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Abstract—This paper considers the reconstruction of x € CV is assumed to live in a UoMy = UK X,
structured-sparse signals from noisy linear observations. In where,, is one of the(g) canonical subspaces containing
particular, the support of the signal coefficients is parameterizd signals with suppork’. Two flavors of UoS that have garnered
by hidden binary pattern, and a structured probabilistic prior . - . :

(e.g., Markov random chain/field/tree) is assumed on the pattern. particular attentpn greblock—sparsﬁyand tree-sparsity[1].

Exact inference is discussed and an approximate inference FOr both, probabilistic guarantees of a model-based RIR hav
scheme, based on loopy belief propagation (BP), is proposed.been derived and, from them, bounds on noisy reconstruction
The proposed scheme iterates between exploitation of theerror [1]. The UoS approach has rather strong limitations,
observation-structure and exploitation of the pattern-structure, however. For example, it is not possible to specify whether

and is closely related to noncoherent turbo equalization, as it i likelv to find . | ti f1h
used in digital communication receivers. An algorithm that It 15 more likeély 10 Tind a signal component in oné or the

exploits the observation structure is then detailed based on allowed subspaced;, relative to another.
approximate message passing ideas. The application of EXIT In this paper, we take a probabilistic approach to modeling

charts is discussed, and. empirical phase .transition plots are sparsity structure, allowing the use of, e.§larkov chain
calculated for Markov-chain structured sparsity.* (MC), Markov random field(MRF), and Markov tree (MT)
|. INTRODUCTION models [2]. Such models have been previously exploited
efgr sparse reconstruction, but only to a limited extent. For
example, [3] and [4] proposed Monte-Carlo-based [5] sparse
reconstruction algorithms using MRF and MT models, re-
spectively, and [6] and [7] proposed to iterate matching-
pursuit with MAP pattern detection based on MRF and MT
y = Ax + w, (1) models, respectively. Monte-Carlo algorithms, while fire|
are typically regarded as computationally too expensive fo
many problems of interest. Matching-pursuit algorithme ar
%/pically much faster, but the schemes in [6], [7] are ad hoc.
We attack the problem of reconstructing structured-sparse

The problem of reconstructing sparse signals lies at the h
of many engineering and scientific applications. Here, thgaanm
objective is to estimate the sparse sigmak CV from the
noisy linear measuremenise CM,

whereA € CM*N js a known matrix andv € CM is additive
noise, often modeled as circular white Gaussian, ue.,~
CN(0,5%I). By “sparse,” we mean that the signal has only

fevlvn (?gf’gzzgeff ﬁtgésrlo?r;zeego S(Ec(;?nmg:‘eztsﬁations in ignals through the framework @felief propagatior(BP) [8].
y ' Y d hile BP has been successfully used to recawgstructured

is underdetermined, i.eM < N, so that, even in the . . . .
noiseless case, there is no unique inverse. However, Wher?parse signals (e.g., [9], [10]), we believe that its agpie

. L . 0 structured sparse signals is novel. As we shall see, the BP
is known to besparseit is possible to accurately reconstruc ramework suagests aterative aporoach. where sparsity pat-
x from y if the columns ofA are sufficiently incoherent. For 99 pp ' P yp

. . . . . tern beliefs are exchanged between two blocks, one expdoiti
various sparse reconstruction algorithms, including egnv : o

T . . i observation structure and the other exploiting patteurcsire.
optimization-based, greedy, and iterative thresholditgp-a : o
: . : In this regard, our scheme resembtasbo equalizatiorfrom
rithms, there exist elegant bounds on reconstruction einar

o . . ; digital communications [11], where bit beliefs are excheuhg
hold when A satisfies a certaimestricted isometry property between a soft equalizer and a soft decoder. Our two blocks
(RIP). (See [1] for a recent comprehensive overview.) i

o g are themselves naturally implemented using BP, and weldetai
In many applications, however, the signalhas structure

beyond simple sparsity. For example, the wavelet transforampartlculaIrly efficient algorithm based on tiapproximate

coefficients of natural scenes are not only approximat flessage passingAMP) framework recently proposed by

- . ) ho, Maleki M i [10].

sparse, but also exhibpersistence across scalgd, which onoho, Maleki, and Montanari [10]
manifests as corre!atlon Wlthln_the sparsity pattern. I\/Iraﬁ_hrjer Il. STRUCTURED SPARSITY MODEL
forms of structure in the sparsity pattern are also possinid ) ) ) )
so we desire a powerful and flexible approach to modeling andCur structured-sparse signal model uses hidden binary in-
exploiting such structure. dicators{s,, }_,, wheres,, € {0,1}. In particular,s,, = 1

One approach to modeling sparsity structure is through ti@licates that the signal coefficient, is active (i.e.,z, 7 0
deterministicunion of subspace@JoS) approach. (See [1] for W-P-1) while s, = 0 indicates thatz, is inactive (i.e.,

a recent comprehensive overview.) There, iiesparse signal ©» = 0 W.p.1). Assuming that the active signal coefficients are
independently but non-identically distributed, we cantevri

1This work was supported in part by the Office of Naval Researutter
grant N00014-07-1-0209. P(Tn | 50) = Snqn(2n) + (1 = 5,)0(zy), 2



T fi 51| The notationv%™; ;(-) will be explained in the sequel.

| ¢ —
- : Vinon (51) } Yhosss (1) B. Approximate inference
Tn n, Sp
9 = e o) oroa (o) h Whereas exact posterior calculation via (7)-(9) is compu-
: P emen el Thoen o tationally prohibitive for typical problem sizes, apprmdte
TN fN. SN calculation can be efficiently accomplished using message
Vinrsn (SN) 1 Viorsn (51) passing [8], i.e., belief propagation (BP), on the factaapyr

in Fig. 1. In the sequel, we use,_, 5(-) to denote a message
Fig. 1. Factor graph of posterigi(x, s |y = y). The boxes represent passed from some nodé to some adjacent nodB in the
constraint nodes, as defined in (4), and the circles represeiable nodes. f h. O ill either b df h i
The dashed line partitions the factor graph into two sulpigsa aCto_r graph. Qur m(_essages W_' either be pdfs on the real lin

or binary pmfs; which one will be clear from the context.
BP proceeds according to the following two rules [8]: i)
the message emitted by a variable node along a given edge
. . equals the product of the messages coming into that variable
N
t{r?’ L h as the sparglty _patter,n andWrH$deI str:Jcture " node along the other edges, and ii) the message emitted by

rough an assumed prior prp(s). e We place No Te- . ¢ nction node along a given edge equals the integral of the

strictions onp <S).’ we n.ote that Markoy—cham/fleld/tree prlorsproduct of the constraint function (associated with thade)o
often lead to efficient inference algorithms [2]. and all messages coming into that function node along the

I1l. TURBO INFERENCE other edges. (Here, “equals” holds after appropriate rsgali

Our primary goal is estimating the structured-sparse $ignaex';ismg the framework of BP, the functiong™, , () and
a given the observationg = v, in model (1). In particular, Vs, (-) from Section Ill-A can be approximated (up to a

we are interested in computing minimum mean-squared er®/ing factor) by steady-state versions of the messages
(MMSE) estimates of z,, }. 1
A. Exact inference Vil s () 0 D fu(@ns sn)Vil g, (5n) (10)

sy, =0

where ¢,,(-) denotes the pdf ofc,,, when active, and(-)
denotes the Dirac delta. We refer $0= [s1, s2,...,sn]7 €

Our estimation task is facilitated by the following factai i 1
tion of the posterior pdf shown by thactor graphin Fig. 1. v (0) / g(z) H Z fq(xq,sq)l/§;)_>fq(sq),(1l)

p(@, 5|y =yo) x p(y =y, |z, 8)p(x,s) 3 R N
- V}t)—> (zn) = Vét)ﬂ (Tn)
= p(s) ply=wolz) [[ plalsn).@ et e
N h“( B “( ) n=1 P (V ) which depend on the other messages
= S =g\x = Jn\Tn, Sn
(t) _ .,
We usex to denote equality after scaling to unit area. Vs:l—>fn(5n) - Vht—wn(‘s") (12)
The MMSE estimate oft,, is given by the mean of the x Z h(s) H v (s)  (13)
marginal posteriop(x,, |y = y,), Which can be written as s_n€{O}N-1  g#n -
= l/)(‘t,_—l>)sq (Sq)
planly=yy) = > / plx.sly=y,) (5
s€{0,1}N /®-n V};)Hsﬂ(sn) o / ST, sn) V;tiﬁfn(xn) ) (14)
1 1 T — o ——
— ,,®
< Y hulowes) plsn) [ 9@ ]S fules) — 0, ()
sy, =0 T—n q#n s4=0

We use the superscripty to denote turbo iteration. These
X > p(S—n|sn), (6) messages can then be combined for marginal inference:

S_n,q€{0,1}N -2
)

M (x = X v o)V, (z 15
where z_,, denotes vector with the n'* element omitted, pA(t)( nlY=vo) {;;_“”"( n) (‘i)_"””( n) (15)
and z_, , denotesz with both then’ and ¢*" elements P (snly =yo) < v (sn) vy, (sn),  (16)
omitted. Writingp(s—_,, | sn) = p(S—nq | S¢: $n)P(Sq | sn), the

i n). wherep denotes the iteratioh-approximation to the pdf.
last summation in (6) reduces ids, | s,), giving

Because the factor graph in Fig. 1 contains many loops,

p(on |y =1yo) x V5, (2) V2%, (20) (7) exact inference is known to be NP-hard [12], and thus BP
L " can only be claimed as an approximation. However, loopy BP
v (zn) 2 Z Fo(@n, $0)D(50) (8) has demonstrated very accurate results in similar setfengs

in LDPC and turbo decoding [13] and in inference on MRFs

Sn=0

[14]). Furthermore, in the large-system limit (i.84, N — oo

1
e () 2 /g(:l:) H Z fa(q,54)p(sq | sn). (9) With M/N fixed), BP has recently been shown to enjoy various
Ton  gtnsg=0 optimality properties [10], [15].



With practical implementation in mind, we now partition our @

factor graph into the two sub-graphs separated by the dashed o fll Ny
line in Fig. 1. The messagds;” . (-)},_, form the outputs T f,,,. Sney hog
of the left sub-graph and the inputs to the right one, while 4

the message$v,”,  (-)},_, form the outputs of the right

sub-graph and the inputs to the left one. From this, we can TN fN. SN hN.

interpret the BP scheme as iterating between two blocks, one
which performs inference on the left sub-graph (which medetig. 2. Decoupling of partitioned factor graph from Fig. 1ar(a) sparsity
structure in the observation) and the other which performsttern equalization and (b) sparsity pattern decoding.

inference on the right sub-graph (which models structure in

the sparsity pattern), with message-passing between slockadditionalt*" turbo-iteration constraint functions,

C. Relation to noncoherent turbo equalization h(sn) = vy, (sn) (17)
The iterative approach described in Section 11I-B mimics A (sn) = Vi, (sn), (18)

the turb lizatiorj11 d that has b |
e turbo equalizatiorj11] procedure that has become popular calling (13)-(14), intialized using? . (s,) — 05

for the reception of digital communication signals, and il A . A
particular, noncoherent turbo equalizatide.g., [16]). There, 1For ¢"-iteration SPE, (16) implies an output message
9 (sn) x PO (suly = yo)/h¥ (s,), Which equals the

the goal is to infer a sequence of information bitsthat “f.—s.\ A , " L
are transformed into coded bits linearly modulated, and (@PProximate) likelihood of,, sinceh; () acts as SPE's prior

transmitted over a channel, yielding the noisy observatioR"$n- As such, the SPE output messages are extrinsic. Similar

y = Hs + w. In the noncoherent casé depends on an "€asoning applies to SPD outputs as well.
unknown channel fading realization. Because optimal joint IV. SPARSITY PATTERN EQUALIZATION
channel-estimation/equalization/decoding is comporeaiily

As previously discussed, SPE accepts independent but non-
overwhelming, the bit inference task is often split into tsud- P y P P

e . : identical probabilities on the indicatorés,,} and returns
tasks,soft noncoherent equalizaticand soft decoding which likelihoods on the same. One can imagine a number of ways
are then iterated. The equalizer calculates soft estintditéee to accomplish this task, e.g., Monte Carlo methods [5], 'sof
coded bitss from y using knowledge of the channel Strucwr%ayesian matching pursuit [17], expectation maximization
and prior beliefs ors (as pilots or from the decoder). It thenBP. Below we outline a BP-based technique that follows the

passes thes&nestlr'n'ates' to the decoder, which treats them aﬁpproximate message passing’ (AMP) framework recently
priors when exploiting its knowledge of the code structure roposed by Donoho, Maleki, and Montanari [10], [18]. Since
refine thes-estimates. The decoder’s estimates are then pas

i ) focus on a single turbo iterationy we suppress the
back to the equalizer, and so on, until they agree. To avdiid Sesuperscript(-t) notation on messages in this section.

reinforcement, the two blocks passtrinsicinformation (i.e., o, Bp.pased SPE. we expand thenode in Fig. 2(a)

a bit estimate may not employ the most recently assumed pg)i}?élding the loopy factor graph in Fig. 3, with constraints
for that bit). When used in conjunction with powerful codes,

turbo equalization facilitates practical communicatiomear- gm(®) £ CN(ym; ajix,0?), (19)

Shannon capacity [11]. wherea!l denotes then'" row of A. Noting that SPE will

. TP see the similarities between noncoherent twrbo eqy?é'quire several iterations of message passing betweersnode
ization and our BP-based approach to structured sparsalag{rjq } and{z,,}, we will henceforth use’ and v
m nijfs T g

. - - Tp—>Gm m—>Tn
recovery, we write the sparse coefficientsigs= 0,5, Where " qenote the SPE-iterationmessages. In addition, we will
0, has prior pdfg,(-), so thate = D(6)s, whereD(0) iS ;55 me Gaussian active-coefficients, i.e.,

the diagonal matrix constructed froth= [0y,60s,...,0x]7.

In this case, the sparse observations (1) can be written as Gn(2n) = CN(2;0,02), (20)

y = Hs+wwith H = AD(0). Thus, the structured sparsityy, . other distributions could be handled using siméaht

patterns is analogous to “coded bits,” the active-coeﬁicienﬁiquesl Since (20) allows non-uniform coefficient variance
vector @ is analogous to the “unknown fading realization,’

) . ‘can assume w.l.0.g that all columns 4f have unit/,-norm
and A contributes known structure to the unknown Chann?};\fter absorbing any variations int2}). In the sequel, we
matrix” H. Inference on the left sub-graph of Fig. 1 i " '

| “soft h lization” while th QUse \,, to abbreviateh,, (1), the prior probability ofs, = 1
analogous to "soft noncoherent equalization,” while that 0,sq meqy by SPE. Thus, the coefficient prior implicit to our

the “9“‘ sub-graph corresponds FO “‘,SOft decod?ng.” incarnation of AMP is Bernoulli-Gaussian, with the form
Taking cues from turbo equalization, we will henceforth

refer to inference on the left sub-graph of Fig. 1 apdrsity Ut sz, () = MCN (2050,00) + (1 — A)d(zn). (21)
pattern equalization(SPE) and inference on the right sub-I
graph as $parsity pattern decodihgSPD). We now formally R ) )
decouple these subtasks and represent each of them usingva(c) £ ;327 Bnlc) = %‘*T", Cnlc) & c(ci'iﬂ)‘
separate factor graph, as in Fig. 2. For this, we define two " ! "

n the sequel, we will make use of the abbreviations
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Fig. 3. Factor graph for BP-based implementation of SPE.

A. BP approximation via the large-system limit

Due to the mixture prior (21), exact calculation of

vi ., (z,) would involve the integration oB™~! terms,
which is clearly impractical. However, in tharge system limit
(i.e., M, N — co with M/N fixed), the central limit theorem
motivates the treatment of ., (z,) as Gaussian [18]. In
this case, it is sufficient to parameterize the inputg,fovia

:uizm é/zn myl%gm(x")v U'fmx, é/(xn :unm) ;n—mm(xn)?
x

@ " (22)

which yields outputs frony,, that take the form

V;hn —Tn (xn) X CN(Amn'/En; Z:nrw C;L'nn) (23)
c’inn é 02 + Zq;ﬁn |Amq|2’U(i1m (25)
as can be shown using the fact that
Z Itq/Vq 1
Cpr,v)ocCN( , ).(26)
H ! ! Zq Uq . Zq Uq !

From (22), we see that’'! andvit! are then determined

by the mean and variance, respectively, of the pdf

141
Tn—>9Gm

(7p) o an_)l'n('rn) Hl;ém Vgin—m;n (7). (27)

Using (26), the product term in (27) reduces to
. Zl;ﬁm Azknzlin/cfn 1
7 Zl#m |Alm|2/0;n ’ Zl#m |Al”|2/c;n
and so, under the large-system-limit approximations

CN <:c > (28)

i A 1 Mo

n — M m=1 Cmn

~
~

n

and Zl;ﬁm |Aln ‘2 A

i‘tl—mm (J?n) S8

c ¢ (29)

SML A2 = 1, (27) simplifies to

(ARCN (2,50, o2) 4+ (1 — An)d(zn))
X CN(:L’n, Zl;ﬁm Azknzfn’ C%’) :
Applying (26) to (30), we find, after some algebra, that

(30)

P = 0 (€) 0/ (1 + V) (31)
Ui = %m,lu”ll2 Hior &/ O (32)
O = El;ﬁm Al 2ty (33)
Tom = Blcr) exp (= Calep) 107m]%)- (34)

For the first turbo |terat|on we desire th@ e, (Tn) 1,
and so we set? > o2 andz?,, = y,, for all n. For second

and later turbo iterations, we sét’} and {20} equal to
their final values from the previous turbo iteration.
Thei*" SPE iteration yields the,,-posterior approximation

zy). (35)

The mean and variance of (35) constitute the MMSE estimate
of x,, and its MSE. Noting that (35) differs from (27) only in
the inclusion of then!” product term, analysis similar to (28)-
(34) yields the following iteratiorfi+1) MMSE quantities:

i (

i M
P(Tn |y =1yo) X Vi, (@n) [[12 v

WA E e ly =y} = an(@)0h/(1+7i)  (36)
ottt & i {a, |y = yot = vhluht P + it /62 (37)
9; £ Zz 1 lnzln (38)
T £ Bulch) exp (= Culcl) 165,]7). (39)

The i** SPE iteration approximation to thg, -posterior is

P (Sn ly = yO) X Vf,L%S,L (sn) th—wn(Sn) (40)

M
Whereu}n_mn(sn) o< / frn(@n, Sn) Hz/ s, (Tn). (41)
x =1

From f, (2, sn) = $nCN(2,;0,02) + (1 — s,)0(zy), it is
easy to show that the output log-likelihood ratio (LLR) is

ci

T 2
Cn +o

Vussn ()
)

B. Approximate message passing

= In

L, £ In +Cn(c,) [0, (42)

The approximate BP algorithm outlined in Section IV-A up-
datesO(N M) variables per iterationfz? . }, {18, }, {v%,. 1
and{c} form=1...M andn =1...N. WhenN and M
are large, the resulting complexity may be undesirably high
motivating us to find a simpler scheme.

Recently, Donoho, Maleki and Montanari proposed a family
of so-calledfirst-order approximate message passi#VP)
algorithms [10], [18] that greatly simplify BP algorithmg o
the form outlined in Section IV-A by tracking onl{)(N)
variables. In particular, [18] describes how the AMP apploa
can be applied to generic independent (but not necessarily
identical) real-coefficient priors. Paraphrasing [18, .S¢§
AMP initializes 2 = 0, 28, = ym,, and® > o2 for all
n andm, and then iterates (43)-(47) for=0,1,2,...

= ! P8l Z) (44)
e = GW”) (45)
At = o2 4 MZn Lot (46)
Z;j;l = Ym — 27]:,:1 Arrm,un + 712[:1 Fﬁ(eﬁu Ci)' (47)

Above, F,(.;.), Gy (.;.), and F (.;.) are nonlinear functions

that depend on the coefficient prior. (See [18] for defingipn
Using analyses similar to those in Section IV-A, one can
show that, for the Bernoulli-Gaussian prior (21), theselinen
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Fig. 4. The Bernoulli-Gaussian soft thresholding functiBp(0; c) versus

R
0 for several values oh,, and for (a)c = 0.1 and (b)c = 0.001. mutualinformation

Fig. 5. EXIT chart, forN = 512, M = 128, A = 0.2, v = 0.2, and
. . SNR= 30 dB, showing SPE EXIT curve (top), SPD EXIT curve (bottom),
ear functions take the following form: turbo trajectory (middle), and i.i.d entropy rate (dotted).

an(c)
1+ Bn(c)e_gn(c)mp

Gn(8:¢) = Bu(c)e= O | B (9: )2 + an(H;c)

Fo(0;c) = 0 (48)

The SPE EXIT curveplots the mutual information between
output LLRs{L! } and true patterr{s, }, versus the mutual
(49) information between soft inputéln 22—} and true pattern

1-X

Fl(0:0) o (c) {sn}. Similarly, the SPD EXIT curve plots SPD’s output
e 1+ Bn(c)e=Snlolor mutual information versus its input mutual informationofer
Ca(0)]0)? these two input-output maps, one can predict whether the
x 1+ L+ (Bu(c)eSn@I0P)—1 | (50)  information about s, } can be increased through another turbo

iteration, or whether learning has saturated. Sparsitiepa
The function F,,(.;.) plays the role of a soft threshold INEXIT charts differ from conventional EXIT charts in one
(44), suppressing small values in the projected residfjal small detail: the mutual information is plotted on the inter
and passing large ones. (See Fig. 4.) Here “small” and targp), 1,,,...], wherer,,... is generally less thah. This is because
are determined by the values &f, and ¢, where the latter the entropy rate of i.i.d{s,} is < 1 when {s,} is non-
has be observed to decrease with SPE iteration equiprobable, as occurs in the sparse problem setting.

AMP (43)-(50) follows from the approximate BP algorithm Figure 5 shows an example EXIT chart. (The simulation
of Section IV-A via the intuition that, in the large systemnit, setup will be described in Section VII.) The turbo trajegtor
both then dependence of;,,,, in (24) and then dependence of starting in the lower left corner (with zero information)pwes
0., In (33) are weak. However, it is not sufficient to simplyup with every application of SPE, and to the right with
ignore these dependencies. Comparing (43) to (33), we $8@ry application of SPD, progressing towards the uppé rig
that the extra termd;,, 2}, is offset by y;,, and comparing corner (representing perfect pattern recovery). The dtajg
(47) to (24), we see that the extra terdy,, .. is offset is (approximately) bounded above by the SPE EXIT curve,
by the last term in (47), which is analogous to the Onsagghd (approximately) bounded to the right by the SPD EXIT
reaction term from statistical physics [10]. As is eviderni  curve, and thus cannot progress beyond the point at which
above, the complexity of AMP is dominated by the two matrighose curves intersect. In this example, the SPE/SPD tegeth
multiplies (43) and (47) which, in some applications, can ko not allow perfect pattern recovery, though they comeeclos
efficiently implemented using a fast algorithm like the FFT.

VII. NUMERICAL EXPERIMENTS

V. SPARSITY PATTERN DECODING ) . .
Numerical experiments were conducted for the observation

The implementation of SPD depends strongly on the strugrode| (1), where the elements oA were independently
ture of p(s). Whenp(s) has a Markov structure, the inferencgjrawn from acA/(0, M—1) distribution and where the signal
task is a well-studied one that can be efficiently impleméntgoefficients were generated &z, | s,) = 5,CN (2,:0,1)+
using message passing algorithms [8], [13], [14], in sonsesa (1 _ 5 )5(z,,) using a Markov chain (MC)-generated binary
(e.g., with Markov chains and trees) optimally [2]. sparsity pattern{s,,}. Such a MC is fully described by the
transition probabilitiespy; £ Pr{s, = 0]s,_; = 1} and

VI. EXIT CHARTS p1o = Pr{s,=1|s,_1=0}, yieldiilg a stat‘ionary dist\iibution

As discussed earlier, BP-based implementations of SPE amith activity rate A = Pr{s, = 1} = (1 + po1/p1o)”".
of SPD are expected to work very well on their own. Th&o generate patterns with a desired € (0,1], we set
question remains: How well do SPE and SPD work as a papg, = pio(A~! — 1) with p;g = v, for v € (0,1] called
In the turbo literature extrinsic information transfer (EXIT) the Markov independence parametislote that, ag increases,
charts[19] are used to predict the extent to which two softthe pattern becomes less correlated, with 1 corresponding
input/output blocks can help each other in decoding. Theesato an i.i.d pattern. In fact, the pattern’s coherence tithés
ideas can be used to predict the extent to which SPE and SiRZersely proportional toy, i.e., T = (2yA(1 — \))~L. To
can help each other learn the sparsity pattern. ensure that we used only “typical” pattern realizations, we



@ ® VIIl. CONCLUSION

. e In this paper, we considered the reconstruction of stredtur

o (RIS e J/V/ 1 sparse signals from noisy linear observations, using prob-
. //‘; / o / abilistic priors to model sparsity structure. Exact infeze

08/ / / 08 2 / was examined and found to be computationally impractical,
/ V/ and so an approximate inference scheme, based on belief

0.7 1 0.7

0.9

<
= -/ N ] propagation, was proposed that iterates between expoitat
E? N of observation structure (via “SPE”) and sparsity pattern
|| o6f 06 1 structure (via “SPD”), with connections to noncoherenbtur
S e & equalization. Using the AMP framework recently proposed by
osf 1 os/ 1 Donoho, Maleki, and Montanari, an efficient implementation
~ N of SPE was outlined, and EXIT charts were proposed as a
0 1 o4 1 means of predicting the interaction between SPE and SPD.

Finally, performance was quantified using NMSE-based empir
ical phase transition curves, demonstrating that spagpsitiern

0.3

0.3

L L L L L L L L
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

1
6 =M/N §=M/N structure can be successfully exploited by our turbo scheme
Fig. 6. Empirical50%phase transition curves for the events YISE < REFERENCES
—20dB and (b)NMSE < NMSEgenie + 1dB, for various values of the )
Markov independence parameter(shown by the labels on each curve). [1] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Mbdased

compressive sensinglEEE Trans. Inform. Theorwol. 56, pp. 1982—
2001, Apr. 2010.
. RN N . [2] C. A. Bouman, “Markov random fields and stochastic image ngte
discarded any{sn} for which A - N Zn:l sn differed from in IEEE Int. Conf. Image Processing Tutorjiact. 1995.
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