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Abstract—When recovering a sparse signal from noisy com-
pressive linear measurements, the distribution of the signal’s
non-zero coefficients can have a profound affect on recovery
mean-squared error (MSE). If this distribution was apriori
known, one could use efficient approximate message passing
(AMP) techniques for nearly minimum MSE (MMSE) recov-
ery. In practice, though, the distribution is unknown, motivat-
ing the use of robust algorithms like Lasso—which is nearly
minimax optimal—at the cost of significantly larger MSE for
non-least-favorable distributions. As an alternative, we propose
an empirical-Bayesian technique that simultaneously learns the
signal distribution while MMSE-recovering the signal—according
to the learned distribution—using AMP. In particular, we model
the non-zero distribution as a Gaussian mixture, and learn its
parameters through expectation maximization, using AMP to
implement the expectation step. Numerical experiments confirm
the state-of-the-art performance of our approach on a rangeof
signal classes.1 2

I. I NTRODUCTION

We consider estimating aK-sparse (or compressible) signal
x ∈ R

N from M < N linear measurementsy = Ax +w ∈
R

M , whereA is known andw is additive white Gaussian
noise (AWGN). For this problem, accurate (relative to the
noise variance) signal recovery is possible with polynomial-
complexity algorithms whenx is sufficiently sparse and when
A satisfies certain restricted isometry properties [1].

A well-known approach to the sparse-signal recovery prob-
lem is Lasso [2], which solves the convex problem

x̂lasso = argmin
x̂

‖y −Ax̂‖22 + λlasso‖x̂‖1, (1)

with λlasso a tuning parameter. WhenA is constructed from
i.i.d entries, the performance of Lasso can be sharply char-
acterized in the large system limit (i.e., asK,M,N → ∞
with fixed undersampling ratioM/N and sparsity ratioK/M )
using the so-called phase transition curve (PTC) [3]. When
the observations are noiseless, the PTC bisects theM/N -
versus-K/M plane into the region where Lasso reconstructs
the signal perfectly (with high probability) and the region
where it does not. (See Figs. 1-3.) When the observations
are noisy, the same PTC bisects the plane into the regions
where Lasso’s noise sensitivity (i.e., the ratio of estimation-
error power to measurement-noise power under the worst-case
signal distribution) is either finite or infinite [4]. An important

1This work has been supported in part by NSF-I/UCRC grant IIP-0968910,
by NSF grant CCF-1018368, and by DARPA/ONR grant N66001-10-1-4090.

2Portions of this work were presented in a poster at the Duke Workshop
on Sensing and Analysis of High-Dimensional Data, July 2011.

fact about Lasso’s noiseless PTC is that it is invariant to signal
distribution. In other words, if we consider the elements ofthe
vectorx to be drawn i.i.d from the marginal pdf

pX(x) = λfX(x) + (1− λ)δ(x), (2)

where δ(·) is the Dirac delta,fX(·) is the active-coefficient
pdf (with zero probability mass atx = 0), and λ , K/N ,
then the Lasso PTC is invariant tofX(·). While this implies
that Lasso is robust to “difficult” sparse-signal distributions, it
also implies that Lasso cannot benefit from the sparse-signal
distribution being an “easy” one.

At the other end of the spectrum is minimum mean-squared
error (MMSE)-optimal signal recovery underknownmarginal
pdfs of the form (2). The PTC of MMSE recovery has been
recently characterized [5] and shown to be well above that of
Lasso. In particular, forany fX(·), the PTC on theM/N -
versus-K/M plane equals the lineK/M = 1 in both the
noiseless and noisy cases. Moreover, efficient algorithms for
approximate MMSE-recovery have been proposed, such as
the Bayesian version of Donoho, Maleki, and Montanari’s
approximate message passing(AMP) algorithm from [6],
which performs loopy belief-propagation on the underlying
factor graph using central-limit-theorem approximationsthat
become exact in the large-system limit under i.i.dA. Although
AMP’s complexity is remarkably low (e.g., dominated by
one application ofA and AT per iteration with typically
< 50 iterations to convergence), it offers rigorous performance
guarantees in the large-system limit. To handle arbitrary noise
distributions and a wider class of matricesA, Rangan pro-
posed ageneralized AMP(GAMP) [7] that forms the starting
point of this work. (See Table I.)

In practice, one desires a recovery algorithm that does not
need to knowpX(·) a priori, yet offers performance on par
with MMSE recovery, which (by definition) knowspX(·)
a priori. Towards this aim, we propose a recovery scheme
that aims to learn the prior signal distributionpX(·) (as
well as the variance of the AWGN) while simultaneously
recovering the signal vectorx from the noisy compressed
measurementsy. To do so, we model the active component
fX(·) in (2) using a genericL-term Gaussian mixture (GM)
and then learn the prior signal and noise parameters using
the expectation-maximization (EM) algorithm [8]. As we will
see, the EM expectation is naturally implemented using the
GAMP algorithm, which also provides approximately MMSE
estimates ofx.



Since we treat the prior pdf parameters as deterministic
unknowns, our proposed EM-GM-GAMP algorithm can be
considered as an “empirical-Bayesian” approach. Compared
with previous empirical-Bayesian approaches (e.g., [9]–[12]),
ours has a more flexible signal model, and thus is able
to better match a wide range of signal pdfspX(·), as we
demonstrate numerically in the sequel. Moreover, due to the
computationally efficient nature of GAMP, our algorithm is
significantly faster than empirical-Bayesian algorithms based
on Tipping’s relevance vector machine [9]–[11]. Finally, we
note that our EM-GM-GAMP algorithm can be considered as
a generalization of our previously proposed EM-BG-GAMP
algorithm [12] from a Bernoulli-Gaussian signal model to a
Bernoulli-GM signal model.

II. GAUSSIAN-M IXTURE GAMP

We first introduce Gaussian-mixture (GM) GAMP, a key
component of our overall algorithm. In GM-GAMP, the signal
x = [x1, . . . , xN ]T is assumed to be i.i.d with marginal pdf

pX(x;λ,ω,θ,φ) = (1− λ)δ(x) + λ
L∑

ℓ=1

ωℓN (x; θℓ, φℓ), (3)

whereδ(·) denotes the Dirac delta,λ the sparsity rate, and, for
thekth GM component,ωk, θk, andφk are the weight, mean,
and variance, respectively. The AWGN3 w is then assumed to
be independent ofx and have varianceψ:

pW (w;ψ) = N (w; 0, ψ) (4)

Although above and in the sequel we assume real-valued
Gaussians, all expressions can be converted to the circular-
complex case by replacingN with CN and removing all12 ’s.
We emphasize that, from GM-GAMP’s perspective, the prior
parametersq , [λ,ω,θ,φ, ψ] are all known.

GAMP can handle an arbitrary probabilistic relationship
pY |Z(ym|zm) between the observed outputym and the noise-
less outputzm , aT

mx, whereaT
m is the mth row of A.

Our additive Gaussian noise assumption impliespY |Z(y|z) =
N (y; z, ψ). To complete our description of GM-GAMP, we
only need to derivegin(·), g′in(·), gout(·), andg′out(·) in Table I.
Using straightforward calculations, ourpY |Z(·|·) yields [7]

gout(y, ẑ, µ
z; q) =

y − ẑ

µz + ψ
(5)

−g′out(y, ẑ, µ
z; q) =

1

µz + ψ
, (6)

and our GM signal prior (3) yields

gin(r̂, µ
r; q) =

∑L
ℓ=1 βℓ(r̂, µ

r; q)γℓ(r̂, µ
r; q)

(1− λ)N (0; r̂, µr) +
∑L

ℓ=1 βℓ(r̂, µ
r; q)

(7)

µrg′in(r̂, µ
r; q) = −|gin(r̂, µ

r, q)|2

+

∑L
ℓ=1 βℓ(r̂, µ

r; q)
(
|γℓ(r̂, µr; q)|2 + νℓ(r̂, µ

r; q)
)

(1− λ)N (0; r̂, µr) +
∑L

ℓ=1 βℓ(r̂, µ
r; q)

(8)

3To model heavy-tailed noise, a different choice ofpW (·; ·) may be more
appropriate. However, the way it is handled in GAMP and learned by EM
would remain essentially the same.

definitions:
pZ|Y (z|y; ẑ, µz) =

pY |Z(y|z)N (z;ẑ,µz)
∫
z′ pY |Z(y|z′)N (z′;ẑ,µz)

(D1)

gout(y, ẑ, µ
z) = 1

µz

(

EZ|Y {z|y; ẑ, µz} − ẑ
)

(D2)

g′out(y, ẑ, µ
z) = 1

µz

(

varZ|Y {z|y;ẑ,µz}

µz − 1
)

(D3)

pX|Y(x|y; r̂, µr) =
pX(x)N (x;r̂,µr)∫

x′ pX(x′)N (x′;r̂,µr)
(D4)

gin(r̂, µ
r) =

∫

x x pX|Y(x|y; r̂, µr) (D5)
g′in(r̂, µ

r) = 1
µr

∫

x |x− gin(r̂, µ
r)|2 pX|Y(x|y; r̂, µr) (D6)

initialize:
∀n : x̂n(1) =

∫

x x pX(x) (I1)
∀n : µxn(1) =

∫

x |x− x̂n(1)|2pX(x) (I2)
∀m : ûm(0) = 0 (I3)

for t = 1, 2, 3, . . .

∀m : ẑm(t) =
∑N

n=1Amnx̂n(t) (R1)
∀m : µzm(t) =

∑N
n=1 |Amn|2µxn(t) (R2)

∀m : p̂m(t) = ẑm(t)− µzm(t) ûm(t− 1) (R3)
∀m : ûm(t) = gout(ym, p̂m(t), µzm(t)) (R4)
∀m : µum(t) = −g′out(ym, p̂m(t), µzm(t)) (R5)
∀n : µrn(t) =

(
∑N

n=1 |Amn|2µum(t)
)−1 (R6)

∀n : r̂n(t) = x̂n(t) + µrn(t)
∑M

m=1A
∗
mnûm(t) (R7)

∀n : µxn(t+1) = µrn(t)g
′
in(r̂n(t), µ

r
n(t)) (R8)

∀n : x̂n(t+1) = gin(r̂n(t), µ
r
n(t)) (R9)

end

TABLE I
THE GAMP ALGORITHM [7]

where

βℓ(r̂, µ
r; q) , λωℓN (r̂; θℓ, φℓ + µr) (9)

γℓ(r̂, µ
r; q) ,

r̂/µr + θℓ/φℓ
1/µr + 1/φℓ

(10)

νℓ(r̂, µ
r; q) ,

1

1/µr + 1/φℓ
. (11)

Table I implies that GM-GAMP’s marginal posteriors are

p(xn|y; q) = pX(xn; q)N (xn; r̂n, µ
r
n)/ζ(r̂n, µ

r
n; q) (12)

=
(

(1− λ)δ(xn) + λ
L∑

ℓ=1

ωℓN (xn; θℓ, φℓ)
)

×N (xn; r̂n, µ
r
n)/ζ(r̂n, µ

r
n; q) (13)

ζ(r̂, µr; q) ,

∫

x

pX(x; q)N (x; r̂, µr). (14)

From (13), it is straightforward to show that the posterior
support probabilities returned by GM-GAMP are

Pr{xn 6= 0 |y; q} = π(r̂n, µ
r
n; q) (15)

π(r̂, µr; q) ,
1

1 +
(∑

L

ℓ=1
βℓ(r̂,µr;q)

(1−λ)N (0;r̂,µr)

)−1 . (16)

III. EM L EARNING OF THEPRIOR PARAMETERSq

We use the expectation-maximization (EM) algorithm [8]
to learn the prior parametersq , [λ,ω,θ,φ, ψ]. The EM
algorithm is an iterative technique that increases a lower bound
on the likelihoodp(y; q) at each iteration, thus guaranteeing
that the likelihood converges to a local maximum. In our case,
the “hidden data” is chosen as{x,w}, implying the iteration-i
EM update

qi+1 = argmax
q

E
{
ln p(x,w; q)

∣
∣y; qi

}
, (17)



whereE{·|y; qi} denotes expectation conditioned on the ob-
servationsy under the parameter hypothesisqi. Since it is
impractical to update the entire vectorq at once, we updateq
one element at a time (while holding the others fixed), which
can be recognized as the “incremental” technique from [13].
In the sequel, we use “qi

\λ” to denote the vectorqi with λi

removed (and similar for the other parameters).

A. EM update forλ

We now derive the EM update forλ given previous pa-
rametersqi , [λi,ωi,θi,φi, ψi]. Sincex is apriori indepen-
dent of w and i.i.d, the joint pdfp(x,w; q) decouples into
C
∏N

n=1 pX(xn; q) for a λ-invariant constantC, and so

λi+1 = argmax
λ∈(0,1)

N∑

n=1

E
{
ln pX(xn;λ, q

i
\λ)

∣
∣y; qi

}
. (18)

The maximizing value ofλ in (18) is necessarily a value ofλ
that zeroes the derivative, i.e., that satisfies

N∑

n=1

∫

xn

p(xn|y; qi)
d

dλ
ln pX(xn;λ, q

i
\λ) = 0. (19)

For thepX(xn; q) given in (3), it is readily seen that

d

dλ
ln pX(xn;λ, q

i
\λ) =

∑L
ℓ=1 ω

i
ℓN (xn; θ

i
ℓ, φ

i
ℓ)− δ(xn)

pX(xn;λ, qi
\λ)

=

{
1
λ xn 6= 0
−1
1−λ xn = 0

. (20)

Plugging (20) and (13) into (19), it becomes evident that the
pointxn=0 must be treated differently thanxn ∈ R\0. Thus,
we define the closed ballBǫ = [−ǫ, ǫ] andBǫ , R \ Bǫ, and
note that, in the limitǫ→ 0, the following becomes equivalent
to (19), given the definition ofπ(r̂, µr; q) in (16):

1

λ

N∑

n=1

∫

xn∈Bǫ

p(xn |y; qi)

︸ ︷︷ ︸

ǫ→0
= π(r̂n, µ

r
n; q

i)

=
1

1−λ
N∑

n=1

∫

xn∈Bǫ

p(xn |y; qi)

︸ ︷︷ ︸

ǫ→0
= 1−π(r̂n, µr

n; q
i)

.

(21)
To verify that the left integral converges to theπ(r̂n, µr

n; q
i)

defined in (16), it suffices to plug (13) into (21) and apply
the Gaussian-pdf multiplication rule.4 Meanwhile, for anyǫ,
the right integral must equal one minus the left. Thus, the EM
update forλ is the unique value satisfying (21) asǫ→ 0, i.e.,

λi+1 =
1

N

N∑

n=1

π(r̂n, µ
r
n; q

i). (22)

Conveniently,{π(r̂n, µr
n; q

i)}Nn=1 are GM-GAMP outputs, as
we recall from (16).

4N (x; a,A)N (x; b,B)=N (x;
a/A+b/B
1/A+1/B

, 1
1/A+1/B

)N (0; a−b, A+B).

B. EM updates for Gaussian Mixture Parameters

For eachk = 1, . . . , L, we incrementally update each GM
parameterθk, φk, andω while holding the others fixed. The
EM updates become

θi+1
k = argmax

θk∈R

N∑

n=1

E
{
ln pX(xn; θk, q

i
\θk)|y, q

i
}
, (23)

φi+1
k = argmax

φk>0

N∑

n=1

E
{
ln pX(xn;φk, q

i
\φk

)|y, qi
}

(24)

ωi+1 = argmax
ω>0:

∑
k
ωk=1

N∑

n=1

E
{
ln pX(xn;ω, q

i
\ω)|y, qi

}
.(25)

Following (19), the maximizing value ofθk in (23) is
necessarily a value ofθk that zeros

N∑

n=1

∫

xn

p(xn|y, qi)
d

dθk
ln pX(xn; θk, q

i
\θk) = 0, (26)

wherep(xn|y, qi) = pX(xn; q
i)N (xn; r̂n, µ

r
n)/ζ(r̂n, µ

r
n; q

i)
from (D4), recallingpX(x; q) from (3) andζ(r̂, µr; q) from
(14). Taking the derivative, we find

d

dθk
ln pX(xn; θk, q

i
\θk) =

(
xn−θk

φi

k

)

(27)

× λiωi

k
N (xn;θk,φ

i

k
)

(1−λi)δ(xn)+λi(ωi

k
N (xn;θk,φi

k
)+

∑
ℓ 6=k

ωi

ℓ
N (xn;θi

ℓ
,φi

ℓ
))
.

Integrating (26) separately overBǫ and Bǫ, as in (21), and
taking ǫ→ 0, we find that theBǫ portion vanishes, giving
∑N

n=1

∫

xn

p(xn|xn 6=0,y,qi)λiωi

k
N (xn;θk,φ

i

k
)(xn−θk)

ζ(r̂n,µr
n
;qi)(ωi

k
N (xn;θk,φi

k
)+

∑
ℓ 6=k

ωi

ℓ
N (xn;θi

ℓ
,φi

ℓ
))

= 0.

(28)
Since this integral is difficult to evaluate, we ap-
ply the approximationN (xn; θk, φ

i
k) ≈ N (xn; θ

i
k, φ

i
k)

and exploit the fact thatp(xn|xn 6= 0,y, qi) =
N (xn; r̂n, µ

r
n)

∑

ℓ ω
i
ℓN (xn; θ

i
ℓ, φ

i
ℓ) to cancel terms, giving

N∑

n=1

∫

xn

λiωi
kN (xn; r̂n, µ

r
n)N (xn; θ

i
k, φ

i
k)

ζn(r̂n, µr
n; q

i)
(xn − θk) = 0.

(29)
We then simplify (29) using the Gaussian-pdf multiplication
rule,4 and setθi+1

k equal to the value ofθk satisfying (29):

θi+1
k =

∑N
n=1 Pr{xn 6= 0, kn = k |y, qi}γk(r̂, µr; qi)

∑N
n=1 Pr{xn 6= 0, kn = k |y, qi}

, (30)

where the joint activity/mixture probabilities are

Pr{xn 6= 0, kn = k |y, qi}
,

βk(r̂n,µ
r

n
;qi)

(1−λ)N (0;r̂n,µr
n
)+

∑
L

ℓ=1
βℓ(r̂n,µr

n
;qi)

(31)

with βk(r̂, µr; qi) andγk(r̂, µr; qi) defined in (9)-(10). Above,
“kn = k” represents the event thatxn was generated from
mixture componentk.

Following (26), the maximizing value ofφk in (24) is
necessarily a value ofφk that zeroes the derivative

N∑

n=1

∫

xn

p(xn|y, qi)
d

dφk
ln pX(xn;φk, q

i
\φk

) = 0. (32)



Taking the derivative, we find

d

dφk
ln pX(xn;φk, q

i
\φk

) =
1

2

(
|xn−θi

k
|2

φ2

k

− 1
φk

)

(33)

× λiωi

k
N (xn;θ

i

k
,φk)

(1−λi)δ(xn)+λi(ωi

k
N (xn;θi

k
,φk)+

∑
ℓ 6=k

ωi

ℓ
N (xn;θi

ℓ
,φi

ℓ
))
.

Integrating (32) separately overBǫ and Bǫ, as in (21), and
taking ǫ→ 0, we find that theBǫ portion vanishes, giving
∑N

n=1

∫

xn

p(xn|xn 6=0,y,qi)λiωi

k
N (xn;θ

i

k
,φk)

ζn(r̂n,µr
n
;qi)(ωi

k
N (xn;θi

k
,φk)+

∑
ℓ 6=k

ωi

ℓ
N (xn;θi

ℓ
,φi

ℓ
))

×
(

|xn−θi

k
|2

φk

− 1
)

= 0. (34)

Similar to (28), this integral is difficult to evaluate, and so
we apply the approximationN (xn; θ

i
k, φk) ≈ N (xn; θ

i
k, φ

i
k),

after which certain terms cancel, yielding

N∑

n=1

∫

xn

N (xn;r̂n,µ
r

n
)λiωi

k
N (xn;θ

i

k
,φi

k
)

ζn(r̂n,µr
n
;qi)

(
|xn−θi

k
|2

φk

− 1
)

= 0. (35)

To find the value ofφk satisfying (35), we expand|xn −
θik|2 = |xn|2−2Re(x∗nθ

i
k)+ |θik|2 and apply the Gaussian-pdf

multiplication rule,4 which gives

φi+1
k =

∑
N

n=1
Pr{xn6=0,kn=k|y,qi}(|θi

k
−γk(r̂,µ

r;qi)|2+νk(r̂,µ
r;q))

∑
N

n=1
Pr{xn 6=0,kn=k|y,qi} (36)

wherePr{xn 6= 0, k|y, qi} was given in (31).
Finally, the value of the pmf-constrainedω maximizing

(25) can be found by solving the unconstrained optimization
problemmaxω,ξ J(ω, ξ), whereξ is a Lagrange multiplier and

J(ω, ξ) ,
N∑

n=1

E
{
ln pX(xn;ω, q

i
\ω)

∣
∣y, qi

}
−ξ

( L∑

ℓ=1

ωℓ−1

)

.

(37)
We start by setting d

dωk

J(ω, ξ) = 0, which yields

N∑

n=1

∫

xn

pX(xn; q
i)N (xn; r̂n, µ

r
n)

ζ(r̂n, µr
n; q

i)

λiN (xn; θ
i
k, φ

i
k)

pX(xn;ω, qi
\ω)

= ξ.

(38)
Like (28) and (34), the above is difficult to evaluate, and so
we approximateω ≈ ωi, which leads to

ξ =
N∑

n=1

∫

xn

λiN (xn; θ
i
k, φ

i
k)N (xn; r̂n, µ

r
n)

ζ(r̂n, µr
n; q

i)
. (39)

Multiplying both sides byωi
k, summing overk = 1, . . . , L,

employing the fact1 =
∑

k ω
i
k, and simplifying, we obtain

ξ =
N∑

n=1

∫

xn

λi
∑L

k=1 ω
i
kN (xn; θ

i
k, φ

i
k)N (xn; r̂n, µ

r
n)

ζ(r̂n, µr
n; q

i)
(40)

=

N∑

n=1

Pr{xn 6= 0 |y; qi}. (41)

Plugging (41) into (39) and multiplying both sides byωk, the
derivative-zeroing value ofωk is seen to be

ωk =
∑

N

n=1

∫
xn

λiωkN (xn;θ
i

k
,φi

k
)N (xn;r̂n,µ

r

n
)/ζ(r̂n,µ

r

n
;qi)

∑
N

n=1
Pr{xn 6=0 |y;qi} , (42)

where, if we useωk ≈ ωi
k on the right of (42), then we obtain

ωi+1
k =

∑N
n=1 Pr{xn 6= 0, kn = k |y; qi}
∑N

n=1 Pr{xn 6= 0 |y; qi}
. (43)

Note that the numerator and denominator of (43) can be
computed from GM-GAMP outputs via (16) and (31).

C. EM update forψ

The final parameter to estimate is the noise energyψ. In
this paper, the AWGN noise model given in (4) is identical
to EM-BG-GAMP’s [12]. There, the (exact) EM update forψ
is5

ψi+1 =
1

M

M∑

m=1

(
|ym − ẑm|2 + µz

m

)
. (44)

IV. L EARNING THE MODEL ORDER

So far, the GM model orderL has been treated as fixed and
known. In practice, one could indeed choose a fixed value
L that is thought to be large enough to capture the essential
structure ofpX(·) and, given an appropriate initialization of
the 3L+2 parametersq0, apply the previously described EM-
GM-GAMP algorithm to jointly estimatex andq.

As an alternative, one could instead start with the model
order L = 1 (i.e., a Bernoulli-Gaussian model forpX(·))
and incrementL one-by-one, stopping as soon as negligible
benefits are observed (e.g.,‖x̂L − x̂L−1‖22/‖x̂L−1‖22 < tol)
or a predefinedLmax has been reached. Here, EM-GM-GAMP
would be re-run as described in Sections II-III at each new
value ofL. This latter approach would relieve the user from
the potentially difficult task of choosing bothL and a many-
parameterq0 apriori. In the remainder of this section, we
propose a particular implementation of this approach.

When growing the model-order fromL to L+1, we propose
to split the mixture componentk∗ ∈ {1, . . . , L} with the
“worst fit” into two new components. To select the worst-
fitting mixture component, one could use the approach of
split-and-merge-EM [14], i.e., maximization of local Kullback-
Leibler divergence, or similar. Given the mixture-component-
to-split k∗, the subset of coefficient indicesn that are most
probably associated withk∗ is identified, i.e.,

Nk∗
,
{
n∈N : argmax

k
Pr{xn 6=0, kn=k |y, q}=k∗

}
, (45)

where N ,
{
n : Pr{xn 6= 0 |y, q} > 0.5

}
is the subset

of coefficient indices that are most probably non-zero. To
simplify the notation, we henceforth assume, without loss of
generality, thatk∗=L.

To split theLth mixture component, we replace the mean
θL, varianceφL, and weightωL with two new values for each
(e.g., θnew

L and θnew
L+1 replaceθL), resulting in anL+1-term

parameter vectorqnew. Rather than considering only a single
possibility for qnew, we considerS possibilities{qnew

s }Ss=1

obtained as variations of the following two strategies:

5Sometimes we observe that the EM update forψ works better with the
µzm term in (44) weighted byM

N
and suppressed until later EM iterations.

We conjecture that this is due to bias in the GAMP variance estimatesµzm.
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Fig. 1. Noiseless empirical PTCs and Lasso
theoretical PTC for Bernoulli-Gaussian signals.

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

M/N

K
/M

EM-GM-GAMP

EM-BG-GAMP

genie GM-GAMP
Laplacian-AMP

theoretical Lasso

Fig. 2. Noiseless empirical PTCs and Lasso the-
oretical PTC for Bernoulli-Rademacher signals.
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Fig. 3. Noiseless empirical PTCs and Lasso
theoretical PTC for Bernoulli signals.

1) Split-mean(a): θnew
L = θL − a, θnew

L+1 = θL + a, φnew
L =

φnew
L+1 = φL, andωnew

L = ωnew
L+1 = ωL/2; and

2) Split-variance(b): φnew
L = bφL and φnew

L+1 = b−1φL,
θnew
L = θnew

L+1 = θL, andωnew
L = ωnew

L+1 = ωL/2,
wherea, b > 0 are design parameters. Note that, by consid-
ering several distinct values ofa and/or b, we haveS > 2.
Finally, to judge which of theS possible splits is best, one
could, e.g., evaluate the corresponding likelihoods, i.e., solve

argmax
s

∑

n

E
{
ln pX(x; qnew

s )
∣
∣y; q

}
. (46)

Empirically, we have found that the incremental method
of learningL described above6 works very well for “sparse”
signals like Bernoulli-Gaussian, Bernoulli-Rademacher,
Bernoulli-Uniform, and Bernoulli. (See below for details.)
For “heavy-tailed” signals like Student-t, however, it seems
better to fixL at a reasonable value (e.g.,L = 4), keep the
means at zero (i.e.,θik = 0 ∀k, i), and jointly learn theL
weightsω, theL variancesφ, and the sparsity rateλ.

V. EM I NITIALIZATION

Since the EM algorithm is guaranteed to converge only to a
local maximum of the likelihood function, proper initialization
of q is essential. Here, we describe initialization strategiesfor
the “sparse” and “heavy-tailed” modes described above.

For the “sparse” mode, where initiallyL = 1 (and thus
ω0
1 = 0), we use the same initializations that we proposed for

EM-BG-GAMP [12], i.e.,λ0 = M
N ρSE(

M
N ), whereρSE(

M
N ) is

the sparsity ratioKM achieved by the noiseless Lasso PTC [3]

ρSE(
M
N ) = maxc≥0

1− 2N
M [(1 + c2)Φ(c)− cφ(c)]

1− c2 − 2[(1 + c2)Φ(c)− cφ(c)]
, (47)

with Φ(·) andφ(·) the cdf and pdf of the normal distribution,
respectively, and

ψ0 =
‖y‖22

(SNR0 + 1)M
, φ01 =

‖y‖22 −Mψ0

tr(ATA)λ0
, θ01 = 0, (48)

where, without other knowledge, we suggestSNR0 = 100.
For the “heavy-tailed” mode, we suggest initializingλ0 and

ψ0 as above and, withL = 4, choosing

ω0
k=

1

L
, φ0k=

k√
L

(‖y‖22−Mψ0)

tr(ATA)λ0
, θ0k=0, k = 1...L. (49)

6For the simulations, we usedS = 3 splitting methods in the “sparse
mode”: a =

√
φL, b1 = 3, b2 = 6.

VI. N UMERICAL RESULTS

A. Noiseless Phase Transitions

First, we describe the results of experiments that computed
noiseless empirical phase transition curves (PTCs) under three
sparse-signal distributions. To evaluate each empirical PTC,
we constructed a30 × 30 grid of oversampling ratioMN ∈
[0.05, 0.95] and sparsity ratioKM ∈ [0.05, 0.95] for fixed signal
lengthN = 1000. At each grid point, we generatedR = 100
independent realizations ofK-sparse signalx and M × N
measurement matrix with i.i.dN (0,M−1) entries. From the
measurementsy = Ax, we attempted to reconstruct the signal
x using various algorithms. A recoverŷx from realizationr ∈
{1, . . . , R} was defined a success (i.e.,Sr = 1) if the NMSE
, ‖x− x̂‖22/‖x‖22 < 10−4, and the average success rate was
defined asS , 1

R

∑R
r=1 Sr. The empirical PTC was then

plotted, using Matlab’scontour command, as theS = 0.5
contour over the sparsity-undersampling grid.

Figures 1-3 show the empirical PTCs for four recov-
ery algorithms: the proposed EM-GM-GAMP algorithm7 (in
“sparse” mode), the EM-BG-GAMP algorithm from [12], a
“genie-aided” GM-GAMP with the true[λ,ω,θ,φ, ψ], and
the Laplacian-AMP from [3]. For comparison, Figs. 1-3 also
display the theoretical Lasso PTC (47). The signals were
generated as Bernoulli-Gaussian (BG) in Fig. 1 (θ = 0,
φ=1), as Bernoulli-Rademacher (BR) in Fig. 2 (i.e., non-zero
coefficients chosen uniformly from{−1, 1}), and as Bernoulli
in Fig. 3 (i.e., all non-zero coefficients set equal to1).

For all three signal types, Figs. 1-3 show that the empirical
PTC of EM-GM-GAMP significantly improves on those of
Laplacian-AMP and theoretical Lasso. (The latter two con-
verge in the large system limit [3].) For Bernoulli-Gaussian
signals, EM-GM-GAMP performed very similarly to genie-
GM-GAMP and EM-BG-GAMP. Such behavior is expected,
because all three can accurately model the signal distribution.
For BR signals, however, EM-GM-GAMP performed signif-
icantly better than EM-BG-GAMP, since it can better model
the BR distribution (using anL=2 GM). It even performed
slightly better than genie-GM-GAMP here, since it is able
to perform realization-specific parameter fitting. For Bernoulli
signals, EM-GM-GAMP performed moderately better than
EM-BG-GAMP, and nearly the same as genie-GM-GAMP.

7Matlab code available at http://www.ece.osu.edu/˜schniter/EMturboGAMP
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Fig. 4. NMSE for noisy recovery of Bernoulli-
Gaussian signals.
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Fig. 5. NMSE for noisy recovery of Bernoulli-
Rademacher signals.

0.2 0.25 0.3 0.35 0.4 0.45 0.5

−35

−30

−25

−20

−15

−10

−5

0

 

 

M/N

N
M

S
E

[d
B

]

EM-GM-GAMP

EM-BG-GAMP

BCS

T-MSBL

SL0

genie Lasso

Fig. 6. NMSE for noisy recovery of Bernoulli
signals.

B. Noisy Signal Recovery

Figures 4-6 show NMSE for noisy recovery of BG, BR,
and Bernoulli signals. To construct these plots, we fixed
N =1000, K=100, SNR=25dB, and variedM . Each data
point represents NMSE averaged overR = 500 realizations.
For comparison, we show the performance of the proposed
EM-GM-GAMP (in “sparse” mode), EM-BG-GAMP [12],
Bayesian Compressive Sensing (BCS) [11], Sparse Bayesian
Learning [10] (via T-MSBL [15]), debiased genie-aided8 Lasso
(via SPGL1 [16]), and Smoothed-ℓ0 (SL0) [17]. All algorithms
were run under the suggested defaults, with‘noise=small’
in T-MSBL.

For BG signals, Fig. 4 shows that EM-GM-GAMP exhibits
the best performance (together with EM-BG-AMP). For BR
and Bernoulli signals, however, Figs. 5-6 show that EM-GM-
GAMP significantly outperforms the other algorithms. Relative
to EM-BG-GAMP, EM-GM-GAMP’s greatest improvement
comes with BR signals, which are not well-modeled using
a BG prior. We have verified, using all three signal types, that
EM-GM-GAMP’s excellent behavior persists at lowerSNRs,
as well as on sparseL-ary discrete signals withL > 2.

Perhaps most impressive is EM-GM-GAMP’s performance
in recovering heavy-tailed signals. As an example, Fig. 7
shows noisy recovery NMSE for a Student’s-t signal with pdf

pX(x; q) , Γ((q+1)/2))√
2πΓ(q/2)

(
1 + x2

)−(q+1)/2
(50)

under thenon-compressibleparameter choiceq = 1.67 [18].
Here, EM-GM-GAMP was run in “heavy-tailed” mode and
outperformed all other algorithms under test—even genie-
aided Lasso. Although the algorithms that perform best on the
sparse signals in Figs. 4-6 usually perform worst on heavy-
tailed signals like that in Fig. 7, and vice versa, Figs. 4-7 show
EM-GM-GAMP excelling onall signal types.

In conclusion, we attribute EM-GM-GAMP’s excellent per-
formance, on a wide range of signal types, to its ability to
near-optimally learn and exploit a wide range of signal priors.
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