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Abstract—This paper considers the reconstruction of
structured-sparse signals from noisy linear observations. In
particular, the support of the signal coefficients is parameterized
by hidden binary pattern, and a structured probabilistic prior
(e.g., Markov random chain/field/tree) is assumed on the pattern.
Exact inference is discussed and an approximate inference
scheme, based on loopy belief propagation (BP), is proposed.
The proposed scheme iterates between exploitation of the
observation-structure and exploitation of the pattern-structure,
and is closely related to noncoherent turbo equalization, as
used in digital communication receivers. An algorithm that
exploits the observation structure is then detailed based on
approximate message passing ideas. The application of EXIT
charts is discussed, and empirical phase transition plots are
calculated for Markov-chain structured sparsity.1

I. I NTRODUCTION

The problem of reconstructing sparse signals lies at the heart
of many engineering and scientific applications. Here, the main
objective is to estimate the sparse signalx ∈ C

N from the
noisy linear measurementsy ∈ C

M ,

y = Ax+w, (1)

whereA ∈ C
M×N is a known matrix andw ∈ C

M is additive
noise, often modeled as circular white Gaussian, i.e.,w ∼
CN (0, σ2I). By “sparse,” we mean that the signal has only a
few (sayK, whereK ≪ N ) non-zero coefficients.

In many cases of interest, the system of equations in (1)
is underdetermined, i.e.,M ≪ N , so that, even in the
noiseless case, there is no unique inverse. However, whenx

is known to besparse, it is possible to accurately reconstruct
x from y if the columns ofA are sufficiently incoherent. For
various sparse reconstruction algorithms, including convex-
optimization-based, greedy, and iterative thresholding algo-
rithms, there exist elegant bounds on reconstruction errorthat
hold whenA satisfies a certainrestricted isometry property
(RIP). (See [1] for a recent comprehensive overview.)

In many applications, however, the signalx has structure
beyond simple sparsity. For example, the wavelet transform
coefficients of natural scenes are not only approximately
sparse, but also exhibitpersistence across scales[1], which
manifests as correlation within the sparsity pattern. Manyother
forms of structure in the sparsity pattern are also possible, and
so we desire a powerful and flexible approach to modeling and
exploiting such structure.

One approach to modeling sparsity structure is through the
deterministicunion of subspaces(UoS) approach. (See [1] for
a recent comprehensive overview.) There, theK-sparse signal

1This work was supported in part by the Office of Naval Researchunder
grant N00014-07-1-0209.

x ∈ C
N is assumed to live in a UoSMK = ∪mK

m=1Xm,
whereXm is one of the

(
N
K

)
canonical subspaces containing

signals with supportK. Two flavors of UoS that have garnered
particular attention areblock-sparsityand tree-sparsity[1].
For both, probabilistic guarantees of a model-based RIP have
been derived and, from them, bounds on noisy reconstruction
error [1]. The UoS approach has rather strong limitations,
however. For example, it is not possible to specify whether
it is more likely to find a signal component in one of the
allowed subspacesXm relative to another.

In this paper, we take a probabilistic approach to modeling
sparsity structure, allowing the use of, e.g.,Markov chain
(MC), Markov random field(MRF), and Markov tree (MT)
models [2]. Such models have been previously exploited
for sparse reconstruction, but only to a limited extent. For
example, [3] and [4] proposed Monte-Carlo-based [5] sparse
reconstruction algorithms using MRF and MT models, re-
spectively, and [6] and [7] proposed to iterate matching-
pursuit with MAP pattern detection based on MRF and MT
models, respectively. Monte-Carlo algorithms, while flexible,
are typically regarded as computationally too expensive for
many problems of interest. Matching-pursuit algorithms are
typically much faster, but the schemes in [6], [7] are ad hoc.

We attack the problem of reconstructing structured-sparse
signals through the framework ofbelief propagation(BP) [8].
While BP has been successfully used to recoverunstructured
sparse signals (e.g., [9], [10]), we believe that its application
to structured sparse signals is novel. As we shall see, the BP
framework suggests aniterative approach, where sparsity pat-
tern beliefs are exchanged between two blocks, one exploiting
observation structure and the other exploiting pattern structure.
In this regard, our scheme resemblesturbo equalizationfrom
digital communications [11], where bit beliefs are exchanged
between a soft equalizer and a soft decoder. Our two blocks
are themselves naturally implemented using BP, and we detail
a particularly efficient algorithm based on theapproximate
message passing(AMP) framework recently proposed by
Donoho, Maleki, and Montanari [10].

II. STRUCTUREDSPARSITY MODEL

Our structured-sparse signal model uses hidden binary in-
dicators{sn}Nn=1, wheresn ∈ {0, 1}. In particular,sn = 1
indicates that the signal coefficientxn is active (i.e.,xn 6= 0
w.p.1) while sn = 0 indicates thatxn is inactive (i.e.,
xn = 0 w.p.1). Assuming that the active signal coefficients are
independently but non-identically distributed, we can write

p(xn | sn) = snqn(xn) + (1− sn)δ(xn), (2)
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Fig. 1. Factor graph of posteriorp(x, s |y = y0). The boxes represent
constraint nodes, as defined in (4), and the circles represent variable nodes.
The dashed line partitions the factor graph into two sub-graphs.

where qn(·) denotes the pdf ofxn, when active, andδ(·)
denotes the Dirac delta. We refer tos = [s1, s2, . . . , sN ]T ∈
{0, 1}N as the sparsity pattern, and model structure ins
through an assumed prior pmfp(s). While we place no re-
strictions onp(s), we note that Markov-chain/field/tree priors
often lead to efficient inference algorithms [2].

III. T URBO INFERENCE

Our primary goal is estimating the structured-sparse signal
x given the observationsy = y0 in model (1). In particular,
we are interested in computing minimum mean-squared error
(MMSE) estimates of{xn}.

A. Exact inference

Our estimation task is facilitated by the following factoriza-
tion of the posterior pdf shown by thefactor graphin Fig. 1.

p(x, s |y = y0) ∝ p(y = y0 |x, s)p(x, s) (3)

= p(s)︸︷︷︸
, h(s)

p(y = y0 |x)︸ ︷︷ ︸
, g(x)

N∏

n=1

p(xn|sn)︸ ︷︷ ︸
, fn(xn, sn)

.(4)

We use∝ to denote equality after scaling to unit area.
The MMSE estimate ofxn is given by the mean of the

marginal posteriorp(xn |y = y0), which can be written as

p(xn |y = y0) =
∑

s∈{0,1}N

∫

x
−n

p(x, s |y = y0) (5)

∝
1∑

sn=0

fn(xn, sn) p(sn)

∫

x
−n

g(x)
∏

q 6=n

1∑

sq=0

fq(xq, sq)

×
∑

s
−n,q∈{0,1}N−2

p(s−n | sn), (6)

wherez−n denotes vectorz with the nth element omitted,
and z−n,q denotesz with both the nth and qth elements
omitted. Writingp(s−n | sn) = p(s−n,q | sq, sn)p(sq | sn), the
last summation in (6) reduces top(sq | sn), giving

p(xn |y = y0) ∝ νexact
fn→xn

(xn) ν
exact
g→xn

(xn) (7)

νexact
fn→xn

(xn) ,

1∑

sn=0

fn(xn, sn)p(sn) (8)

νexact
g→xn

(xn) ,

∫

x
−n

g(x)
∏

q 6=n

1∑

sq=0

fq(xq, sq)p(sq | sn). (9)

The notationνexact
A→B(·) will be explained in the sequel.

B. Approximate inference

Whereas exact posterior calculation via (7)-(9) is compu-
tationally prohibitive for typical problem sizes, approximate
calculation can be efficiently accomplished using message
passing [8], i.e., belief propagation (BP), on the factor graph
in Fig. 1. In the sequel, we useνA→B(·) to denote a message
passed from some nodeA to some adjacent nodeB in the
factor graph. Our messages will either be pdfs on the real line
or binary pmfs; which one will be clear from the context.
BP proceeds according to the following two rules [8]: i)
the message emitted by a variable node along a given edge
equals the product of the messages coming into that variable
node along the other edges, and ii) the message emitted by
a function node along a given edge equals the integral of the
product of the constraint function (associated with that node)
and all messages coming into that function node along the
other edges. (Here, “equals” holds after appropriate scaling.)

Using the framework of BP, the functionsνexact
fn→xn

(·) and
νexact
g→xn

(·) from Section III-A can be approximated (up to a
scaling factor) by steady-state versions of the messages

ν(t)

fn→xn
(xn) ∝

1∑

sn=0

fn(xn, sn)ν
(t)

sn→fn
(sn) (10)

ν(t)

g→xn
(xn) ∝

∫

x
−n

g(x)
∏

q 6=n

1∑

sq=0

fq(xq, sq)ν
(t)

sq→fq
(sq)

︸ ︷︷ ︸
ν(t)

fq→xq
(xn) = ν(t)

xq→g(xn)

,(11)

which depend on the other messages

ν(t)

sn→fn
(sn) = ν(t)

h→sn
(sn) (12)

∝
∑

s
−n∈{0,1}N−1

h(s)
∏

q 6=n

ν(t−1)

sq→h(sq)︸ ︷︷ ︸
= ν(t−1)

fq→sq
(sq)

(13)

ν(t)

fn→sn
(sn) ∝

∫

xn

fn(xn, sn) ν(t)

xn→fn
(xn)︸ ︷︷ ︸

= ν(t)

g→fn
(xn)

. (14)

We use the superscript-(t) to denote turbo iteration. These
messages can then be combined for marginal inference:

p̂(t)(xn |y = y0) ∝ ν(t)

fn→xn
(xn) ν

(t)

g→xn
(xn) (15)

p̂(t)(sn |y = y0) ∝ ν(t)

fn→sn
(sn) ν

(t)

h→sn
(sn), (16)

wherep̂(t) denotes the iteration-t approximation to the pdf.
Because the factor graph in Fig. 1 contains many loops,

exact inference is known to be NP-hard [12], and thus BP
can only be claimed as an approximation. However, loopy BP
has demonstrated very accurate results in similar settings(e.g.,
in LDPC and turbo decoding [13] and in inference on MRFs
[14]). Furthermore, in the large-system limit (i.e.,M,N → ∞
with M/N fixed), BP has recently been shown to enjoy various
optimality properties [10], [15].



With practical implementation in mind, we now partition our
factor graph into the two sub-graphs separated by the dashed
line in Fig. 1. The messages{ν(t)

fn→sn
(·)}Nn=1 form the outputs

of the left sub-graph and the inputs to the right one, while
the messages{ν(t)

h→sn
(·)}Nn=1 form the outputs of the right

sub-graph and the inputs to the left one. From this, we can
interpret the BP scheme as iterating between two blocks, one
which performs inference on the left sub-graph (which models
structure in the observation) and the other which performs
inference on the right sub-graph (which models structure in
the sparsity pattern), with message-passing between blocks.

C. Relation to noncoherent turbo equalization

The iterative approach described in Section III-B mimics
the turbo equalization[11] procedure that has become popular
for the reception of digital communication signals, and in
particular,noncoherent turbo equalization(e.g., [16]). There,
the goal is to infer a sequence of information bitsb that
are transformed into coded bitss, linearly modulated, and
transmitted over a channel, yielding the noisy observations
y = Hs + w. In the noncoherent case,H depends on an
unknown channel fading realization. Because optimal joint
channel-estimation/equalization/decoding is computationally
overwhelming, the bit inference task is often split into twosub-
tasks,soft noncoherent equalizationand soft decoding, which
are then iterated. The equalizer calculates soft estimatesof the
coded bitss from y using knowledge of the channel structure
and prior beliefs ons (as pilots or from the decoder). It then
passes theses-estimates to the decoder, which treats them as
priors when exploiting its knowledge of the code structure to
refine thes-estimates. The decoder’s estimates are then passed
back to the equalizer, and so on, until they agree. To avoid self-
reinforcement, the two blocks passextrinsic information (i.e.,
a bit estimate may not employ the most recently assumed prior
for that bit). When used in conjunction with powerful codes,
turbo equalization facilitates practical communication at near-
Shannon capacity [11].

To see the similarities between noncoherent turbo equal-
ization and our BP-based approach to structured sparse signal
recovery, we write the sparse coefficients asxn = θnsn, where
θn has prior pdfqn(·), so thatx = D(θ)s, whereD(θ) is
the diagonal matrix constructed fromθ = [θ1, θ2, . . . , θN ]T .
In this case, the sparse observations (1) can be written as
y = Hs+w with H = AD(θ). Thus, the structured sparsity
patterns is analogous to “coded bits,” the active-coefficient
vector θ is analogous to the “unknown fading realization,”
andA contributes known structure to the unknown “channel
matrix” H. Inference on the left sub-graph of Fig. 1 is
analogous to “soft noncoherent equalization,” while that on
the right sub-graph corresponds to “soft decoding.”

Taking cues from turbo equalization, we will henceforth
refer to inference on the left sub-graph of Fig. 1 as “sparsity
pattern equalization” (SPE) and inference on the right sub-
graph as “sparsity pattern decoding” (SPD). We now formally
decouple these subtasks and represent each of them using a
separate factor graph, as in Fig. 2. For this, we define two
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Fig. 2. Decoupling of partitioned factor graph from Fig. 1 into (a) sparsity
pattern equalization and (b) sparsity pattern decoding.

additionaltth turbo-iteration constraint functions,

h(t)

n (sn) , ν(t)

h→sn
(sn) (17)

d(t)

n (sn) , ν(t−1)

fn→sn
(sn), (18)

recalling (13)-(14), initialized usingν(0)

fn→sn
(sn) = 0.5.

For tth-iteration SPE, (16) implies an output message
ν(t)

fn→sn
(sn) ∝ p̂(t)(sn|y = y0)/h

(t)
n (sn), which equals the

(approximate) likelihood ofsn, sinceh(t)
n (·) acts as SPE’s prior

on sn. As such, the SPE output messages are extrinsic. Similar
reasoning applies to SPD outputs as well.

IV. SPARSITY PATTERN EQUALIZATION

As previously discussed, SPE accepts independent but non-
identical probabilities on the indicators{sn} and returns
likelihoods on the same. One can imagine a number of ways
to accomplish this task, e.g., Monte Carlo methods [5], “soft”
Bayesian matching pursuit [17], expectation maximization, or
BP. Below we outline a BP-based technique that follows the
“approximate message passing” (AMP) framework recently
proposed by Donoho, Maleki, and Montanari [10], [18]. Since
we focus on a single turbo iterationt, we suppress the
superscript-(t) notation on messages in this section.

For BP-based SPE, we expand theg node in Fig. 2(a),
yielding the loopy factor graph in Fig. 3, with constraints

gm(x) , CN (ym;aH
mx, σ2), (19)

whereaH
m denotes themth row of A. Noting that SPE will

require several iterations of message passing between nodes
{gm} and{xn}, we will henceforth useνixn→gm

andνigm→xn

to denote the SPE-iteration-i messages. In addition, we will
assume Gaussian active-coefficients, i.e.,

qn(xn) = CN (xn; 0, σ
2
n), (20)

though other distributions could be handled using similar tech-
niques. Since (20) allows non-uniform coefficient variance, we
can assume w.l.o.g that all columns ofA have unitℓ2-norm
(after absorbing any variations into{σ2

n}). In the sequel, we
useλn to abbreviatehn(1), the prior probability ofsn = 1
assumed by SPE. Thus, the coefficient prior implicit to our
incarnation of AMP is Bernoulli-Gaussian, with the form

νfn→xn
(xn) = λnCN (xn; 0, σ

2
n) + (1− λn)δ(xn). (21)

In the sequel, we will make use of the abbreviations

αn(c) ,
σ2
n

c+σ2
n
, βn(c) ,

1−λn

λn

c+σ2
n

c
, ζn(c) ,

σ2
n

c(c+σ2
n)
.
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Fig. 3. Factor graph for BP-based implementation of SPE.

A. BP approximation via the large-system limit

Due to the mixture prior (21), exact calculation of
νigm→xn

(xn) would involve the integration of2N−1 terms,
which is clearly impractical. However, in thelarge system limit
(i.e.,M,N → ∞ with M/N fixed), the central limit theorem
motivates the treatment ofνigm→xn

(xn) as Gaussian [18]. In
this case, it is sufficient to parameterize the inputs togm via

µi
nm ,

∫

xn

xnν
i
xn→gm

(xn), vinm ,

∫

xn

(xn−µi
nm)2νixn→gm

(xn),
(22)

which yields outputs fromgm that take the form

νigm→xn
(xn) ∝ CN (Amnxn; z

i
mn, c

i
mn) (23)

zimn , ym −
∑

q 6=n Amqµ
i
qm (24)

cimn , σ2 +
∑

q 6=n |Amq|2viqm (25)

as can be shown using the fact that

∏

q

CN (x;µq, vq) ∝ CN

(
x;

∑
q µq/vq∑
q v

−1
q

,
1∑
q v

−1
q

)
. (26)

From (22), we see thatµi+1
nm andvi+1

nm are then determined
by the mean and variance, respectively, of the pdf

νi+1
xn→gm

(xn) ∝ νfn→xn
(xn)

∏
l 6=m νigl→xn

(xn). (27)

Using (26), the product term in (27) reduces to

CN

(
xn;

∑
l 6=m A∗

lnz
i
ln/c

i
ln∑

l 6=m |Alm|2/ciln
,

1∑
l 6=m |Aln|2/ciln

)
, (28)

and so, under the large-system-limit approximations

ciln ≈ cin , 1
M

∑M

m=1 c
i
mn (29)

and
∑

l 6=m |Aln|
2 ≈

∑M

l=1 |Aln|
2 = 1, (27) simplifies to

νi+1
xn→gm

(xn) ∝
(
λnCN (xn; 0, σ

2
n) + (1− λn)δ(xn)

)

× CN
(
xn;

∑
l 6=m A∗

lnz
i
ln, c

i
n

)
. (30)

Applying (26) to (30), we find, after some algebra, that

µi+1
nm = αn(c

i
n)θ

i
nm/(1 + γi

nm) (31)

vi+1
nm = γi

nm|µi+1
nm |2 + µi+1

nm cin/θ
i
nm (32)

θinm ,
∑

l 6=m A∗
lnz

i
ln (33)

γi
nm , βn(c

i
n) exp

(
− ζn(c

i
n) |θ

i
nm|2

)
. (34)

For the first turbo iteration, we desire thatν0gm→xn
(xn) ∝ 1,

and so we setc0n ≫ σ2
n andz0mn = ym for all n. For second

and later turbo iterations, we set{c0n} and {z0mn} equal to
their final values from the previous turbo iteration.

The ith SPE iteration yields thexn-posterior approximation

p̂i(xn |y = y0) ∝ νfn→xn
(xn)

∏M

l=1 ν
i−1
gl→xn

(xn). (35)

The mean and variance of (35) constitute the MMSE estimate
of xn and its MSE. Noting that (35) differs from (27) only in
the inclusion of themth product term, analysis similar to (28)-
(34) yields the following iteration-(i+1) MMSE quantities:

µi+1
n , Ê

i
{xn |y = y0} = αn(c

i
n)θ

i
n/(1 + γi

n) (36)

vi+1
n , v̂ar

i{xn |y = y0} = γi
n|µ

i+1
n |2 + µi+1

n cin/θ
i
n (37)

θin ,
∑M

l=1 A
∗
lnz

i
ln (38)

γi
n , βn(c

i
n) exp

(
− ζn(c

i
n) |θ

i
n|

2
)
. (39)

The ith SPE iteration approximation to thesn-posterior is

p̂i(sn |y = y0) ∝ νi−1
fn→sn

(sn) νhn→sn(sn), (40)

whereνifn→sn
(sn) ∝

∫

xn

fn(xn, sn)

M∏

l=1

νigl→xn
(xn). (41)

From fn(xn, sn) = snCN (xn; 0, σ
2
n) + (1 − sn)δ(xn), it is

easy to show that the output log-likelihood ratio (LLR) is

Li
n , ln

νifn→sn
(1)

νifn→sn
(0)

= ln
cin

cin + σ2
n

+ ζn(c
i
n) |θ

i
n|

2.(42)

B. Approximate message passing

The approximate BP algorithm outlined in Section IV-A up-
datesO(NM) variables per iteration:{zimn}, {µi

nm}, {vinm},
and{cin} for m = 1 . . .M andn = 1 . . . N . WhenN andM
are large, the resulting complexity may be undesirably high,
motivating us to find a simpler scheme.

Recently, Donoho, Maleki and Montanari proposed a family
of so-calledfirst-order approximate message passing(AMP)
algorithms [10], [18] that greatly simplify BP algorithms of
the form outlined in Section IV-A by tracking onlyO(N)
variables. In particular, [18] describes how the AMP approach
can be applied to generic independent (but not necessarily
identical) real-coefficient priors. Paraphrasing [18, Sec. V],
AMP initializes µ0

n = 0, z0m = ym, and c0 ≫ σ2
n for all

n andm, and then iterates (43)-(47) fori = 0, 1, 2, . . .

θin =
∑M

m=1 A
∗
mnz

i
m + µi

n (43)

µi+1
n = Fn(θ

i
n; c

i) (44)

vi+1
n = Gn(θ

i
n; c

i) (45)

ci+1 = σ2 + 1
M

∑N

n=1 v
i+1
n (46)

zi+1
m = ym −

∑N

n=1 Amnµ
i+1
n +

zi
m

M

∑N

n=1 F
′
n(θ

i
n; c

i). .(47)

Above,Fn(.; .), Gn(.; .), andF ′
n(.; .) are nonlinear functions

that depend on the coefficient prior. (See [18] for definitions.)
Using analyses similar to those in Section IV-A, one can

show that, for the Bernoulli-Gaussian prior (21), these nonlin-
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Fig. 4. The Bernoulli-Gaussian soft thresholding functionFn(θ; c) versus
θ for several values ofλn and for (a)c = 0.1 and (b)c = 0.001.

ear functions take the following form:

Fn(θ; c) =
αn(c)

1 + βn(c)e−ζn(c)|θ|2
θ (48)

Gn(θ; c) = βn(c)e
−ζn(c)|θ|

2

|Fn(θ; c)|
2 +

c

θ
Fn(θ; c)

(49)
F ′
n(θ; c) =

αn(c)

1 + βn(c)e−ζn(c)|θ|2

×

[
1 +

ζn(c)|θ|
2

1 + (βn(c)e−ζn(c)|θ|2)−1

]
. (50)

The functionFn(.; .) plays the role of a soft threshold in
(44), suppressing small values in the projected residualθin,
and passing large ones. (See Fig. 4.) Here “small” and “large”
are determined by the values ofλn and ci, where the latter
has be observed to decrease with SPE iterationi.

AMP (43)-(50) follows from the approximate BP algorithm
of Section IV-A via the intuition that, in the large system limit,
both then dependence ofzimn in (24) and them dependence of
θinm in (33) are weak. However, it is not sufficient to simply
ignore these dependencies. Comparing (43) to (33), we see
that the extra termA∗

mnz
i
m is offset byµi

n, and comparing
(47) to (24), we see that the extra termAmnµ

i+1
n is offset

by the last term in (47), which is analogous to the Onsager
reaction term from statistical physics [10]. As is evident from
above, the complexity of AMP is dominated by the two matrix
multiplies (43) and (47) which, in some applications, can be
efficiently implemented using a fast algorithm like the FFT.

V. SPARSITY PATTERN DECODING

The implementation of SPD depends strongly on the struc-
ture ofp(s). Whenp(s) has a Markov structure, the inference
task is a well-studied one that can be efficiently implemented
using message passing algorithms [8], [13], [14], in some cases
(e.g., with Markov chains and trees) optimally [2].

VI. EXIT CHARTS

As discussed earlier, BP-based implementations of SPE and
of SPD are expected to work very well on their own. The
question remains: How well do SPE and SPD work as a pair?
In the turbo literature,extrinsic information transfer (EXIT)
charts [19] are used to predict the extent to which two soft-
input/output blocks can help each other in decoding. The same
ideas can be used to predict the extent to which SPE and SPD
can help each other learn the sparsity pattern.
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Fig. 5. EXIT chart, forN = 512, M = 128, λ = 0.2, γ = 0.2, and
SNR= 30 dB, showing SPE EXIT curve (top), SPD EXIT curve (bottom),
turbo trajectory (middle), and i.i.d entropy rate (dotted).

The SPE EXIT curveplots the mutual information between
output LLRs{Li

n} and true pattern{sn}, versus the mutual
information between soft inputs{ln λn

1−λn
} and true pattern

{sn}. Similarly, the SPD EXIT curve plots SPD’s output
mutual information versus its input mutual information. From
these two input-output maps, one can predict whether the
information about{sn} can be increased through another turbo
iteration, or whether learning has saturated. Sparsity-pattern
EXIT charts differ from conventional EXIT charts in one
small detail: the mutual information is plotted on the interval
[0, Imax], whereImax is generally less than1. This is because
the entropy rate of i.i.d{sn} is < 1 when {sn} is non-
equiprobable, as occurs in the sparse problem setting.

Figure 5 shows an example EXIT chart. (The simulation
setup will be described in Section VII.) The turbo trajectory,
starting in the lower left corner (with zero information), moves
up with every application of SPE, and to the right with
every application of SPD, progressing towards the upper right
corner (representing perfect pattern recovery). The trajectory
is (approximately) bounded above by the SPE EXIT curve,
and (approximately) bounded to the right by the SPD EXIT
curve, and thus cannot progress beyond the point at which
those curves intersect. In this example, the SPE/SPD together
do not allow perfect pattern recovery, though they come close.

VII. N UMERICAL EXPERIMENTS

Numerical experiments were conducted for the observation
model (1), where the elements ofA were independently
drawn from aCN (0,M−1) distribution and where the signal
coefficients were generated viap(xn | sn) = snCN (xn; 0, 1)+
(1 − sn)δ(xn) using a Markov chain (MC)-generated binary
sparsity pattern{sn}. Such a MC is fully described by the
transition probabilitiesp01 , Pr{sn = 0 | sn−1 = 1} and
p10 , Pr{sn=1 | sn−1=0}, yielding a stationary distribution
with activity rate λ , Pr{sn = 1} = (1 + p01/p10)

−1.
To generate patterns with a desiredλ ∈ (0, 1], we set
p01 = p10(λ

−1 − 1) with p10 = γλ, for γ ∈ (0, 1] called
theMarkov independence parameter. Note that, asγ increases,
the pattern becomes less correlated, withγ = 1 corresponding
to an i.i.d pattern. In fact, the pattern’s coherence timeT is
inversely proportional toγ, i.e., T = (2γλ(1 − λ))−1. To
ensure that we used only “typical” pattern realizations, we
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Fig. 6. Empirical50%phase transition curves for the events (a)NMSE ≤
−20dB and (b)NMSE ≤ NMSEgenie + 1dB, for various values of the
Markov independence parameterγ (shown by the labels on each curve).

discarded any{sn} for which λ̂ , 1
N

∑N

n=1 sn differed from
λ by more than 5%. All experiments usedN = 512 andσ2

such thatSNR = 30dB, whereSNR , E{‖Ax‖22}/E{‖w‖22}.
SPD was implemented using the standard forward-backward

(or sum-product) algorithm [8], [13], which performs exact
inference for our MC pattern, and SPE was implemented using
the AMP technique outlined in Section IV-B, allowing 10
SPE iterations. The proposed turbo scheme was allowed 5
iterations. We measured performance usingNMSE , E{‖x̂−
x0‖22}/E{‖x0‖22}, wherex0 denotes the true parameter vector
and x̂ denotes the final turbo estimate. Average performance
was tested under different problem settings, parameterized by
γ, the undersampling ratioδ , M/N , and thenormalized
sparsity ρ , E{K}/M = λN/M , where K denotes the
number of non-zero coefficients in{xk} (and{sn}).

In Fig. 6(a), for various choices of Markov independence
parameterγ, we showempirically estimated phase transition
curves [10] for the eventNMSE ≤ −20dB, labeling each
curve with the corresponding value ofγ. The curves were
constructed as follows. DefiningNMSE≤−20dB as “success,”
we empirically estimated the probability of success at each
triplet (γ, δ, ρ) by comparing theNMSE for 200 independent
realizations of (A,x, s,w). Matlab’s contour command
was then used to draw the 50% success-probability contour,
which always manifested as a curve bisecting the(δ, ρ) space:
points northwest of the curve had< 50% success, and points
southeast of the curve had> 50% success. Figure 6(a)
shows that, asγ decreases (i.e., the sparsity becomes more
structured), the successful-(δ, ρ) domain expands. This domain
is bounded above byρ ≈ 0.91, however, since above that
line the NMSE calculated undergenie-aidedperfect sparsity-
pattern knowledge itself exceeded−20dB. Thus, in Fig. 6(b),
we show50% phase transition curves for the eventNMSE ≤
NMSEgenie+1dB. There, the successful-(δ, ρ) domain appears
to expand with every decrease inγ, i.e., increase in structure.

VIII. C ONCLUSION

In this paper, we considered the reconstruction of structured-
sparse signals from noisy linear observations, using prob-
abilistic priors to model sparsity structure. Exact inference
was examined and found to be computationally impractical,
and so an approximate inference scheme, based on belief
propagation, was proposed that iterates between exploitation
of observation structure (via “SPE”) and sparsity pattern
structure (via “SPD”), with connections to noncoherent turbo
equalization. Using the AMP framework recently proposed by
Donoho, Maleki, and Montanari, an efficient implementation
of SPE was outlined, and EXIT charts were proposed as a
means of predicting the interaction between SPE and SPD.
Finally, performance was quantified using NMSE-based empir-
ical phase transition curves, demonstrating that sparsitypattern
structure can be successfully exploited by our turbo scheme.
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