, our algorithm is initiahze

[v]

m
px@) N(zitp™)
f/px( NN (z;7,u7) (D4)
f zpx|y(zly; 7, 1) (D5)
ar Lo 12— gn (7, 1) px v (ly; 7, u7) - (D6)

pX|Y(5E|’y7T K"

significantly faster than empirical-Bayesian algorithnasédxd Vn:@n(l) = [ zpx(z) ()

on Tipping's relevance vector machine [9]-[11]. Finallye w o ps(1) = ) |z~ @n(1)px (@) (12)

note that our EM-GM-GAMP algorithm can be considered asforthQ %’"(0) =0 (3)

a generalization of our previously proposed EM-BG-GAMH Ym : 2m(t) = SN Andn(t) (R1)

algorithm [12] from a Bernoulli-Gaussian signal model to a Vm: pz (1) = SN A 2uE(2) (R2)

Bernoulli-GM signal model. Vm: P (t) = Zm(t) — pin () A (£ — 1) (R3)

Vm s am(t) = gout(Ym, Pm (), i (1)) (R4)

Il. GAUSSIAN-MIXTURE GAMP Vm:ulg,(t) = *gé%(ym,ﬁm(s),ufn(t_)l (R5)

We first introduce Gaussian-mixture (GM) GAMP, a key a’;zg _ inz(:[si ﬁ?g'g}(/}( )l\* i () EE%

component of our overall algorithm. In GM-GAMP, the signal v : u (t+1) = 7, (t)g! (7n(£), il (¢ ) (R8)

x = [r1,...,zy]" is assumed to be i.i.d with marginal pdf end\m DB (t+1) = gin(Fa(t), pp (1)) (R9)
L

px (TN, w,0,¢0) = (1—-X)d(z)+ A ng./\/(x; ¢, ¢¢), (3) THE GAMTI-:AitEC:RITHM (7]

=1

whered(-) denotes the Dirac delta, the sparsity rate, and, for where
the k" GM componenty, 6, and¢,. are the weight, mean, - A . "
and variance, respectively. The AWG&N is then assumed to Be(7, 1" @) = MopN (73 0r, be + 1) ©)

be independent af and have variance: ol ) 2 M 10
) 9 1 Ty 1 ¢
pw (w; ) = N (w; 0, 1)) (4) A ) /n | /be

ve(P, 1" q) = (12)

Although above and in the sequel we assume real-valued 1/ +1/¢e
Gaussians, all expressions can be converted to the circularraple | implies that GM-GAMP’s marginal posteriors are
complex case by replacing” with CA” and removing aIL S.

We emphasize that, from GM-GAMP's perspective, the prior P(Znly: @) = px (@n; @) N(n; Pr,s p1,) /C(Ps i @) (12)

parametersy = [\, w, 8, ¢, 7] are all known. L

GAMP can handle an arbitrary probabilistic relationship = ((1 — A)d(zn) +>‘ZW€N($n;9€a¢€))
py|z(Yml|zm) between the observed outpyt, and the noise- =1
less outputz,, £ a! x, wherea! is the m' row of A. X N (23 P, 1) [ C (P by @) (13)

Our additive Gaussian noise assumption implies; (y|z) =
N (y; z,v). To complete our description of GM-GAMP, we
only need to derivein(-), g, (-), gout(-), andggy(-) in Table 1.
Using straightforward calculations, opt|z(-|-) yields [7]

C(F T q) 2 / px (@) N (w7, 7). (14)

From (13), it is straightforward to show that the posterior
support probabilities returned by GM-GAMP are

Gout(y, 2,175 q) = A (5) Pr{z, #0|y;q} = 7("n, in,; q) (15)

I . 1

1 (1" q) = . 16

(6) ( a q) 1+ (Z[ 152(7’# Q)) ! ( )
(I=XN(0;7,u7)

- 7Z )
gout(y piq) = R,

and our GM signal prior (3) yields
1. EM L EARNING OF THEPRIOR PARAMETERS q

L - T. - T.

gn(P, 1”5 q) = IR GY ’q)WL(T’M 1) (7)  We use the expectation-maximization (EM) algorithm [8]

(L= NN(0; 7, 1) + 3202 Be(? 173 q) to learn the prior parameterg = [\, w,0, ¢,¢]. The EM

1 g (P q) = —|gin(7, 1", q) 2 algorithm is an iterative technique that increases a lowend
L oo Sl (2 P on the likelihoodp(y; q) at each iteration, thus guaranteeing
Lt Bl ’q)A(W(T’M ’f” * ZA/Z(T’M ’q)) (8) that the likelihood (conv)erges to a local maximum. In our case

(L= NN 7, ) + 320 Be(F 73 q) the “hidden data” is chosen 4, w}, implying the iteration:

EM update

3To model heavy-tailed noise, a different choicepgf: (-;-) may be more
appropriate. However, the way it is handled in GAMP and ledrby EM

i+l _ . i
would remain essentially the same. q =~ —arg mqaxE { Inp(z, w; q) ’ y.q }» (17)



whereE{-|y; ¢’} denotes expectation conditioned on the otB. EM updates for Gaussian Mixture Parameters

servationsy under the parameter hypothesgjs Since it is

For eachk = 1,..., L, we incrementally update each GM

impractical to update the entire vectgrat once, we update parametely, ¢y, andw while holding the others fixed. The
one element at a time (while holding the others fixed), whighy ypdates become

can be recognized as the “incremental” technique from [13].

In the sequel, we useq‘i ” to denote the vectog® with \!
removed (and similar for the other parameters).

A. EM update for\

We now derive the EM update fok given previous pa-
rametersg’ £ [\, w’, 0", ¢',1)"]. Sincex is apriori indepen-
dent ofw and i.i.d, the joint pdfp(x,w;q) decouples into
CHlepX(:cn; q) for a A-invariant constant’, and so

N

A+ = argmaXZE{lan Ty A, (I\A ’yaq }
Ae(0,1)

(18)

The maximizing value o in (18) is necessarily a value of
that zeroes the derivative, i.e., that satisfies

Z/m xn\yq

For thepx (z,,; q) given in (3), it is readily seen that

ZZ 10.)5./\/-(.%”76‘@,@1)@) ( n)

upx (e dal) =0, (19)

d
TN lan(xTu )‘ q\)\)

d\ px(@n; A @ly)
_ {i n 70 (20)
—1 o .
= n=0

Plugging (20) and (13) into (19), it becomes evident that thdy the approximation N (z,; 0, ¢)

pointz,, =0 must be treated differently thar, € R\ 0. Thus,
we define the closed ball, = [—¢,¢] andB. = R\ B., and

note that, in the limit — 0, the following becomes equivalent

to (19), given the definition ofr(#, u"; q) in (16):

N

1
/\;/x"e& plenl i) T - /\Z-/z

21—, ity ')
(21)
To verify that the left integral converges to thé?,,, u”; q°)

p(zn |yid')

e—0

T(Fos 13 q°)

N

0?‘1 = argmaxZE{lan Inﬁlm‘]\ek 1y, q } (23)
OrER n= 1

= argmaXZE{lan In,¢ka‘I\¢k ly.q'} (24)
or>0 T 1

W = argmax ZE{IHPX T w 7‘1\‘,J )y, aq }(25)

w>0: 3, we= =1,

Following (19), the maximizing value of; in (23) is
necessarily a value df;, that zeros

Z/ xn|y q

wherep(z,|y, q') = px(arn;qi)N(xn;fn,uil)/C(f‘n,u?;;qi)
from (D4), recallingpx (z;q) from (3) and((7, u"; q) from
(14). Taking the derivative, we find

lan (Z‘n, 9k7 q\Gk) 07 (26)

Tn

d [
Elnpx(xnﬂk,q\ek) ( ¢>,;k)

N wi N (2n30k.1)
(1 A )6(In)+k7(w N(In79ka¢k)+zl#kw N(1n7 27¢[))

Integrating (26) separately ové#. and 3., as in (21), and
taking e — 0, we find that the3. portion vanishes, giving

(27)

ZN p(zn‘1n¢97y1q1)>‘iw};j’\/(zn§0k7¢§c‘)(93n*0k_) _ — O
n=1Jz, C(f’n,p;’;ql)(w;’cN(mn;é‘k ¢¢i)+25¢k WEN(IWJHLW)) 28)
Since this integral is difficult to evaluate, we ap-

~  N(zn; 0, 6})

and exploit the fact thatp(x,|z, # 0,y,q")
N (@ Py i) Dy wiN (203 05, ¢}) to cancel terms, giving

xnarn7/’6n>N<xn79]Z€7¢z)
Cn Tﬂmun’q)

N

> [ MK

n=1v<n

(xn -

0,) = 0.

(29)
We then simplify (29) using the Gaussian-pdf multiplicatio
rule and setﬂ}jl equal to the value of;, satisfying (29):

SN Pr{z, #0,k, = k|y, ¢} (7, 1"; q')

defined in (16), it suffices to plug (13) into (21) and applyhere the joint activity/mixture probabilities are

the Gaussian-pdf multiplication rufeMeanwhile, for anye,

the right integral must equal one minus the left. Thus, the EM

update for\ is the unique value satisfying (21) as— 0, i.e.,

N
E TTL) :u“’ru q

)\H»l (22)

2 \

g1 M) (30)
25:1 Pr{xn 7é O, kn =k | Y, qm}
PI‘{JJn 7é 07 kn =k | Yy, q’t}
a Br(Frstin:q") (31)

T A= NN Ot ) A3y Be(Pnplyia?)
with By (7, u"; q*) and~, (7, u"; q*) defined in (9)-(10). Above,
“k, = k" represents the event that, was generated from
mixture component.

Following (26), the maximizing value ob; in (24) is

Conveniently {7 (., 117, ') },~, are GM-GAMP outputs, as necessarlly a value af;, that zeroes the derivative

we recall from (16).

=N (; a/A+b/B 1

N (z; a0, A)N (x;b,B) S TATE W)N(O; a—b, A+B).

d

n=1"%n



Taking the derivative, we find where, if we usev;, ~ wj, on the right of (42), then we obtain

d ' 1/ —pi N _ i
—— Inpx (2 dr, @\ p,) = *(% - L) (33) Wit = 2on=1 Pri{on #0.kn = k|y: ¢’} (43)
doy k 2 b5 Pk k N e .
N iN( .01 ) Zn:l Pr{xn 7é 0 | Y:q }
Wi TV, Pk
X (T=2A)8 (@) + N (WEN (@ 30F 0k )+ iy WiN (203605,01)) Note that the numerator and denominator of (43) can be

. — . ted f M-GAMP outputs via (1 1).
Integrating (32) separately ovéd. and 5., as in (21), and computed from GM-G outputs via (16) and (31)

taking e — 0, we find that the3. portion vanishes, giving  C. EM update for)

ZN (L |20 #0,4,g YN WEN (20302, 61) The final parameter to estimate is the noise enefgyn
=1z o (o130 ) (W N (20301, 08) + 20 g o WiN (T0307,67)) this paper, the AWGN noise model given in (4) is identical
% (\xn—oilz _ 1) —0. (34) 10 EM-BG-GAMP’s [12]. There, the (exact) EM update for
Pk : i
is

Similar to (28), this integral is difficult to evaluate, and s _ | M
we apply the approximation (z,,; 0%, ¢r) ~ N (2, 0%, ¢L.), Y = % D (ym = 2l + 153,)- (44)
after which certain terms cancel, yielding m=1

IV. LEARNING THE MODEL ORDER

> N(x";r"ﬁ”(lﬁjéﬁff”;e“%) (‘z";e*" - 1) =0. (35)  So far, the GM model ordek has been treated as fixed and

k

n=1"%n known. In practice, one could indeed choose a fixed value
To find the value of¢, satisfying (35), we expandlr, — L thatis thought to be large enough to capture the essential
0i1? = |z,]? — 2 Re(z%0%) + 6% |> and apply the Gaussian-pdfstructure ofpx(-) and, given an appropriate initialization of
multiplication rule* which gives the 3L+2 parameterg”, apply the previously described EM-

GM-GAMP algorithm to jointly estimater and q.

As an alternative, one could instead start with the model
_ order L = 1 (i.e., a Bernoulli-Gaussian model fqgrx(-))
wherePr{z,, # 0, k|y,q'} was given in (31). and incrementl, one-by-one, stopping as soon as negligible

Finally, the value of the pmf-constrained maximizing benefits are observed (e.§&; — &r_1]|3/||€_1]3 <tol)
(25) can be found by solving the unconstrained optimizatiqs g predefined.,,., has been reached. Here, EM-GM-GAMP
problemmax,, ¢ J(w, &), whereg is a Lagrange multiplier and would be re-run as described in Sections II-lll at each new
value of L. This latter approach would relieve the user from

Z E{Inpx(z,;w 7(1\w |y, q i §<sz 1) the potentially difficult task of choosing both and a many-

piti= S Pr{@,A0,kn=k|y,q" } (|0} — i (711" 30") P+ (P u”3q)) (36)
k SN Pr{wn#£0kn=ky,q'}

ot — parameterq® apriori. In the remainder of this section, we
(37) propose a particular implementation of this approach.
We start by settingzd—J (w, ) = 0, which yields When growing the model-order froif to L+1, we propose
} o to split the mixture componernt, € {1,...,L} with the
Z/ px( In,q N (@ P, ) AN (203 04, 03) ¢ “worst fit" into two new components. To select the worst-
= Ja, C(Fp, uts qt) pX(:cn;w,qiw) ’ fitting mixture component, one could use the approach of

(38) split-and-merge-EM [14], i.e., maximization of local Kloitlck-
Like (28) and (34), the above is difficult to evaluate, and deeibler divergence, or similar. Given the mixture-compatie
we approximatev ~ w’, which leads to to-split k., the subset of coefficient indices that are most
" probably associated with, is identified, i.e.,
NN (2,508 ¢ T Py L,
§= Z/ i SN & ) (39) Ni. £{neN: argmax Pr{z, #0,k, =k |y, q} =k. },(45)
k

n=1 Tn rn?/’(’n7q)

whereMt £ {n : Pr{z, # 0|y,q} > 0.5} is the subset
of coefficient indices that are most probably non-zero. To
simplify the notation, we henceforth assume, without loks o
A\l O SN (: P, i generallt_y, thaik*:L_.
£= Z/ e kN (ni d)",) (Tni P, 1) (40)  To split the L' mixture component, we replace the mean
N

Multiplying both sides byw?, summing overk = 1,...,L,
employing the factl = }°, wj, and simplifying, we obtain

(s p:4") 0., variances;,, and weighto;, with two new values for each
, (e.g.,07%" and 67°" replacedy), resulting in anL +1-term
= Pr{z, #0|y;q'}. (41) parameter vectog™™". Rather than considering only a single
possibility for g"®, we considerS possibilities {g"®"}5_;

Plugging (41) into (39) and multiplying both sides by, the obtained as variations of the following two strategies:

derivative-zeroing value afy, is seen to be _ _
5Sometimes we observe that the EM update doworks better with the
SN Je Alwkj\f(xﬂ 0 PN (370,17 ) /€ (s 1aT 3 q uZ, term in (44) weighted by% and suppressed until later EM iterations.
SN Pr{z.A£0|yiq'} (42) We conjecture that this is due to bias in the GAMP varianceneses.Z, .

Wk =



=] — EM-GM-GAMP
—— EM-BG-GAMP
-—--genie GM-GAMP
----- Laplacian-AMP

*"| = EM-GM-GAMP
—— EM-BG-GAMP
-—--genie GM-GAMP
----- Laplacian-AMP

—— EM-GM-GAMP
—— EM-BG-GAMP
-—--genie GM-GAMP
----- Laplacian-AMP

0.1k —— theoretical Lasso —— theoretical Lasso —— theoretical Lasso

012 0:4 016 018 012 014 016 018 0:2 014 0:6 018
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Fig. 1. Noiseless empirical PTCs and Lassbig. 2. Noiseless empirical PTCs and Lasso thé&ig. 3.  Noiseless empirical PTCs and Lasso
theoretical PTC for Bernoulli-Gaussian signals.oretical PTC for Bernoulli-Rademacher signalstheoretical PTC for Bernoulli signals.

1) split-mean(a): 67 = 01, — a, 7%, = 0L +a, ¢7°" = VI. NUMERICAL RESULTS
2 ‘ZSSHLT% = ¢r, ?Z)dwz:eww— Wﬁ% = wja/;ne?vnd - A. Noiseless Phase Transitions
plit-variance(b): ¢ " = L and ¢;75 = 0oL, . : ;
onew — gnew — g, andw®W = W1 = wy /2, First, we describe the results of experiments that computed

.noiseless empirical phase transition curves (PTCs) uidee t
Sparse-signal distributions. To evaluate each emplrld'at P
we constructed 80 x 30 grid of oversampling ratl(k €
0.05,0.95] and sparsity ratid; € [0.05,0.95] for fixed signal
length N = 1000. At each grid point, we generatdd = 100
arg maXZE{lan z;q7%") |y q}. (46) independent realizations ok - sparse signahc and M x N
Empirically, we have found that the incremental methogteasurement matrix with i.i.d/ (0, ) entries. From the
. “ » Mmeasurementg = Ax, we attempted to reconstruct the signal
of learning L described aboYeworks very well for “sparse
signals like Bernoulli-Gaussian, Bernoulli- Rademache,
Bernoulli-Uniform, and Bernoulli. (See below for detajls. »
For “heavy-tailed” signals like Student-t, however, it 5ee
better to fix L at a reasonable value (e.d.,= 4), keep the
means at zero (i.e§; = 0 Vk,i), and jointly learn theL
weightsw, the L variancesp, and the sparsity ratg.

wherea,b > 0 are design parameters. Note that, by consi
ering several distinct values af and/orb, we haveS > 2.
Finally, to judge which of theS possible splits is best, one
could, e.g., evaluate the corresponding likelihoods, selve

using various algorithms. A recovetyfrom realizationr
1,..., R} was defined a success (i.6,, = 1) if the NMSE
2 ||z — 2|3 /H:ch2 < 1074, and the average success rate was
defined asS £ £ S 1S The empirical PTC was then
plotted, using Matlab’sont our command, as thé& = 0.5
contour over the sparsity-undersampling grid.
Figures 1-3 show the empirical PTCs for four recov-
V. EM INITIALIZATION ery algorithms: the proposed EM-GM-GAMP algorithrgin
Since the EM algorithm is guaranteed to converge only to*sparse” mode), the EM-BG-GAMP algorithm from [12], a
local maximum of the likelihood function, proper initiadiion “genie-aided” GM-GAMP with the trug\,w, 8, ¢, ], and
of q is essential. Here, we describe initialization stratefpes the Laplacian-AMP from [3]. For comparison, Figs. 1-3 also
the “sparse” and “heavy-tailed” modes described above. display the theoretical Lasso PTC (47). The signals were
For the “sparse” mode, where initiall, = 1 (and thus generated as Bernoulli-Gaussian (BG) in Fig. &4 £ 0,
WY = 0), we use the same initializations that we proposed fgr=1), as Bernoulli-Rademacher (BR) in Fig. 2 (i.e., hon-zero
EM-BG-GAMP [12], i.e., A’ = & pse(4L), wherepse(4E) is  coefficients chosen uniformly frofi-1,1}), and as Bernoulli
the sparsity ratlc#K achieved by the noiseless Lasso PTC [3h Fig. 3 (i.e., all non-zero coefficients set equalljo
1_ &[( + 2)d(c) — cd(c)] For all three signal types, Figs. 1-3 show that the empirical

M , (47) PTC of EM-GM-GAMP significantly improves on those of

pse() = maxe>o

1= =2[(1+c)(c) - co(c)] Laplacian-AMP and theoretical Lasso. (The latter two con-
with @(-) and¢(-) the cdf and pdf of the normal distribution,verge in the large system limit [3].) For Bernoulli-Gaussia
respectively, and signals, EM-GM-GAMP performed very similarly to genie-
. |2 o lylE=My° GM-GAMP and EM-BG-GAMP. Such behavior is expected,
Yo = (SNR” - Ar" o1 = (ATA 07 =0, (48) pecause all three can accurately model the signal distibut
For BR signals, however, EM-GM-GAMP performed signif-
where, without other knowledge, we suggécNRO = 100. icantly better than EM-BG-GAMP, since it can better model
For the “heavy-tailed” mode, we suggest initializiAg and the BR distribution (using at =2 GM). It even performed
¥° as above and, witl, = 4, choosing slightly better than genie-GM-GAMP here, since it is able
L ko (|lyl|2—MyP) -0, k=1..L. (49) to perform realization-specific parameter fitting. For Beuiti
= T 7 NG tr(ATA))\O » Vg =Y B= Ll signals, EM-GM-GAMP performed moderately better than

EM-BG-GAMP, and nearly the same as genie-GM-GAMP.

SFor the simulations, we use = 3 splitting methods in the “sparse
mode”:a = \/¢r,,b1 = 3,by = 6. “Matlab code available at http://www.ece.osu.edu/"sentEMturboGAMP
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Fig. 4. NMSE for noisy recovery of Bernoulli- Fig. 5. NMSE for noisy recovery of Bernoulli- Fig. 6.
Rademacher signals.

Gaussian signals.

B. Noisy Signal Recovery

Figures 4-6 show NMSE for noisy recovery of BG, BR,
and Bernoulli signals. To construct these plots, we fixeg]

N =1000, K =100, SNR=25dB, and variedM . Each data
point represents NMSE averaged over= 500 realizations.

For comparison, we show the performance of the proposeel

EM-GM-GAMP (in “sparse” mode), EM-BG-GAMP [12],

Bayesian Compressive Sensing (BCS) [11], Sparse Bayesiﬁﬁ\

Learning [10] (via T-MSBL [15]), debiased genie-aidddisso
(via SPGL1 [16]), and Smoothe@-(SLO) [17]. All algorithms
were run under the suggested defaults, withi se=smal |’

in T-MSBL.

For BG signals, Fig. 4 shows that EM-GM-GAMP exhibits
the best performance (together with EM-BG-AMP). For Blil1
and Bernoulli signals, however, Figs. 5-6 show that EM-GM11]

GAMP significantly outperforms the other algorithms. Riekat

to EM-BG-GAMP, EM-GM-GAMP’s greatest improvement
comes with BR signals, which are not well-modeled using
a BG prior. We have verified, using all three signal typest th&3!

EM-GM-GAMP'’s excellent behavior persists at [oWw8NRs,

as well as on sparsk-ary discrete signals witl, > 2.

Perhaps most impressive is EM-GM-GAMP'’s performance
in recovering heavy-tailed signals. As an example, Fig.
shows noisy recovery NMSE for a Student’s-t signal with p

A D((g+1)/2))
V2rl(q/2)

px(2;9) =

(14 22) "

q+1)/2

(50)

under thenon-compressiblg@arameter choice = 1.67 [18].

Here, EM-GM-GAMP was run in “heavy-tailed” mode ano[m
outperformed all other algorithms under test—even genie-
aided Lasso. Although the algorithms that perform best en tH8l
sparse signals in Figs. 4-6 usually perform worst on heavy-

tailed signals like that in Fig. 7, and vice versa, Figs. 41@ve
EM-GM-GAMP excelling onall signal types.

In conclusion, we attribute EM-GM-GAMP’s excellent per-
formance, on a wide range of signal types, to its ability to

near-optimally learn and exploit a wide range of signal yxio
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