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The sparse reconstruction problem:

Given measurements

y = Ax + w,

where

A ∈ C
M×N is a known matrix and

w ∈ C
M is CAWGN,

we want to estimate

x ∈ C
N with at most K non-zero elements.

where K < M < N .
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The sparse reconstruction problem (cont.):

When A has sufficiently incoherent columns, can accurately reconstruct sparse x.

In particular,

• If A satisfies the 2K-RIP:

∃δ2K s.t. (1−δ2K)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δ2K)‖x‖2
2 ∀ 2K-sparse x,

then several approaches yield estimates x̂ of K-sparse x that satisfy

‖x̂ − x‖2 < C‖w‖2 for some C,

including

– convex optimization (e.g., LASSO/basis-pursuit denoising) . . . fast

– matching pursuit (CoSaMP, subspace pursuit) . . . faster

– iterative thresholding . . . fastest

• When M & K log(N/K), can construct random A satisfying RIP with high

probability using, e.g.,

– i.i.d Gaussian or Rademacher (±1) elements,

– randomly selected rows of the N -DFT matrix.
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Structured sparsity:

In practice, sparse signals often have structure beyond simple sparsity.

Examples:

• Persistence across scales:

With wavelet coefficients generated from natural scenes, a large child

coefficient usually has a large parent coefficient.

• Clustered difference pixels:

Small changes to a given scene manifest as small clusters of perturbed

pixels.

• Tracking of a sparse process:

The sparsity pattern at a given time index is a small perturbation of

the pattern at a neighboring time.
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Models for structured sparsity:

1. Deterministic, via union of canonical K-sparse subspaces Xm:

• Simple-sparse: x ∈ ΣK ,
mK⋃

m=1

Xm for mK =
(
N
K

)

• Model-sparse: x ∈ MK ,
mK⋃

m=1

Xm for mK <
(
N
K

)

Examples: tree sparse, block sparse.

[Baraniuk, Blumensath, Cevher, Davies, Duarte, Do, Eldar, Hassibi,

Hedge, Lu, Stojnic, . . . ]

2. Probabilistic, via hidden binary indicators sn ∈ {0, 1}:

p(xn|sn) = snqn(xn) + (1 − sn)δ(xn) for some qn(·)

• Simple-sparse: p(s1, . . . , sN ) =
∏N

n=1
p(sn).

• Structured-sparse: p(s1, . . . , sN ) is a generic (non-factorizable) pmf.

Examples: Markov chains, Markov trees, Markov random fields.

[Baraniuk, Carin, Cevher, Duarte, He, Hedge, Godsill, Ng, Wolf, . . . ]
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Reconstruction under probabilistically structured sparsity:

1. Markov-chain Monte Carlo (MCMC):

• Markov random field [Wolfe,Godsill,Ng 2004]

• Markov tree [He,Carin 2009]

Drawback: takes a very long time for the chain to converge.

2. Methods that iterate matching pursuit with MAP sparsity-pattern detection:

• Markov tree [Duarte,Wakin,Baraniuk 2008]

• Markov random field [Cevher,Duarte,Hedge,Baraniuk 2008]

Drawback: ad hoc.
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Belief propagation:

• All inference tasks originate from the joint posterior p(x, s |y = y0).

For example, to infer xn, we want

p(xn |y = y0) =
∫
x
−n

∑
s∈{0,1}N p(x, s |y = y0)

• The factor graph of

p(x, s |y = y0) illustrates

statistical dependence

among variables:

p(y=y0 |x) p(s)

p(x1|s1)

p(x2|s2)

p(xN |sN )

x1

x2

xN

s1

s2

sN

...
...

...

• The factor graph tells us about the complexity of exact inference:

– no loops: exact inference possible via message passing.

– loopy: exact inference is NP hard!

Even with loops, message passing can yield near-optimal inference with...

– a few loops: (e.g., turbo decoding, LDPC decoding, inference on MRFs)

– densely loopy: (e.g., multiuser detection, compressed sensing)
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The turbo principle:

• Our (loopy) inference problem can be tackled by splitting it into two

sub-problems and iterating between them. The t-iteration SPE priors

{ν(t)
n }N

n=1 are set as the (t−1)-iteration SPD output messages, and vice versa.

p(y=y0 |x) p(s)

p(x1|s1)

p(x2|s2)

p(xN |sN )

ν(t)

1
(s1)

ν(t)

2 (s1)

ν(t)

N (s1)

µ(t)

1
(s1)

µ(t)

2
(s1)

µ(t)

N (s1)

x1

xn

xN

s1s1

snsn

sNsN

...
...

...
...

...
...

sparsity pattern equalization sparsity pattern decoding

• This is reminiscent of noncoherent turbo equalization:

Writing xn = θnsn for sn ∈ {0, 1} and, say, θn ∼ CN (0, 1),

we get y = AD(θ)s + w,

where we can interpret

θ as unknown Rayleigh channel gains,

A as the known structural component of the channel matrix, and

s as the coded-bit vector.
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Sparsity pattern equalization (SPE):

• For this inference sub-task. . .

– The input messages are the extrinsic LLRs generated by SPD, which are

converted to pmfs and treated as priors:

λSPE
n ,

1

1 + exp(−LSPD
n )

→ Pr{sn = 1}.

– The output messages are the extrinsic LLRs

LSPE
n , log

p(y = y0 | sn = 1)

p(y = y0 | sn = 0)
.

• There are many ways to implement SPE (e.g., MCMC,

soft matching pursuit, expectation maximization, belief propagation).

• We will apply the approximate message passing (AMP) approach from

[Donoho, Maleki, Montanari 2010], which

– enjoys various optimality properties in the large-system limit, and

– yields a very fast iterative soft thresholding algorithm.
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Sparsity pattern equalization (cont.):

The Bayesian AMP algorithm [Donoho, Maleki, Montanari 2010] is:

θi = AHzi + µi projected residual

µi+1 = F (θi; ci) Ê{x |y = y0}

vi+1 = G(θi; ci) v̂ar{x |y = y0}

ci+1 = σ2 + N
M
〈vi+1〉 effective noise variance

zi+1 = y − Aµi+1 + N
M
〈F ′(θi; ci)〉zi residual

where F (·, c) is a component-wise soft thresholding function, F ′(·, c) is its

component-wise derivative, and G(·, c) is another nonlinear function.

For CWGN w ∼ CN (0, σ2I) and

Bernoulli/Gaussian coefficients

xn ∼ λnCN (0, 1) + (1−λn)δ(xn),

Fn(·, c) looks like:
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The “magic” of AMP is due to the Onsager reaction term N
M
〈F ′(θi; ci)〉zi.
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Sparsity pattern decoding (SPD):

• For this inference sub-task. . .

– The input messages are the extrinsic LLRs generated by SPE, which are

converted to marginal pdfs and treated as priors:

λSPD
n ,

1

1 + exp(−LSPE
n )

→ Pr{sn = 1}.

– The output messages are the extrinsic LLRs

LSPD
n , log

∑
s
−n

p(s−n|sn = 1)
∏

q 6=n p(sq)∑
s
−n

p(s−n|sn = 0)
∏

q 6=n p(sq)
.

• We can implement the SPD efficiently using message passing.

– With Markov-chain or Markov-tree priors, exact inference can be efficiently

implemented using the forward-backward algorithm.

– With Markov-field priors, message passing yields efficient near-optimal

inference. [Freeman, Pasztor, Carmichael 2000]
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EXIT charts:

• In turbo equalization, extrinsic information transfer (EXIT) charts are used

to predict how well the equalizer and decoder work together to infer the bits.

In our structured sparse inference framework, an EXIT chart can be used to

predict how well SPE and SPD work together to infer the sparsity pattern.

• Say I(t)

SPE denotes the mutual information between the true pattern and the

iteration-t SPE extrinsic LLRs, and I(t)

SPD denotes that for the SPD.

Then the transfer curve I(t)

SPD-vs-I(t)

SPE characterizes the decoder,

while the transfer curve I(t+1)

SPE -vs-I(t)

SPD characterizes the equalizer.

Example for Bernoulli-Gaussian

SPE and Markov-chain SPD:

The “EXIT tunnel” accurately

predicts the trajectory.

(M
N
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Performance evaluation:

We evaluated performance empirically using the following data model.

• Elements of A were i.i.d CN (0, M−1).

• Noise samples were i.i.d CN (0, σ2) with σ2 so that SNR , E{‖Ax‖2
2}

E{‖w‖2
2}

= 30dB.

• Sparsity patterns {sn}
N
n=1 were generated using a 2-state Markov chain.

– For a given sparsity rate λ , Pr{sn = 1} = E{K}
N

∈ (0, 1], can show

Markov transition probabilities obey p01 = p10(1/λ − 1) and p10 = γλ.

– We refer to γ ∈ (0, 1] as the independence factor, since γ = 1 yields i.i.d

{sn} and smaller γ yield {sn} with longer switching times.

• Active signal coefficients xn were i.i.d CN (0, 1).

Empirical phase transition curves were calculated based on

NMSE ,
E{‖x̂ − x‖2

2}

E{‖x‖2
2
}

.
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Phase transition curves:

• Consider sparse reconstruction for a given pair (δ, ρ) of

oversampling factor δ , M
N

∈ (0, 1] and sparsity factor ρ , K
M

∈ (0, 1].

• In the large-system limit (K, M, N → ∞ for fixed δ, ρ), there often exists a

phase transition curve that partitions the (δ, ρ) space into regions of

successful and unsuccessful reconstruction.

– Curves depend on signal class,

matrix class, reconstruction algo-

rithm, and definition of success.

– Have been both empirically ob-

served [Maleki, Donoho 2009] and

derived using combinatorial geom-

etry [Donoho, Tanner 2009].

– Much tighter than corresponding

RIP bounds. [Blanchard, Cartis,

Tanner, Thompson 2009] [Donoho, Tanner 2010]
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Empirical results for Markov-structured sparsity, for several γ:
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900-point (δ, ρ)-grid, 200 realizations, 5 turbo iterations, 10 AMP iterations,

N = 512 length signal, . . . only takes a few hours on a desktop computer.

15



Phil Schniter The Ohio State University'

&

$

%

Summary:

• We considered structured-sparse signal reconstruction in AWGN.

• Sparsity pattern structure was modeled using a generic pmf.

• Approximate inference performed via message passing on factor graph.

– iterates between two soft-input soft-output blocks: SPE and SPD.

– reminiscent of noncoherent turbo decoding.

• SPE was implemented using the Bayesian AMP method [Donoho, Maleki,

Montanari 2010].

• SPD implementation depends on structure of pattern pmf (e.g., we used the

forward-backward algorithm for our Markov chain prior).

• EXIT charts were applied to predict interaction between SPE and SPD.

• Empirical phase transition curves were used to quantify NMSE performance

relative to (genie-aided) known-pattern MMSE estimates.

• We observed that the phase transition curve moves up and to the left as the

sparsity pattern becomes more structured.
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Thanks!
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