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Abstract— This paper considers cyclic-prefixed block-based
pilot-aided transmission (PAT), with possibly superimposed pilot
and data symbols, over multiple-input multiple-output (MIMO)
doubly selective channels (DSCs) that obey a complex-exponential
basis expansion model. First, a tight lower bound on the mean-
squared error (MSE) of pilot-aided channel estimates is derived,
along with necessary and sufficient conditions on pilot/data
patterns that achieve this bound. From these conditions, novel
minimum-MSE (MMSE) PAT schemes are proposed and up-
per/lower bounds on their achievable rates are derived. The
pilot/data power allocation that maximizes the lower bound is also
derived. A high-SNR asymptotic analysis of the achievable rates
is then performed, which suggests that the channel spreading
parameters should be taken into account when choosing among
MMSE-PAT schemes. The number of antennas maximizing the
high-SNR achievable rates is also derived.

I. INTRODUCTION

The wireless communication channel is typically modeled
as linear transformation and parameterized by a set of time-
varying coefficients. Coherent receivers estimate these channel
coefficients for subsequent use in data detection. In pilot
aided transmission (PAT), a known signal is embedded in the
transmitted stream to facilitate channel estimation.

Recently, the information theoretic optimality of PAT
schemes which minimize the mean squared error (MSE) of
channel estimates has been investigated for multiple-input
multiple-output (MIMO) flat fading [1], [2] and frequency
selective fading [3] channels. We studied minimum MSE
(MMSE) PAT schemes for the single-input single-output
(SISO) doubly selective channel in [4]. In this paper, we
extend our MMSE-PAT study to the MIMO doubly selective
channel (DSC). In the sequel, we present novel MMSE-PAT
schemes for the MIMO-DSC and demonstrate an inherent
time-frequency duality. We also derive achievable rates (i.e.,
capacity lower bounds) for these schemes. The high-SNR
asymptotic achievable rates are then optimized with respect
to the number of active antennas.

The work of Yang et al. [5], while similar in direction, is
restricted to (time) non-superimposed pilots. Our work is more
general in that we search for MIMO-MMSE-PAT schemes
among all linear modulations and allow the possibility of
superimposed pilots. In fact, the MIMO-MMSE-PAT scheme
found in [5] is but one of several MIMO-MMSE-PAT schemes
uncovered here. In addition, we present novel asymptotic
achievable-rate results for MMSE-PAT over the MIMO-DSC.

II. SYSTEM MODEL

We consider a MIMO system with T transmit and R receive
antennas, cyclic-prefix block transmission, and a DSC that
satisfies a complex exponential basis expansion model. Details
are given below.

A. Cyclic-Prefix Block Transmission Model

The sampled complex-baseband output signal {y(r)(n)} at
the rth receive antenna is related to the transmitted signals
{x(t)(n)} from the tth transmit antenna via

y(r)(n) =

T−1∑

t=0

Nt−1∑

`=0

h(r,t)(n, `)x(t)(n− `) + v(r)(n), (1)

where {v(r)(n)} is zero-mean σ2
v-variance circular white (spa-

tial and temporal) Gaussian noise (CWGN) and h(r,t)(n, `)
is the time-n channel response at the rth receive antenna
to an impulse applied at time n − ` on the tth transmit
antenna. Here, Nt denotes the channel’s maximum time spread
normalized to the sampling interval Ts, which is assumed
equal for all (r, t) pairs. The length-N transmission block
{x(t)(n)}N−1

n=0 is preceded by a cyclic prefix (CP) of length
Nt − 1, whose contribution is discarded in forming y(r) =
[y(r)(0), . . . , y(r)(N − 1)]>. Note that, by making N large
compared to Nt, the CP overhead can be made insignificant.
Throughout this paper, we assume modulo-N indexing, i.e.,
z(i) = z(〈i〉N ). With the definitions

X = diag(X(0), ...,X(T−1))

X(t) = [X
(t)
0 · · ·X(t)

−Nt+1]

X
(t)
k = diag(x(t)(k), ..., x(t)(k +N − 1))

h(r) = [h(r,0)> · · ·h(r,T−1)>]>

h
(r,t) = [h

(r,t)>
0 · · ·h(r,t)>

Nt−1 ]>

h
(r,t)
k = [h(r,t)(0, k), . . . , h(r,t)(N − 1, k)]>

v(r) = [v(r)(0), . . . , v(r)(N − 1)]>,

the DSC model (1) can be rewritten as

y(r) = Xh(r) + v(r). (2)

Collecting the observations from different receive antennas as
ȳ = [y(0)>, ...,y(R−1)>]>, we have

ȳ = X̄h̄ + v̄, (3)



where X̄ = IR ⊗ X, h̄ = [h(0)>, ...,h(R−1)>]> and v̄ =
[v(0)>, ...,v(R−1)>]> and ⊗ denotes Kronecker product.

The transmit signal is constructed as x(t)(n) = p(t)(n) +
d(t)(n), where {p(t)(n)} is the pilot sequence and {d(t)(n)} is
the zero-mean data sequence. Note the superposition of pilots
and data. Using {p(t)(n)} and {d(t)(n)} to construct P and
D, respectively, in the manner of X, we see that

X = P + D, (4)

which again shows the superposition of pilots and data. Sim-
ilarly, we have X̄ = P̄ + D̄. Defining the pilot vector p(t) =
[p(t)(0), . . . , p(t)(N − 1)]>, the pilot energy is constrained as

T−1∑

t=0

‖p(t)‖2 = Ep. (5)

The data vector d(t) = [d(t)(0), . . . , d(t)(N −1)]> is obtained
by linear modulation of Ns information bearing symbols
s(t) = [s(t)(0), . . . , s(t)(Ns − 1)]> according to

d(t) = B(t)s(t), (6)

where B(t) is the tth transmit antenna’s “data modulation
matrix.” We require that the columns of B(t) are orthonormal.

B. Doubly Selective Channel Model

We assume that the channel coefficients between differ-
ent antenna pairs are independent with same second-order
statistics. The following CE-BEM [6] describes the channel
response between rth receive and tth transmit antenna over
the N -length block duration. For n ∈ {0, . . . , N − 1} and
` ∈ {0, . . . , Nt − 1},

h(r,t)(n, `) =
1√
N

(Nf−1)/2
∑

k=−(Nf−1)/2

λ(r,t)(k, `)ej
2π
N
kn, (7)

where CE-BEM coefficients {λ(r,t)(k, `)} are assumed to be
zero-mean uncorrelated Gaussian with positive variance. With
fdTs denoting the one-sided Doppler spread normalized to the
sampling frequency, we refer to Nf = 2dfdTsNe + 1 as the
discrete “frequency spread.” We assume an underspread chan-
nel, i.e., a time-frequency spreading index γ = 2fdTsNt ≈
NtNf/N such that γ < 1. We define the N × Nf matrix F̄

element-wise as [F̄ ]n,m = 1√
N
ej

2π
N
n(m−Nf−1

2 ) and notice that
F̄

H
F̄ = INf . With the definitions

U 0 = INt ⊗ F̄

λ
(r,t)
` = [λ(r,t)(−Nf−1

2 , `), . . . , λ(r,t)(Nf−1
2 , `)]>

λ(r,t) = [λ
(r,t)>
0 · · · λ

(r,t)>
Nt−1 ]>,

(7) becomes h
(r,t) = U 0λ

(r,t), which is the Karhunen-Loeve
(KL) expansion of h(r,t), since UH

0 U 0 = INfNt and since
R

(r,t)
λ = E{λ(r,t)λ(r,t)H} > 0 is diagonal. Since we assume

the same second order statistics for different transmit-receive
antenna pairs, we abbreviate R

(r,t)
λ by Rλ. Now, with Ū =

IR ⊗ U , U = IT ⊗ U 0, λ̄ = [λ(0)>, ...,λ(R−1)>]>, and
λ(r) = [λ(r,0)>, ...,λ(r,T−1)>]>, we have h(r) = Uλ(r) and

ȳ = (P̄ + D̄)Ū λ̄ + v̄. (8)

From the channel independence assumptions between different
antenna pairs, we have Rλ̄ = E{λ̄λ̄

H} = IRT ⊗ Rλ.

III. MIMO-MMSE-PAT DESIGN

In this section, we present the MMSE-PAT design require-
ments for the MIMO DSC and propose novel MIMO-MMSE-
PAT schemes.

A. MSE Lower Bound

The linear-MMSE (LMMSE) estimate of h̄ given the
knowledge of {ȳ, P̄ } and the knowledge of the second-order
statistics of {h̄, D̄, v̄} is [7]

ĥ = RH
ȳ,h̄R

−1
ȳ ȳ, (9)

where Rȳ,h̄ = E{ȳh̄
H} and Rȳ = E{ȳȳH}. Given our

assumptions,

Rȳ,h̄ = P̄ ŪRλ̄Ū
H

Rȳ = P̄ ŪRλ̄Ū
H
P̄

H
+E{D̄ŪRλ̄Ū

H
D̄

H} + σ2
vINR.

The channel estimation error h̃ = h̄− ĥ has total MSE σ2
e =

E{‖h̃‖2}, which is given by [7]

σ2
e = tr{ŪRλ̄Ū

H − RH
ȳ,h̄R

−1
ȳ Rȳ,h̄}. (10)

We are interested in finding the energy constrained pilot
vectors {p(t)} and data modulation matrices {B(t)} such that
the resulting MSE σ2

e is minimal. We refer to these schemes
as MIMO-MMSE-PAT and proceed with their design.

Theorem 1 (MSE Lower Bound). For T -transmit R-receive
antenna N -block CP PAT over the CE-BEM DSC, the channel
estimate MSE obeys

σ2
e ≥ tr

{(

R−1
λ̄

+
Ep

NTσ2
v

IRTNfNt

)−1
}

, (11)

where equality in (11) occurs if and only if the following
conditions hold:

1) Pilot-Data Orthogonality:

(P U)HDU = 0, ∀D (12)

2) Optimal Excitation:

(PU )HPU =
Ep
NT

I (13)

When (12)-(13) are met, Rh̃ = E{h̃h̃
H} is given by

Rh̃ = Ū

(

R−1
λ̄

+
Ep

NTσ2
v

INfNtRT

)−1

Ū
H
. (14)

Proof. The proof is similar to that of the SISO case [4] and
hence is omitted for brevity.



Denoting the qth column of B(t) as b
(t)
q , we rephrase the

MSE optimality requirements (12)-(13) in terms of the pilot
sequence {p(t)(i)} and data basis sequence {b(t)q (i)}, using
the index sets Nt = {−Nt + 1, ..., Nt − 1}, Nf = {−Nf +
1, ..., Nf − 1}, and T = {0, ..., T − 1}.

Lemma 1 (Time Domain). For N -block CP PAT over the
CE-BEM DSC, the following are necessary and sufficient
conditions for equality in (11). ∀k ∈ Nt, ∀m ∈ Nf, ∀ti ∈ T ,
N−1∑

i=0

b(t1)q (i)p(t2)∗(i− k)e−j
2π
N
mi = 0. (15)

N−1∑

i=0

p(t1)(i)p(t2)∗(i− k)e−j
2π
N
mi =

Ep
T
δ(k)δ(m)δ(t1 − t2).

(16)

Proof. The proof is similar to that of the SISO case [4] and
hence is omitted for brevity.

Note that the number of receive antennas R does not affect
the MIMO-MMSE-PAT design requirements in Lemma 1.

As in the SISO case, there exists a duality between time- and
frequency-domain MIMO-MMSE-PAT. Denoting the N -point
unitary FFT matrix by FN , we state the duality as follows.

Theorem 2 (Duality). With t ∈ T , if ({p(t)}, {B(t)})
parameterizes MIMO-MMSE N -block CP-PAT for T-transmit
antenna system over the CE-BEM DSC with time spread
N1 and frequency spread N2, then ({FNp(t)}, {FNB(t)})
parameterizes MIMO-MMSE N -block CP-PAT for T-transmit
antenna system over the CE-BEM DSC with time spread N2

and frequency spread N1.

Proof. The proof is similar to that of the SISO case [4] and
hence is omitted for brevity.

B. Data Dimension Analysis

We now present the bounds on the number of (linearly)
independent data symbols that can be transmitted from each
antenna, i.e., the rank of the data modulation matrix B(t).
Given a pilot vector p(t) satisfying (16), a matrix B(t) ∈
CN×Ns which satisfies (15) can be constructed as follows.
Defining the (2Nf − 1) × N matrix F̆ element-wise as
[F̆ ]n,m = 1√

N
e−j

2π
N

(n−Nf+1)m, and then defining

P
(t)
k = diag(p(t)(k), ..., p(t)(k +N − 1)) (17)

W
(t)
k = F̆P

(t)H
k (18)

W (t) = [W
(t)>
−Nt+1 · · ·W

(t)>
Nt−1]

> (19)
W = [W (0)> · · ·W (T−1)>]>, (20)

condition (15) becomes Wb(t)
q = 0, implying that, for each

q, the vector b(t)
q must lie in the null space of W . This

can be achieved by choosing the columns of B(t) as an
orthonormal basis for null(W ), yielding “data dimension”
Ns = dim(null(W )). Due to the structure of W , the data
dimension Ns is the same for each transmit antenna.

The data dimension Ns, i.e., the number of information
symbols per N -block CP-PAT per transmit antenna, can be
bounded as follows. Note from (20) that the TNfNt rows of
(PU )H are contained within the T (2Nf−1)(2Nt−1) rows of
W . In order to satisfy (13), those rows must be orthogonal.
Thus, TNfNt ≤ rank(W ) ≤ T (2Nf − 1)(2Nt − 1), which
means that (15)-(16) imply

N − T (2Nf − 1)(2Nt − 1) ≤ Ns ≤ N − TNfNt. (21)

From (21), we see that MIMO-MMSE-PAT sacrifices at least
TNtNf, but no more than T (2Nt − 1)(2Nf − 1), signaling
dimensions per transmit antenna. Recall that NfNt describes
the number of degrees of freedom in the DSC per each
transmit-receive antenna pair and TNfNt denotes the number
of (independent) channel coefficients to be estimated at each
receive antenna.

C. MIMO-MMSE-PAT Examples

Here we give several examples of N -block CP MIMO-
MMSE-PAT schemes for the CE-BEM DSC using the
{p(t),B(t)}t∈T parameterization. It is straightforward to ver-
ify that the following examples satisfy the MIMO-MMSE-PAT
conditions (15)-(16).

Example 1 (TDKD). Assuming N
Nf

∈ Z, define the pilot index

sets P(t)
t and the guard index set Gt:

P(t)
t = {i+ tNt, i+ tNt +

N
Nf
, ..., i+ tNt + (Nf−1)N

Nf
}

Gt =
⋃

t∈T

⋃

k∈P(t)
t

{−Nt + 1 + k, ..., Nt − 1 + k}.

An N -block CP MIMO MMSE-PAT scheme for the CE-BEM
DSC is given by

p(t)(q) =

{√
Ep

TNf
ejθ(q) q ∈ P(t)

t

0 q /∈ P(t)
t

(22)

and by B(t) constructed from the columns of IN with indices
not in the set G. Both i ∈ {0, . . . , NNf

− 1} and θ(q) ∈ R,
are arbitrary. The corresponding data dimension per transmit
antenna is Ns = N − (T + 1)NfNt +Nf.

Example 2 (FDKD). Assuming N
Nt

∈ Z, define the (frequency

domain) pilot index sets P (t)
f and the guard index set Gf:

P(t)
f = {i+ tNf, i+ tNf +

N
Nt
, ..., i+ tNf + (Nt−1)N

Nt
}

Gf =
⋃

t∈T

⋃

k∈P(t)

f

{−Nf + 1 + k, ..., Nf − 1 + k}.

An N -block CP MIMO MMSE-PAT scheme for the CE-BEM
DSC is given by p(t) = F H

N p̆
(t), with

p̆(t)(q) =

{√
Ep

TNt
ejθ(q) q ∈ P(t)

f

0 q /∈ P(t)
f

(23)

and by B(t) constructed from the columns of IDFT matrix F H
N

with indices not in the set Gf. Both i ∈ {0, . . . , NNt
− 1} and



θ(q) ∈ R, are arbitrary. The corresponding data dimension
per transmit antenna is Ns = N − (T + 1)NfNt +Nt.

Example 3 (Superimposed Chirps). Assuming even N , an
N -block CP MMSE-PAT scheme for the CE-BEM DSC is
given by

p(t)(q) =

√

Ep
NT

e
j 2π

N

“

Nf
2 q

2+tNfNtq
”

(24)

[B(t)]q,m =
1√
N
e
j 2π

N

“

Nf
2 q

2+(m+TNfNt)q
”

, (25)

for q ∈ {0, . . . , N − 1} and m ∈ {0, . . . , Ns − 1}, where
the data dimension per transmit antenna is Ns = N − (T +
1)NfNt + 1.

The MSE-optimality of TDKD among zero-prefix block
transmissions with non-superimposed pilots was established
in [5]. For CP transmissions with (time) superimposed pilots,
we see that there exist other MMSE-PAT schemes.

IV. ACHIEVABLE RATES OF MIMO-MMSE-PAT

We now calculate ergodic achievable rates of MIMO-
MMSE-PAT for the CE-BEM DSC, paying special attention
to the high-SNR regime. In the finite SNR case, we obtain
the bounds on the achievable rates considering i.i.d. Gaussian
input distribution. In the high-SNR asymptotic case, we char-
acterize the maximum achievable rates of the MIMO-MMSE-
PAT optimized over all the input probability distributions.

A. System Model

In our achievable-rate analysis, we focus on the CE-BEM
[recall (7)] with i.i.d. coefficients, which we refer as uniform
CE-BEM (UCE-BEM). Specifically, we assume

Rλ =
N

NfNt
INfNt . (26)

The UCE-BEM DSC approximates wide-sense stationary un-
correlated scattering (WSSUS) with uniform power delay
profile and uniform Doppler power spectrum. Since the UCE-
BEM is a special case of the CE-BEM, the MIMO-MMSE-
PAT design requirements (15)-(16) and the MIMO-MMSE-
PAT examples in Section III-C apply to the UCE-BEM.

Suppose that the MMSE-PAT scheme {p(t),B(t)}t∈T for
the UCE-BEM-DSC has pilot energyEp [recall (5)] and yields
data dimension Ns. Suppose also that the average data energy
per block is E{∑T−1

t=0 ‖d(t)‖2} = E{∑T−1
t=0 ‖s(t)‖2} = Es.

Thus, the total transmit energy per block is Etot = Ep + Es.
From this, we define the average transmit power σ2

tot = Etot
N and

the signal-to-noise ratio SNR =
σ2

tot
σ2

v
. In addition, we define the

normalized signal and pilot powers σ2
s = Es

Ns
and σ2

p =
Ep

TNtNf
,

respectively. In the sequel, we analyze the ergodic capacity
of MMSE-PAT schemes {p(t),B(t)}t∈T over the UCE-BEM-
DSC with average transmit power constraint σ2

tot.

It will be convenient to define H (r,t) ∈ C
N×N element-

wise as [H(r,t)]n,m = h(r,t)(n, 〈n−m〉N ), so that the input-
output relation (2) becomes

y(r) =
[

H(r,0) · · ·H(r,T−1)
]

︸ ︷︷ ︸

H(r)

(
p̄ + B̄s̄

)
+ v(r), (27)

where p̄ = [p(0)>, ...,p(T−1)>]>, s̄ = [s(0)>, ..., s(T−1)>]>,
and B̄ = diag(B(0), ...,B(T−1)). Then, defining H̄ =
[H(0)>, ...,H(R−1)>]>, we collect the observations of all
receive antennas into ȳ = [y(0)>, ...,y(R−1)>]>, such that

ȳ = H̄p̄ + H̄B̄s̄ + v̄, (28)

with v̄ = [v(0)>, ...,v(R−1)>]>.
In our ergodic analysis, we assume a Gaussian channel

coefficient vector h(r,t) that varies independently from block
to block. Independent fading across blocks can be achieved
by time-domain interleaving.

B. Achievable-Rate Bounds - Finite SNR Case

In this section, we obtain achievable-rate bounds under an
i.i.d. Gaussian input distribution.

Theorem 3 (Achievable-Rate Bounds). For the N -block CP
MMSE-PAT scheme {p(t),B(t)}t∈T with i.i.d. Gaussian s̄ ∈
C
Ns over the UCE-BEM DSC, the per-channel-use ergodic

achievable-rate Rmse-gau obeys Rmse-gau-lb ≤ Rmse-gau ≤
Rmse-gau-ub:

Rmse-gau-lb =
1

N
E{log det[ITNS

+ ρlB̄
H
H̄

H
H̄B̄]}(29)

Rmse-gau-ub =
1

N
E{log det[ITNs

+ ρuB̄
H
H̄

H
H̄B̄]}(30)

ρl =
σ2
s

Tσ2
v

(

σ2
p

σ2
p + σ2

s + σ2
v

)

, ρu =
σ2
s

Tσ2
v

(31)

Proof. The proof is similar to that of the SISO case [4] and
hence is omitted for brevity.

The lower bound (29) describes the “worst case” scenario of
channel estimation error acting as AWGN. This concept was
previously used in, e.g., [2] and [8]. The upper bound (30)
describes the “best case” scenario of perfect channel estimates.

C. Pilot/Data Power Allocation

Until now, the MMSE-PAT schemes were designed using
fixed pilot energy Ep. Now we consider the problem of allo-
cating the total transmit energy Etot between pilots and data.
We approach this problem through Rmse-gau-lb maximization.

Let α ∈ [0, 1] denote the fraction of energy allocated to the
data symbols, i.e., Es = αEtot and Ep = (1− α)Etot. We are
interested in finding α? = arg maxαRmse-gau-lb(α). Because
α affects Rmse-gau-lb only through the term ρl, and because
Rmse-gau-lb is strictly increasing in ρl, it suffices to maximize



ρl w.r.t. α. The value of α? is readily obtained by finding the
value of α which sets ∂ρl/∂α = 0. This can be shown to be

α? =







β −
√

β2 − β if Ns > TNfNt

β +
√

β2 − β if Ns < TNfNt
1
2 if Ns = TNfNt

(32)

β =
1 +

TNfNtσ
2
v

Etot

1− TNfNt
Ns

. (33)

While capacity bounds and pilot/data power allocation for the
TDKD scheme have been obtained in [5], the results here hold
for arbitrary MIMO-MMSE-PAT schemes.

D. High-SNR Asymptotic Achievable Rates

In Section IV-B, we derived achievable rates constraining
that the input distribution is i.i.d. Gaussian. Now, focusing on
the high-SNR regime, we obtain the maximal achievable- rate
Rmse (up to a constant) for MIMO-MMSE-PAT optimized
over all the input distributions.

Theorem 4 (Asymptotic Achievable Rates). For an N -block
CP MIMO-MMSE-PAT scheme operating over the UCE-BEM
DSC with T transmit and R receive antennas, and with data
dimension Ns, the ergodic maximal achievable-rate Rmse -
optimized over all the input distributions, obeys

Rmse(SNR) =
min{R(N − TNfNt), TNs}

N
log SNR +O(1),

(34)

as SNR → ∞. Also, the Gaussian input distribution achieves
the same pre-log factor as that of the maximal rate Rmse (34).

Proof. See Appendix I.

The pre-log factor in Rmse can be interpreted as follows.
Since each transmit antenna uses only Ns data dimensions
per N -length block, the total number of independent data
symbols transmitted is TNs. Similarly, each receive antenna
estimates TNfNt channel coefficients. In MIMO-MMSE-PAT,
the observations corresponding to pilot symbol P use up
TNfNt observations [recall (13)], leaving only N − TNfNt

observations per receive antenna, or R(N − TNfNt) total ob-
servations, for data. Since at most min{R(N−TNfNt), TNs}
data symbols per N -block can be “resolved” at the receiver,
this number determines the pre-log factor of Rmse(SNR).

Theorem 4 implies that, among MIMO-MMSE-PAT
schemes, those with lower Ns can not yield higher pre-
log factor. Among the examples in Section III-C, TDKD
maximizes Ns when Nf > Nt, and FDKD maximizes Ns
when Nf < Nt. Apart from the trivial case Nf = Nt = 1,
the Chirp PAT is dominated by both TDKD and FDKD.

As is evident from Theorem 4, the asymptotic achievable
rates do not necessarily increase with the number of antennas.
Hence, it is worthwhile to determine the number of active
transmit and receive antennas, T? ∈ {0, . . . , T} and R? ∈
{0, . . . , R}, which maximize the pre-log factor in Rmse. Note
that T? and R? depend on the MIMO-MMSE-PAT scheme

through the data dimension Ns. For the MIMO-MMSE-PAT
Examples 1-3, it can be shown that

R? = R (35)

T? =







⌊

min
(

T, ψ
2NfNt

− R?

2

)

+ 1
2

⌋

, if ψ2 < 4R?NNtNf
⌊

min

(

T,
ψ−

√
ψ2−4R?NNfNt

2NfNt

)

+ 1
2

⌋

, otherwise.

(36)
ψ = N + (R? − 1)NfNt + κ (37)

where κ = 1, Nt, and Nf for Chirp, FDKD, and TDKD,
respectively. Note that, in some cases, the transmitter uses
strictly less than T antennas. Similar results were obtained
for MIMO flat-fading and time-selective channels in [1] and
[6], respectively.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the achievable-rate
bounds (29) and (30) with Nt = 9, Nf = 3, R = 2, and
N = 126. Figure 1 compares the performance of the TDKD,
FDKD and Chirp schemes with T = 2. Since this channel has
Nt > Nf, FDKD shows a gain over both TDKD and the Chirp
scheme. In Fig. 2, we study the performance of FDKD with
T ∈ {1, 2, 3} transmit antennas. We find that the high-SNR
achievable-rate is maximum when T = 2, coinciding with T?
from (36).
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Fig. 1. Performance of different schemes T = 2.

VI. CONCLUSION

We extended our previous work [4] on cyclic prefix block-
based MMSE-PAT for the SISO CE-BEM-DSC to the MIMO
case. Specifically, we found necessary and sufficient condi-
tions on PAT design, presented novel PAT examples, and
derived bounds on the achievable rates. The pilot/data power
allocation maximizing the lower bound on achievable-rate
was also presented. A high-SNR achievable-rate analysis was
then presented which suggested that the channel’s spreading
parameters should be taken into account when choosing among
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Fig. 2. Performance of FDKD with T ∈ {1, 2, 3} transmit antennas.

MMSE-PAT schemes. Finally, the number of antennas maxi-
mizing the high-SNR rates was also derived.

APPENDIX I
PROOF OF THEOREM 4

We start with the lower bound Rmse-gau-lb ≤ Rmse. First,
let us characterize the asymptotic behavior of Rmse-gau-lb . Let
the columns of Bp ∈ CN×TNfNt form an orthonormal basis
for col(PU ) and the columns of Bd ∈ CN×(N−TNfNt) form
an orthonormal basis for the left null space of PU . The pilot-
data orthogonality of MMSE-PAT [recall (12)] implies that
BH
pH(r)B̄ = 0 and BH

dH(r)p̄ = 0, ∀ r. Projecting the rth
antenna observation vector y(r) onto the data subspaces, we
obtain

y
(r)
d = BH

dH(r)B̄s̄ + v
(r)
d , (38)

where v
(r)
d = BH

dv(r) and is CWGN with variance σ2
v .

Defining ȳd = [y
(0)>
d , ...,y

(R−1)>
d ]>, we have

ȳd = B̄
H
dH̄B̄s̄ + v̄d, (39)

where B̄d = IR ⊗ Bd, v̄p = [v
(0)>
p , ...,v

(R−1)>
p ]> and

v̄d = [v
(0)>
d , ...,v

(R−1)>
d ]>. Since the projection (39) does

not compromise data energy, there is no loss in mutual in-
formation, i.e., I(ȳ; s̄) = I(ȳd; s̄). Hence, with the “effective
channel” He = B̄

H
dH̄B̄, it easily follows that Rmse-gau-lb =

1
NE{log det[I+ρlH̄

H
e H̄e]}. The structure and statistics of H̄,

and the structures of B̄ and Bd imply that H̄e is full rank with
probability 1. Since H̄e is an R(N−TNfNt)×TNs matrix, let
{µi}Q−1

i=0 denote the positive eigen values of H̄
H
e H̄e, where

Q = min{R(N − TNfNt), TNs}. Now, (29) can be written
as

Rmse-gau-lb =
1

N
E{log

Q−1
∏

i=0

(1 + ρlµi)}. (40)

With power allocation fraction α ∈ (0, 1), Es = αEtot and
Ep = (1 − α)Etot, we have

ρl =
N

T 2Ns
α(1 − α)SNR

(

1
NfNt
Ns

α+ 1−α
T + NfNt

NSNR

)

.(41)

Equation (41) implies that there exists a constant k such that
ρl ≥ kSNR for all SNR ≥ 1. We can use this and the fact
that µi > 0 in (40) to claim

Rmse ≥ min{R(N − TNfNt), TNs}
N

log SNR +O(1)(42)

as SNR → ∞.
Now, to bound the asymptotic achievable rate from above,

we consider the “coherent” case of zero channel estima-
tion error, i.e., H̄ is perfectly known at the receiver. Since
I(ȳ; s̄) = I(ȳd; s̄), using Ccoh to denote the capacity of (39)
with power constraint σ2

tot, it is evident that Rmse ≤ Ccoh. In
fact, for (39), the capacity maximizing input distribution is
zero-mean Gaussian [9], so that

Ccoh =
1

N
sup

tr{Rs̄}≤Nσ2
tot

E{log det[I+
1

σ2
v

H̄
H
eRs̄H̄e]},(43)

where Rs̄ denotes the covariance of s̄. Note that, for any Rs̄

satisfying the power constraint in (43), we have

Rs̄ ≤ Nσ2
totITNs

, (44)

in the positive semi-definite sense. Using (44) in (43), we find

Rmse ≤ 1

N
E{log det[INs

+
Nσ2

tot

σ2
v

H̄
H
e H̄e]} (45)

=
min{R(N − TNfNt), TNs}

N
log SNR + O(1),(46)

as SNR → ∞. Theorem 4 follows from (42) and (46).
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