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Abstract—The variable nature of the wireless channel may an algorithm that updates the constellation size itertive
cause the quality of service to be intolerable for certain aplica- ysing the most recent ACK packet. Each iteration involves th
tions. To combat channel variability, we consider rate adagation numerical evaluation of an integral. To reduce the complexi
at the physical layer. We build an adaptive communication sgtem o . .
based on uncoded QAM in which the available information we propos_e a modified algorithm Wh'_Ch progessgs the ACK
on the channel state is obtained using the mere packet-level Sequence in batches and hence the integration is needed for
ACK/NACK sequence. Our system chooses the constellationzei groups of ACK packets, instead of every single one. The
that maximizes the expected packet level goodput for everyrgjle  details of the algorithm can be found in Section IlI.

packet. Our simulations show that our system achieves a gopdt, : :
reasonably close to the highest possible goodput achievablith We evaluate the performance of our system in Section IV.

full-feedback on Rayleigh-fading Markov channelst We show that, the goodput achieved by our system is within
8% of the highest goodput achievable with full CSI. Moreover,
. INTRODUCTION the improvement over the best non-adaptive algorithm can be

Channel variability is common to all wireless communica®> high as30%. This is somewhat surprising due to the fact

tions due to factors such as fading, mobility and multiusép@t the CSI contained in a single acknowledgement, no more
interference. One way to combat the detrimental effects By 1 Pit per packet, is extremely course. We also analyze th
variability is using rate adaptation. The idea is that, Hasgoodput—complexny ”‘T"de'o“f as we evaluate the pgrfom:aan
on the measured channel state, the transmitter alters zbe §\f the mod|f|ed algorithm. Fmally, We wrap up with some
of the signal constellation to try to maximize the amount (ﬁonclusmns and future extensions in Section V.

data transferred without an error. Consequently the cHanne
variability will be experienced at the higher layers in tloenfi

of variable data rate rather tharvariable error rate

II. PROBLEM SETUP

Rate adaptation has been addressed mainly in two different data Vi
perspectives. The first group (e.g., [1], [2] and [3]) asssime 5 m
specific channel models and focuses on the design of varigus- eim;sr | controller | ——"~{ encoder Forward

adaptive codes based on these models. Channel state infor-

mation (CSI) is obtained using physical layer symbols chlle

pilots. Second group (e.g., [4], [5], [6] and [7]) proposater

adaptation algorithms developed based on the some practica

experience gained in a certain environment and a spec fi% P .

application. The main focus of these papers is to propose —* Reverse ! detootor !

modifications to the existing 802.11 MAC layer and present

some experimentally demonstrated improvements relative t Fig. 1.

the predecessors. CSl is acquired based on the packet-level

ACC')(/NACK sequence, avgllable ‘.T[ the I|nk-quer. . Figure 1 shows the system model. The model assumes that
ur system, described in Section Il, combines the |deast?lf

o . the transmitter can obtain delayed feedback on the reliabil
the two groups: Like the latter group, we assume only Imlft_ of previously transmitted packets and that this feed#bac
level CSI in the form of packet ACK/NACKs. On the other yorp y transr P o .

an be used to optimize future transmissions. In particular

hand, like to first group, we assume a certain channel mo ) . ) .
’ group, he transmitter uses the feedback information to prediet th

(Rayleigh fading, first order Markov) and our system find - S
the optimal constellation sizewhich maximizes the expectedPUture .SN.R characteristics, frqm which it adapts the future
transmission parameters. In this paper, we focus on the case

goodput for each packet. For that purpose, our system u%v Sere feedback comes in the form of binary packet acknowl-

1This work was supported by National Science Foundationtgda87037 .e'dgments ("e" ACK/NACKS_) and the transmission parameter
and Office of Naval Research grant NO0014-07-1-0209. is (uncoded) constellation size, though our approach cbeld

decoder

System Model.



straightforwardly extended to the adaptation of transmoiter
and/or code rate.

The time-varying wireless channel is modeled by an SN
process{v:}, wheret denotes the packet index and > 0.
Since the transmission power is fixed, is an exogenous
process that does not depend on the transmission parame
For QAM constellation sizen and SNR~, the symbol error
rate is known to be [8, p. 280]

(ol el ) o

Assuming that the SNR and constellation size are fixed ove
packet ofr symbols, the packet error rate (for théh packet) -
then equals : : : t t . .
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Defining the instantaneous gOOdF@I([mt, %) as the expected :unzcﬁérolo(.)fg’s\loRshown is the goodput maximizing constellation sizeaas

number of bits-per-symbol communicated without error in a
packet with constellation sizei; and SNR~,;, we have
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with known statistics, and where strictly causal estimates

G(me, ) = (1 — ) logmy . ) of the packet error rate;, are available. These error rate
_ 1 37t estimates offer the potential to reduce the uncertainty and
=(1-2(1- Q ; .

N my — 1 thus to increase goodput. With causal feedback, howewver, th
x logmy. (4) optimization of{m,} becomes more complicated becausg

affects not only the current expected goodpyiG (my, v:)}

From (4), it can be seen that there is a one-to-one corigy 4150 the statistics of future errors, and thus the future
spondence between constellation sizg and goodput for expected goodput.

a fixed SNR~;. Thus, if the SNR was known perfectly,
then goodput can be maximized by appropriate choice of |ll. A GREEDY RATE ADAPTATION ALGORITHM

constellation size. Figure 2 plots instantaneous goodgtsis Notice that, for the problem defined in the previous para-
SNR and constgllati_on size for the caser.*of.: .100 symb_ols graph, the search for the optimfin}!_, appears to be NP-
per packet, highlighting the goodput-maximizing consti®dn  pard. Thus, for practical horizons optimal rate selection
size as a function of SNR. From the figure, it can be seen thears infeasible and suboptimal approaches are of shtere
(for this r) the goodput maximizing value dbg m. increases Towards this aim, we propose a greedy scheme which consid-
approximately linearly withiogy: when+y; > 15 dB, as does (s the effect of constellation size on current, but notritu
the maximum goodput. _ _ _ expected goodput. One might also pursue a scheme which
Suppose now that we are interested in choosing the r@ighsiders a few, but not all, future goodputs when choosing
seguence{mt}ézl that maximizes the finite horizon goodputhe current constellation size. However, numerical experits
>_t—1 G(m¢,7¢). Though in practice we do not expect ton Section IV suggest that our simple greedy scheme extracts

know the SNR realizatiorf~, }{_, (especially at the time of 4 |arge fraction of the goodput gain that can be achievedunde
choosing{m;}!_,), we might know its statistics. In this casene causal feedback constraint.

we consider the problem of maximizing the expected goodput

E{Zi:l G(mi, )} = S B{G(my, )}, for which it A. Packet-Rate Algorithm

can be seen that the marginal SNR statistics suffice. UndeFor S|mp||c|ty' we first describe our scheme assuming that
mild assumptionsE{G (m¢,:)} is maximized by a unique the transmitter can adapt the constellation size on a pekepa
m¢, making the solution straightforward. But it is importanpasis. Later we address the more practical scenario where th
to realize that the expected goodput is reduced by uncéytaifransmitter can only update the constellation size once per

in the SNR, since block of n packets. Assuming a feedback delay df> 1
max E{G(ms, 7))} < maxG(me, B{1}). ) ?%ckets, our greedy rate-selection scheme is describe@)by (

;Zl;sn;vzoasrseibelgcouraged in reducing uncertainty,ity any Mg = argrenjaxéﬂt—d(mt) fort=1,...,1. (6)
In this paper, we consider the problem of choosfng }!_, _ R
to maximizeY",_, E{G(my,~:)}, where {y;}\_, is random Gije—almye) = /G(mt,%)P(%Iet—th—d)d% ()



where&,_4 = [é1,...,€6—a], mi—q = [m1,...,mi_q4], and error estimates as if they wetenstanover the block, yielding
M denotes the set of allowed constellation sizes. Under thgyreedy algorithm that would operate as previously desdrib
assumption of Markov SNR variation and conditionally indebut at the block level (i.e., where the subscript would réder
pendent error-rate estimates, we derive a recursive #hgori the block index). To avoid confusion, however, we continue t

for the greedy rate assignment (6). interpret all subscripts as packet indices in the sequalsTh
Expanding (7) via Bayes theorem, we get in the block algorithmg¢, refers to an estimate of theverage
. packet error rate over the packets in the £ |-th block, while
P(vel€t—a, m1-0) 7, refers to the SNR for the packet in theddleof the [ £ |-th

= /p(%|%—d,ét—d,mt—d)P(%—d|ét—d,mt—d)d%—d block. . )
As the block sizen increases, we expect the packet error

(8) rate estimater; to get more accurate (since it is estimated
from, e.g., n ACK/NACKSs), the SNR model to get less
where, with conditionally independent error estimates. (i. accurate (since a block-fading approximation is being iagpl

= /p(7t|7t7d)p(7t7d|ét7damtfd)d")/tfda

p(ét|er, €—1) = p(étler)), we get to a process that is continuously fading), and the per-gacke
. computational complexity of the algorithm to decrease.

p(ve-al€t—a,Me-a) It is important to note that the block-rate modification

= p(Vt—dlét—d, €—a—1,M¢—q) we propose here is suboptimal in the sense that we could
p(é—alvi—d, €t—a—1, Mu—a)p(Vi—al€—d—1,M—a) have chosen to predict the SNR for each individual packet

Jp(é—alvi_ 40 €t—d—1.mu—a)p(v,_4|€—a—1,mi—q)dv,_, In & given block, rather than predicting only the SNR of
P(Eal i, me—a)p(e—al€r—d—1,Mi—a1) ° the packet m_th_e _mlddle of the _bIocI@ Likewise, we _could
= To(e—al— )P (V) alet—d—1,M—a-1)dy] g (9) hav_e chosen individual conste!latlon sizes for_ eacr_\ paicket
a given block rather than a single constellation size for all
Similar to (8), we can also write packets in the block. Clearly, if the SNR predictions varied
across the block, then the optimal constellation sizesdcoul
vary as well. However, the joint optimization of intra-bloc

P(’thd+1 |ét7d, mtfd)

= /P(%—dﬂl%—d,ét—d,mzs—d) constellation sizes block appears prohibitively complamd
. d thus goes against our primary motivation for a block-level
X P(Yi—dlét—a, u—a)di—a algorithm, i.e., simplicity.
- /p(%*d“|%*d)p(%*d|ét*d’mt*d)d%*d' (10) IV. NUMERICAL RESULTS

Equations (7)—(10) lead to the following recursive solntif We now describe the results of numerical experiments for
the rate assignment problem (6). Assuming the availahility Which we assumed a particular error estimation scheme and
p(Vi—d|€—q—1,m;_q_1) at the start of iteration, we propose particular SNR process, both described below.

the following procedure fot = d+1, ..., (i.e., for the packet A. Setup

indices where the feedbaék , is available): )
1) Measure ¢ and  compute the distribution We assumed an ARQ feedback network wherein the trans-
( P t;’z ) usin (g)p mitter obtains an ACK/NACK for each of the packets it trans-
2) Zé;;glflatti?’ |ét"i . g) Lsing the Markov prediction MtS- Thus, in a block of packets, there are ACK/NACKS.
ote (8)@ Vel€t—d, Mi—d 9 P Under these assumptions, the minimum-variance unbiased
P (), L . estimateé; of the (average) packet error rate over the|-
3) Choosem; to maximizeGy,_q(m;) via (7), X . X "
4) 1 d > 1, then Comput®(ys_a11]érq, me ) via (10) th block can be computed by a simple anthr_net_lc average of
for Use in the hext iteratiotn_ LBy TR the n ACK/NACKs over the block, after assigning to an
' ACK and 1 to a NACK. Since, for truee;, the number of

For the indicAes =L....d(e, before feedba_lck iS_ av_a”a_ble)'NACKs in the block is Binomidln, ¢;), it follows that error
we setp(vi|€_a, m¢_q) = p(7:), i.e., the prior distribution estimateé, obeys
on SNR.

B. Block-Rate Algorithm p(ér = Ele) = {

n
Since it may be impractical for the transmitter to adapt the
constellation size on a per-packet basis, we now extend drecall that we can substitute (2) intp(é;|e;) to obtain
greedy scheme to one where the constellation size is adaptéd |y, m:).
on a per-block basis, usingto denote the number of packets The following Markov model for packet-rate SNR evolution
per block. To do this, we treat the SNR, constellation sin€, awas assumed. While a Gauss-Markov random-walk model for
. _ A o v (e, v = (1 — a)y—1 + aw; for a € [0,1) and i.i.d.
Calc'\l‘ﬁ;é% Lgﬁ‘rtlg"("z't)h knownp(é¢|es), the quantity p(és|ye,m:) can be ., Ar(0,52)) would have been very convenient, it gives
3Notice that, ifd — 1, then p(vs_a.1|ér_a, me_q) was already com- NO guarantee thay, > 0, as required for a meaningful SNR.

puted in step 2). Thus, we found it more appropriate to employ a Gauss-Markov

(D)er(1—e)nk for k=0

0 else.

,...,7?11)



model for a “channel gaing;, from which the SNRy; follows

as a (scaled) squared magn

gt

Y = Klg:|

itude:

= (1 - a)gi—1 + aw;

3

(12)
(13)

genie performs essentially the same as the fixed-rate #iguori
The goodput gain attained by greedy algorithm can be seen
to be closer to that of the genie than to that of the fixed-rate
algorithm. Thus, we conclude that the simple greedy scheme
captures a dominant fraction (i.ev,73%) of the goodput gain

In (12), we assume circular Gaussian unit-variance whiteeno @chievable under causal feedback. _
{w;}, so thatg, € C. It can be shown that, in the steady state, Figure 4 plots steady-state goodput versus block sifer

7, follows an exponential distribution with mean valgé<.

elay d = 1. For most block sizes, the greedy algorithm

Note that the parametersand K control the rate of channel again performs closer to the causal genie than to the fixed-

variation as well as the average SNR. To evaly#tg|v:—q),

we first notice from (12) that

d—1

g = (1—a) g _q+ aZ(l —aYw_j,

Jj=0

(14)

rate algorithm, implying that the greedy algorithm recaver

a dominant portion of the goodput gain achievable under the
causal feedback constraint. As the block size approatbies
though, the performances of the adaptive schemes converge
to that of the fixed-rate scheme, again due to the fundamental
impossibility of predicting SNR far in the future.

where 120 (1—a)iw,j ~ CN (0, =7y (1- (1—a)*?)).
It is then shown in the Appendix that

1.4
2—a “—x—- Causal Geni
p(ve|vi-d) = 1.35F '~ —Z—G?:«:j Alent;‘raithm~
2Ka(1 B (1 - a)Qd) ~. —*—Fixed—yrategAIg
—(n+ (1= 0)*y_a)(2 - a) st
X exp 5d
2Ka(l — (1 —a)?) < 1.25¢
L ((1 — &) ATa(2 - a)) a5y & 12
° — (1 — )2d ’ o}
Ka(l—(1—a«a)?9) S 1ss
B. Results Sl
Numerical experiments were conducted to investigate t § |
steady state performance of the greedy algorithm from Se 105
tion 1l relative to two reference schemes. The so-cafired- ir
rate scheme chooses the constellation size that maximiz 0.95 A
expected goodput according to the prior SNR distributiol

Since the prior doesn’t change, the constellation size irgsna
fixed. Given our system model, this fixed-rate scheme is t
optimal scheme in the absence of feedback. The so-called
causal geniescheme adapts the constellation size to maximize
expected goodput under perfect (though strictly causalR SN
feedback. Note that the causal genie still succumbs to SNR
prediction error, especially as the feedback delay or blo
size increases. Given our system model, the causal ge
upper bounds the performanceafy scheme that maximizes
expected goodput under strictly causal feedback.

In our experiments, the channel parameters were choser
that « = 0.01 andE{y} = 10, and the steady-state good-
put was calculated by averaging the instantaneous goodf
achieved by the various algorithms ovg00 packets, each
consisting of 100 symbols, fo500 channel realizations. To
suppress the initial transient, we initialized the greetfjoa
rithm at the goodput-maximizing constellation size. Foe th
greedy and causal genie algorithms, we allowed constaflati
sizes between.1 and12 in steps of0.1.

Figure 3 plots steady-state goodput versus feedback de
d for block sizen = 1. There it can be seen that, at low dela
(i.e., d = 1), the causal genie yields 4% increase over the
steady-state goodput attained by the fixed-rate algorithn.
the delay increases, however, the predicted SNR distobuti
converges to the prior, so that aftéd0 packets the causal
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Fig. 3. Steady-state goodput versus defay
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V. CONCLUSION We first find p(|g¢||vi—a,0) to evaluatep(|g:||yi—a)- Since,

In this paper we proposed a rate adaptation system for =(1-a)g_ale’ +Z 17)
Rayleigh-fading Markov channels. Our system uses an al-
gorithm that updates the constellation size iterativehsdd for Z = a 30, (1 —a)lw,_; and|g| = /3, conditioned
on the received ACK packet. The algorithm first updates tit# v;—q andé, g, r andg, ; are both Gaussian with mean
conditional probability density function of the SNR giveret
most recent ACK packet. Then, using this function, it chsose [9e.R|7e—a,0) = (1 — )? 1/7 —< cos 6
the constellation size that maximizes the expected goodput

We illustrated that our system can achieve a significa@fd
goodput improvement compared to a non-adaptive system, Elge.r|ve—a, 0] = (1 — a)? Jizd Gno (19)
despite the very coarse CSl it uses. Indeed, we showed that th ' K

improvement over the non-adaptive algorithm with the h&ggherespectively and Variamﬁ? 2 (= E(Z?)). Thus conditional on
possible throughput can be as high ##6. Moreover, the -, ,; and#, |g,| = g7 R+g” is Rician [9, p. 78]:

goodput achieved by our system is wittifi of the highest
loe] exp <_ (lge]* + (1 = O[)Qd'yt_Kd)>

(18)

achievable goodput with full CSI. (il 6) —
Also, we proposed a block-level version of our algorithmp gellN—d> V) = o2 20%
that treats the SNR and error rate as constant over a block

of packets. This results in a complexity reduction that is |g¢[(1 — ) Tt
proportional to the block length at the expense of reduced x 1o o2 : (20)

goodput. We numerically analyzed the trade-off between the
goodput and the block size and showed that the goodput Igsge can see that, given_g, lg| is independent of. Since

remains small for relatively small block sizes. v = K|g:|?, we have

In the future, we plan to extend our results in order to . e
better understand the value of link-layer feedback. Fa; the (elye—a) = 1 oxn | — (? +(1—a) T)
plan to pursue an information theoretic analysis to comparep Tl e—d 2Ko% P 20%
the achieved goodput of our algorithm with the capacity of d
the channel for different grades of side information. Weoals x Iy <(1 —a) s/QVt%d> ' 21)
plan to apply the ideas that we developed here to analyze Koy

the achievable goodput in OFDM systems with limited feeqiance combining (16) and (21), we get

back.
1 — (v 4+ (1= @)’y q)
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APPENDIX

Here, we derive the expression fofy:|y:—q4) given in (15).
Let g; r and g, ; be the real and imaginary parts of channel
gain, g;. Also let g;_4 = |g:—ale’?,  ~ U(0,27). Then

27
p(velvi—a) = /0 P (Ve ve—a, ) p(0)do (16)



