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Abstract—The variable nature of the wireless channel may
cause the quality of service to be intolerable for certain applica-
tions. To combat channel variability, we consider rate adaptation
at the physical layer. We build an adaptive communication system
based on uncoded QAM in which the available information
on the channel state is obtained using the mere packet-level
ACK/NACK sequence. Our system chooses the constellation size
that maximizes the expected packet level goodput for every single
packet. Our simulations show that our system achieves a goodput,
reasonably close to the highest possible goodput achievable with
full-feedback on Rayleigh-fading Markov channels.1

I. I NTRODUCTION

Channel variability is common to all wireless communica-
tions due to factors such as fading, mobility and multiuser
interference. One way to combat the detrimental effects of
variability is using rate adaptation. The idea is that, based
on the measured channel state, the transmitter alters the size
of the signal constellation to try to maximize the amount of
data transferred without an error. Consequently the channel
variability will be experienced at the higher layers in the form
of variable data rate, rather thanvariable error rate.

Rate adaptation has been addressed mainly in two different
perspectives. The first group (e.g., [1], [2] and [3]) assumes
specific channel models and focuses on the design of various
adaptive codes based on these models. Channel state infor-
mation (CSI) is obtained using physical layer symbols called
pilots. Second group (e.g., [4], [5], [6] and [7]) proposes rate
adaptation algorithms developed based on the some practical
experience gained in a certain environment and a specific
application. The main focus of these papers is to propose
modifications to the existing 802.11 MAC layer and present
some experimentally demonstrated improvements relative to
the predecessors. CSI is acquired based on the packet-level
ACK/NACK sequence, available at the link-layer.

Our system, described in Section II, combines the ideas of
the two groups: Like the latter group, we assume only link-
level CSI in the form of packet ACK/NACKs. On the other
hand, like to first group, we assume a certain channel model
(Rayleigh fading, first order Markov) and our system finds
the optimal constellation size, which maximizes the expected
goodput for each packet. For that purpose, our system uses

1This work was supported by National Science Foundation grant 0237037
and Office of Naval Research grant N00014-07-1-0209.

an algorithm that updates the constellation size iteratively,
using the most recent ACK packet. Each iteration involves the
numerical evaluation of an integral. To reduce the complexity,
we propose a modified algorithm which processes the ACK
sequence in batches and hence the integration is needed for
groups of ACK packets, instead of every single one. The
details of the algorithm can be found in Section III.

We evaluate the performance of our system in Section IV.
We show that, the goodput achieved by our system is within
8% of the highest goodput achievable with full CSI. Moreover,
the improvement over the best non-adaptive algorithm can be
as high as30%. This is somewhat surprising due to the fact
that the CSI contained in a single acknowledgement, no more
than 1 bit per packet, is extremely course. We also analyze the
goodput-complexity trade-off as we evaluate the performance
of the modified algorithm. Finally, we wrap up with some
conclusions and future extensions in Section V.

II. PROBLEM SETUP
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Fig. 1. System Model.

Figure 1 shows the system model. The model assumes that
the transmitter can obtain delayed feedback on the reliabil-
ity of previously transmitted packets and that this feedback
can be used to optimize future transmissions. In particular,
the transmitter uses the feedback information to predict the
future SNR characteristics, from which it adapts the future
transmission parameters. In this paper, we focus on the case
where feedback comes in the form of binary packet acknowl-
edgments (i.e., ACK/NACKs) and the transmission parameter
is (uncoded) constellation size, though our approach couldbe



straightforwardly extended to the adaptation of transmit power
and/or code rate.

The time-varying wireless channel is modeled by an SNR
process{γt}, wheret denotes the packet index andγt ≥ 0.
Since the transmission power is fixed,γt is an exogenous
process that does not depend on the transmission parameters.
For QAM constellation sizem and SNRγ, the symbol error
rate is known to be [8, p. 280]

ε = 1 −
(

1 − 2

(

1 − 1√
m

)
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√

3γ
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))2

. (1)

Assuming that the SNR and constellation size are fixed over a
packet ofr symbols, the packet error rate (for thet-th packet)
then equals

εt = 1 −
(
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)

Q

(
√

3γt

mt − 1

))2r

. (2)

Defining the instantaneous goodputG(mt, γt) as the expected
number of bits-per-symbol communicated without error in a
packet with constellation sizemt and SNRγt, we have

G(mt, γt) = (1 − εt) log mt (3)

=

(

1 − 2

(

1 − 1√
mt

)

Q

(
√

3γt

mt − 1

))2r

× log mt. (4)

From (4), it can be seen that there is a one-to-one corre-
spondence between constellation sizemt and goodput for
a fixed SNR γt. Thus, if the SNR was known perfectly,
then goodput can be maximized by appropriate choice of
constellation size. Figure 2 plots instantaneous goodput versus
SNR and constellation size for the case ofr = 100 symbols
per packet, highlighting the goodput-maximizing constellation
size as a function of SNR. From the figure, it can be seen that
(for this r) the goodput maximizing value oflog mt increases
approximately linearly withlog γt whenγt > 15 dB, as does
the maximum goodput.

Suppose now that we are interested in choosing the rate
sequence{mt}l

t=1 that maximizes the finite horizon goodput
∑l

t=1 G(mt, γt). Though in practice we do not expect to
know the SNR realization{γt}l

t=1 (especially at the time of
choosing{mt}l

t=1), we might know its statistics. In this case
we consider the problem of maximizing the expected goodput
E
{
∑l

t=1 G(mt, γt)
}

=
∑l

t=1 E{G(mt, γt)}, for which it
can be seen that the marginal SNR statistics suffice. Under
mild assumptions,E{G(mt, γt)} is maximized by a unique
mt, making the solution straightforward. But it is important
to realize that the expected goodput is reduced by uncertainty
in the SNR, since

max
mt

E{G(mt, γt))} ≤ max
mt

G(mt, E{γt}). (5)

Thus we are encouraged in reducing uncertainty inγt by any
means possible.

In this paper, we consider the problem of choosing{mt}l
t=1

to maximize
∑l

t=1 E{G(mt, γt)}, where{γt}l
t=1 is random
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Fig. 2. Goodput contours versus SNR and constellation size for packet size
r = 100. Also shown is the goodput maximizing constellation size asa
function of SNR.

with known statistics, and where strictly causal estimates
of the packet error rateεt are available. These error rate
estimates offer the potential to reduce the uncertainty ofγt and
thus to increase goodput. With causal feedback, however, the
optimization of{mt} becomes more complicated becausemt

affects not only the current expected goodputE{G(mt, γt)}
but also the statistics of future errors, and thus the future
expected goodput.

III. A G REEDY RATE ADAPTATION ALGORITHM

Notice that, for the problem defined in the previous para-
graph, the search for the optimal{mt}l

t=1 appears to be NP-
hard. Thus, for practical horizonsl, optimal rate selection
appears infeasible and suboptimal approaches are of interest.
Towards this aim, we propose a greedy scheme which consid-
ers the effect of constellation size on current, but not future,
expected goodput. One might also pursue a scheme which
considers a few, but not all, future goodputs when choosing
the current constellation size. However, numerical experiments
in Section IV suggest that our simple greedy scheme extracts
a large fraction of the goodput gain that can be achieved under
the causal feedback constraint.

A. Packet-Rate Algorithm

For simplicity, we first describe our scheme assuming that
the transmitter can adapt the constellation size on a per-packet
basis. Later we address the more practical scenario where the
transmitter can only update the constellation size once per
block of n packets. Assuming a feedback delay ofd ≥ 1
packets, our greedy rate-selection scheme is described by (6)-
(7),

m̂t|t−d = argmax
mt∈M

Ḡt|t−d(mt) for t = 1, . . . , l. (6)

Ḡt|t−d(mt) =

∫

G(mt, γt)p(γt|ε̂t−d, mt−d)dγt, (7)



where ε̂t−d = [ε̂1, . . . , ε̂t−d], mt−d = [m1, . . . , mt−d], and
M denotes the set of allowed constellation sizes. Under the
assumption of Markov SNR variation and conditionally inde-
pendent error-rate estimates, we derive a recursive algorithm
for the greedy rate assignment (6).

Expanding (7) via Bayes theorem, we get

p(γt|ε̂t−d, mt−d)

=

∫

p(γt|γt−d, ε̂t−d, mt−d)p(γt−d|ε̂t−d, mt−d)dγt−d

=

∫

p(γt|γt−d)p(γt−d|ε̂t−d, mt−d)dγt−d, (8)

where, with conditionally independent error estimates (i.e.,
p(ε̂t|εt, ε̂t−1) = p(ε̂t|εt)), we get

p(γt−d|ε̂t−d, mt−d)

= p(γt−d|ε̂t−d, ε̂t−d−1, mt−d)

=
p(ε̂t−d|γt−d, ε̂t−d−1, mt−d)p(γt−d|ε̂t−d−1, mt−d)

∫

p(ε̂t−d|γ′
t−d, ε̂t−d−1, mt−d)p(γ′

t−d|ε̂t−d−1, mt−d)dγ′
t−d

=
p(ε̂t−d|γt−d, mt−d)p(γt−d|ε̂t−d−1, mt−d−1)

∫

p(ε̂t−d|γ′
t−d, mt−d)p(γ′

t−d|ε̂t−d−1, mt−d−1)dγ′
t−d

. (9)

Similar to (8), we can also write

p(γt−d+1|ε̂t−d, mt−d)

=

∫

p(γt−d+1|γt−d, ε̂t−d, mt−d)

× p(γt−d|ε̂t−d, mt−d)dγt−d

=

∫

p(γt−d+1|γt−d)p(γt−d|ε̂t−d, mt−d)dγt−d. (10)

Equations (7)–(10) lead to the following recursive solution of
the rate assignment problem (6). Assuming the availabilityof
p(γt−d|ε̂t−d−1, mt−d−1) at the start of iterationt, we propose
the following procedure fort = d+1, . . . , l (i.e., for the packet
indices where the feedback̂εt−d is available):

1) Measure ε̂t−d and compute2 the distribution
p(γt−d|ε̂t−d, mt−d) using (9),

2) Calculatep(γt|ε̂t−d, mt−d) using the Markov prediction
step (8),

3) Choosemt to maximizeḠt|t−d(mt) via (7),
4) If3 d > 1, then computep(γt−d+1|ε̂t−d, mt−d) via (10)

for use in the next iteration.
For the indicest = 1, . . . , d (i.e., before feedback is available),
we setp(γt|ε̂t−d, mt−d) = p(γt), i.e., the prior distribution
on SNR.

B. Block-Rate Algorithm

Since it may be impractical for the transmitter to adapt the
constellation size on a per-packet basis, we now extend our
greedy scheme to one where the constellation size is adapted
on a per-block basis, usingn to denote the number of packets
per block. To do this, we treat the SNR, constellation size, and

2Notice that, with knownp(ε̂t|εt), the quantity p(ε̂t|γt, mt) can be
calculated using (2).

3Notice that, if d = 1, then p(γt−d+1|ε̂t−d, mt−d) was already com-
puted in step 2).

error estimates as if they wereconstantover the block, yielding
a greedy algorithm that would operate as previously described,
but at the block level (i.e., where the subscript would referto
the block index). To avoid confusion, however, we continue to
interpret all subscripts as packet indices in the sequel. Thus,
in the block algorithm,̂εt refers to an estimate of theaverage
packet error rate over then packets in theb t

n
c-th block, while

γt refers to the SNR for the packet in themiddleof theb t
n
c-th

block.
As the block sizen increases, we expect the packet error

rate estimatêεt to get more accurate (since it is estimated
from, e.g., n ACK/NACKs), the SNR model to get less
accurate (since a block-fading approximation is being applied
to a process that is continuously fading), and the per-packet
computational complexity of the algorithm to decrease.

It is important to note that the block-rate modification
we propose here is suboptimal in the sense that we could
have chosen to predict the SNR for each individual packet
in a given block, rather than predicting only the SNR of
the packet in the middle of the block. Likewise, we could
have chosen individual constellation sizes for each packetin
a given block rather than a single constellation size for all
packets in the block. Clearly, if the SNR predictions varied
across the block, then the optimal constellation sizes could
vary as well. However, the joint optimization of intra-block
constellation sizes block appears prohibitively complex,and
thus goes against our primary motivation for a block-level
algorithm, i.e., simplicity.

IV. N UMERICAL RESULTS

We now describe the results of numerical experiments for
which we assumed a particular error estimation scheme and
particular SNR process, both described below.

A. Setup

We assumed an ARQ feedback network wherein the trans-
mitter obtains an ACK/NACK for each of the packets it trans-
mits. Thus, in a block ofn packets, there aren ACK/NACKs.
Under these assumptions, the minimum-variance unbiased
estimateε̂t of the (average) packet error rate over theb t

n
c-

th block can be computed by a simple arithmetic average of
the n ACK/NACKs over the block, after assigning0 to an
ACK and 1 to a NACK. Since, for trueεt, the number of
NACKs in the block is Binomial(n, εt), it follows that error
estimatêεt obeys

p(ε̂t = k
n
|εt) =

{

(

n
k

)

εk
t (1 − εt)

n−k for k = 0, . . . , n

0 else.
(11)

Recall that we can substitute (2) intop(ε̂t|εt) to obtain
p(ε̂t|γt, mt).

The following Markov model for packet-rate SNR evolution
was assumed. While a Gauss-Markov random-walk model for
γt (i.e., γt = (1 − α)γt−1 + αwt for α ∈ [0, 1) and i.i.d.
wt ∼ N (0, σ2)) would have been very convenient, it gives
no guarantee thatγt ≥ 0, as required for a meaningful SNR.
Thus, we found it more appropriate to employ a Gauss-Markov



model for a “channel gain”gt, from which the SNRγt follows
as a (scaled) squared magnitude:

gt = (1 − α)gt−1 + αwt (12)

γt = K|gt|2, (13)

In (12), we assume circular Gaussian unit-variance white noise
{wt}, so thatgt ∈ C. It can be shown that, in the steady state,
γt follows an exponential distribution with mean value2Kα

2−α
.

Note that the parametersα andK control the rate of channel
variation as well as the average SNR. To evaluatep(γt|γt−d),
we first notice from (12) that

gt = (1 − α)dgt−d + α

d−1
∑

j=0

(1 − α)jwt−j , (14)

where
∑d−1

j=0 (1−α)jwt−j ∼ CN
(

0, 1
1−(1−α)2 (1−(1−α)2d)

)

.
It is then shown in the Appendix that

p(γt|γt−d) =
2 − α

2Kα(1 − (1 − α)2d)

× exp

(−(γt + (1 − α)2dγt−d)(2 − α)

2Kα(1 − (1 − α)2d)

)

× Io

(

(1 − α)d√γtγt−d(2 − α)

Kα(1 − (1 − α)2d)

)

. (15)

B. Results

Numerical experiments were conducted to investigate the
steady state performance of the greedy algorithm from Sec-
tion III relative to two reference schemes. The so-calledfixed-
rate scheme chooses the constellation size that maximizes
expected goodput according to the prior SNR distribution.
Since the prior doesn’t change, the constellation size remains
fixed. Given our system model, this fixed-rate scheme is the
optimal scheme in the absence of feedback. The so-called
causal geniescheme adapts the constellation size to maximize
expected goodput under perfect (though strictly causal) SNR
feedback. Note that the causal genie still succumbs to SNR
prediction error, especially as the feedback delay or block
size increases. Given our system model, the causal genie
upper bounds the performance ofany scheme that maximizes
expected goodput under strictly causal feedback.

In our experiments, the channel parameters were chosen so
that α = 0.01 and E{γt} = 10, and the steady-state good-
put was calculated by averaging the instantaneous goodputs
achieved by the various algorithms over200 packets, each
consisting of 100 symbols, for500 channel realizations. To
suppress the initial transient, we initialized the greedy algo-
rithm at the goodput-maximizing constellation size. For the
greedy and causal genie algorithms, we allowed constellation
sizes between1.1 and12 in steps of0.1.

Figure 3 plots steady-state goodput versus feedback delay
d for block sizen = 1. There it can be seen that, at low delay
(i.e., d = 1), the causal genie yields a40% increase over the
steady-state goodput attained by the fixed-rate algorithm.As
the delay increases, however, the predicted SNR distribution
converges to the prior, so that after100 packets the causal

genie performs essentially the same as the fixed-rate algorithm.
The goodput gain attained by greedy algorithm can be seen
to be closer to that of the genie than to that of the fixed-rate
algorithm. Thus, we conclude that the simple greedy scheme
captures a dominant fraction (i.e.,≈ 73%) of the goodput gain
achievable under causal feedback.

Figure 4 plots steady-state goodput versus block sizen for
delay d = 1. For most block sizes, the greedy algorithm
again performs closer to the causal genie than to the fixed-
rate algorithm, implying that the greedy algorithm recovers
a dominant portion of the goodput gain achievable under the
causal feedback constraint. As the block size approaches100,
though, the performances of the adaptive schemes converge
to that of the fixed-rate scheme, again due to the fundamental
impossibility of predicting SNR far in the future.
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V. CONCLUSION

In this paper we proposed a rate adaptation system for
Rayleigh-fading Markov channels. Our system uses an al-
gorithm that updates the constellation size iteratively, based
on the received ACK packet. The algorithm first updates the
conditional probability density function of the SNR given the
most recent ACK packet. Then, using this function, it chooses
the constellation size that maximizes the expected goodput.

We illustrated that our system can achieve a significant
goodput improvement compared to a non-adaptive system,
despite the very coarse CSI it uses. Indeed, we showed that the
improvement over the non-adaptive algorithm with the highest
possible throughput can be as high as30%. Moreover, the
goodput achieved by our system is within8% of the highest
achievable goodput with full CSI.

Also, we proposed a block-level version of our algorithm
that treats the SNR and error rate as constant over a block
of packets. This results in a complexity reduction that is
proportional to the block length at the expense of reduced
goodput. We numerically analyzed the trade-off between the
goodput and the block size and showed that the goodput loss
remains small for relatively small block sizes.

In the future, we plan to extend our results in order to
better understand the value of link-layer feedback. For this, we
plan to pursue an information theoretic analysis to compare
the achieved goodput of our algorithm with the capacity of
the channel for different grades of side information. We also
plan to apply the ideas that we developed here to analyze
the achievable goodput in OFDM systems with limited feed-
back.
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APPENDIX

Here, we derive the expression forp(γt|γt−d) given in (15).
Let gt,R and gt,I be the real and imaginary parts of channel
gain,gt. Also let gt−d = |gt−d|ejθ, θ ∼ U(0, 2π). Then

p(γt|γt−d) =

∫ 2π

0

p (γt|γt−d, θ) p(θ)dθ (16)

We first findp(|gt||γt−d, θ) to evaluatep(|gt||γt−d). Since,

gt = (1 − α)d|gt−d|ejθ + Z (17)

for Z = α
∑d−1

i=0 (1 − α)jwt−j and |gt| =
√

γt

K
, conditioned

on γt−d andθ, gt,R andgt,I are both Gaussian with mean

E[gt,R|γt−d, θ] = (1 − α)d

√

γt−d

K
cos θ (18)

and

E[gt,I |γt−d, θ] = (1 − α)d

√

γt−d

K
sin θ (19)

respectively and varianceσ2
Z(= E(Z2)). Thus conditional on

γt−d andθ, |gt| = g2
t,R + g2

t,I is Rician [9, p. 78]:

p (|gt||γt−d, θ) =
|gt|
σ2

Z

exp

(

−
(

|gt|2 + (1 − α)2d γt−d

K

)

2σ2
Z

)

× I0





|gt|(1 − α)d
√

γt−d

K

σ2
Z



 . (20)

One can see that, givenγt−d, |gt| is independent ofθ. Since
γt = K|gt|2, we have

p (γt|γt−d) =
1

2Kσ2
Z

exp

(

−
(

γt

K
+ (1 − α)2d γt−d

K

)

2σ2
Z

)

× I0

(

(1 − α)d√γtγt−d

Kσ2
Z

)

. (21)

Hence combining (16) and (21), we get

p (γt|γt−d) =
1

2Kσ2
Z

exp

(

−
(

γt + (1 − α)2dγt−d

)

2Kσ2
Z

)

× I0

(

(1 − α)d√γtγt−d

Kσ2
Z

)

. (22)

Finally, pluggingσ2
Z = α

2−α

(

1 − (1 − α)
2d
)

into (22) yields
(15).


