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Abstract— In this paper, we propose several methods for the reason, tha@obustnes®of these channel estimation schemes is
pilot-aided estimation of significant ICI coefficients resiting  of particular importance.
from pulse-shaped multicarrier modulation (PS-MCM) over In this paper, we propose Wiener, rank-reduced (RR)

DD channels. Specifically, we outline Wiener and reduced-rk . . s
(RR) Wiener estimation schemes that leverage statisticahannel Wiener, and least-squares (LS) methods for pilot-aideithest

structure, as well as deterministic least-squares (LS) semes tion of significant ICI coefficients arising from general ped
based on basis expansion modeling (BEM). We then report the shaped (PS) MCM over DD channels. We focus on pilot-aided
fe?U'tStIOf a rtlumferical EtSUdyt'Whigh sggge;ts thatl RR \'Nldeer methods, rather than decision-directed methods, for rsasb
estimation outperforms LS estimation based on polynomia e i ; :
oversampled complex exponential BEM, even under significan F:ompl_exﬂy.the decision-directed method_s typlca_lly_neqme
statistical mismatch. In addition, the RR Wiener estimator is NVersion of large data-dependent matrices. Within thescla
computationally cheaper than the LS-BEM techniques. These Of general PS-MCMwe include both classical schemes like

findings have implications on the practical design of PS-MCM CP-OFDM as well as modern schemes (e.g., [2]-[7]) which

channel estimation schemes. use smooth overlapping pulses. While the estimation of-time
domain DD channel coefficients (e.g., [9], [15], [20]-[22}))
. INTRODUCTION frequency-domain DD channel coefficients (e.qg., [23], ]24]

One of the most channeling aspects of multicarrier commyyell studied, we are not aware of much work on the estimation

nication (MCM) over doubly dispersive (DD) channels is ioinOf pulse-shaped ICI coefficients.whose structure depentts bo
mitigation of inter-symbol interference (ISI) and intearger ©ON channel and pulse properties (e.g., [25] allows smooth
interference (ICI). The ICI and ISI profiles are a function oflemodulation pulses but assumes a CP-OFDM transmitter).
the channel's dispersion characteristics as well as theepul FOr each proposed estimator, we derive an expression for
shapes used in modulation and demodulation. For exampligan-squared estimator error which is then examined in a
cyclic-prefixed orthogonal frequency division multiplegi detailed numerical study. We pay special attention to the
(CP-OFDM) is known for excellent ISI suppression but pooqerformance ofmismatchedwWiener estimators, i.e., Wiener
ICI suppression in DD channels (e.g., [1]). Generalizatiof estimators designed under incorrect statistical assomgpti
CP-OFDM based on smooth, rather than rectangular, puIé%%r numerical performance study suggests that Wiener esti-
allow better joint suppression of ICI and ISI [2]—[7]. WhileMatés compare favorably to the LS-BEM estimates, even under

it is impossible to completely suppress both ICI and ISI in 8ignificant statistical mismatch. In addition, our studpwh
spectrally efficient multicarrier system, it is possibledisign that the rank-reduced Wiener estimator can be implemented
pulses which make the ISI negligible and reduce the ICI sp4fith a fraction of the complexity required for LS-BEM. These
so that each subcarrier sees significant interference fragn ofindings have implications on the practical design of PS-MCM
+D adjacent sub-carriers. In aN-sub-carrier system, then,channel estimation schemes.
equalization would require knowledge of on{2D + 1)N
significantICI coefficients [8]-[13], where typicalyD <« N.
This reduction in unknown parameters is key to practical At each symbol indexi € Z, N QAM data points
implementation. {sk(@)}n-,' are collected to form a (multicarrier) symbol
still, given only N observations per multicarrier symbol, its(i) = [s0(),...,sny—1(i)]". These symbols are used to
is impossible to accurately estima@D+1) N ICI coefficients modulate pulsed subcarriers as follows:
without assuming and exploitingtructure in the channel o | M-l
response [14]-[19]. This channel structure could be sicdis t, = Uy iN. —— s1.(i)ed F(n—iNs—No)k (1
via an assumed correlation structure, or deterministia,an Z M UN ,;) ) W
assumed basis expansion model (BEM). In either case, how- ) ] ) )
ever, poor estimation performance might result if the stmag " (1); {@»} is the modulation pulsey; is the symbol interval,

assumptions do not match the true channel properties. For " Vo € {0,..., V — 1} delays the subcarrier origin relative
to the pulse origin. The multipath channel is described by

1This work was supported by the National Science FoundatiSREER 'FS time-variant d'scret_e impulse re_spoml' defined as the
grant CCR-0237037. time-n response to an impulse applied at time!. We assume
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a causal impulse response of lengthi\of. The signal observed  With the definitions x(i) = [x0(d),...,zn-1(2)]
by the receiver is then w(i) = [we(i),...,wy_1())]T, and [H(i,q)]ax
Hy_1.1(%,q), (5) implies the block formulation

Np—1
Th = Un+ Z hn,ltn—la (2) Lpst
=0 x(i) = w@i)+ Y H(i,q)s(i —q). ®)
q=—Lpre

where {v,,} is a circular white Gaussian noise (CWGN)
process with variance?. Definingr,, (i) := rin.1n, vn(i) :== It will be convenient to write
ViN4n, @ndhy, (i) := hin,+n.1, €quations (1) and (2) imply

w(i) = Buv(i) 9)
Np—1 oo B — FJD(b) (10)

Tﬂ(l) = Vn(z)'i_ Z hn,l(i) Z QgN +n—1 0 I

. N—Nox N, N,
1=0 q=—00 J = { Iy -+ In }7(11)

1 gy IN° ONfNDxND
. 27 <—N, . ) ) .
i D skl(i — q)ed AN NIk (3)  herew (i) = [(i), ., vn,—1()]", F denotes the unitary
k=0 N-DFT matrix, N, = (Ny — N,) ., and the number of x
The receiver employs the modulation pulge,} to calculate Matrices inJ is L%J

{zq(i)}) 5, where In this paper, we will assume that the puldes } and{b,}

are designed so that inter-symbol interference (ISI) bexsom
negligible relative tow(7), in which case (8) reduces to

zq(i) = \/Lﬁ fj P (i)bpe I F AN ()

Plugging (3) into (4), we find In addition, we will assume that we are interested in estimgat
o N—1 only N(2D + 1) coefficients withinH (i,0), namely, those

N : : L within the shaded region of Fig. 1. For convenience, we cblle
za(i) = wa(i)+ Y > Harr(i,q)s6(i—q) (5) them ing, (i) € C2D+DN:

q=—00 k=0
where gp(i) = [diag_p(H(i,0)",.... diagp(H(,0))"]{13)
= - where  diag,,(- extracts the k'*  sub-diagonal
wa(i) = \/% Z bavn(i)e IR AN () of its mngtgi))( argument, i.e., diag,(H) g::
N [0, [H]ks1,1,- o [Hlgsn-1,n-1] with — modulo-
Han(isq) = % Z Z hnt()bngN, 41 N indexing assumed.
= 1=0 . I1l. CHANNEL ESTIMATION
« eI Fd(n—No) ,—i FFk(l—qNs) 7

Below we propose Wiener, rank-reduced Wiener, and LS-

Equation (5) indicates thakl, (i, q) can be interpreted as BEM_ schemes _for pilot-aided estimation g(z‘). Befor.e dis-
the response, at timeand subcarriek: + d, to a frequency- CUSSing the estimation schemes, we describe the pilotrpatte

domain impulse applied at time— ¢ and subcarriek. Note A. Choice of Pilot Pattern
that H, (¢, g) depends on the pulsds,,} and{b,}. i
In the sequel, we assume wide-sense stationary uncortelate’Ve choose a pilot pattern where one out of evéry> 2
scattering (WSSUS) [26] so thY{ /1., ;" } = pmo2dy. multicarrier symbols is used as a pilot. These pilot symbols
Here, p,, denotes the normalized aﬁtogc;r?léllgéion atxaé.e. are then used to estimate the channel coefficients ofthe
po = ’l)mandcfQ denotes the variance of ti& tap. In the caée multicarrier data symbols in-between. Pilot patterns a$ th
of Rayleigh félding we have,, = Jo(2 faT.m), wherefqT. form are relatively common, having been used in severalrothe
denotes the normalized single-sided Doppler spread/ang  WOrks (€.g., [9], [18]). Since design of optimal pilot synibo
denotes @'"-order Bessel function of the first kind. appears to be a challenging problem, we used values obtained
In practice we implement finite-duration causal pul§es} from a semi-exhaustive search.

and{b, } of length N, andN;,, respectively, implying that only We choose_ this pqttern over one where each muI.t|carr|er
a finite number of terms in the Sé, 4 (i,q)}4cz will be symbol cqntalns a mixture qf pilot lanq. data sub-ca_lrners for
non-zero. Specifically, (7) implies that non-zero termsuites the foIIowmg reason. Assuming a _s|gn|f|cant I_CI radius dqua
from indicesq which satisfy0 < gN, +n — [ < N, — 1 for to D, the pilot anc_zl data sub_-carrle_rs would interfere unless
somen € {0,...,N, — 1} and some ¢ {0,..., Ny, — 1}. afrequ_ency-dom_aln guard Wlth radn_;li) was place(_j aro_und
S R, each pilot toné. Since Nyquist sampling considerations imply

It is straightforward to show thall, ;. (i, q) may be non-zero
1

fo]{] (]H% £2 Lpre; - - ’LpSt}’ WhereLPre I N, J and Lpst 2This pilot strategy corresponds to the MMSE-optimal pilattern from
| 1. [27] for a DD channel satisfying €D -+ 1)-coefficient CE-BEM.




the need forN, pilot tones, prevention of pilot/data inter
ference would require that at leagtD + 1) N, sub-carriers

are spared from data transmission. For many applications of

interest (e.g., the setup in Section IV), howeveéip+1) N, >
N, making this scheme impractical.

We now define some quantities that follow from our pilot

pattern. Say that, for all indices corresponding to pilot
symbols, we have (i) = p. For thesei we can write

-where

R{) = CpRj}jC"P" (26)
RYW = PCRYC"P" 1+ 5,0°BB"  (27)
R{}) := B{h(i)h(i —q)"}. (28)

In (27) we assume® N, > N,, so thatt{w(i)w(i+P)"} =
0. The WSSUS assumption implies that

z(i) = Pg(i)+w(i) (14)
. s . T . . 1T Rgzqu = D([U(ij R UJQVh,fl]T) ® R(pQ) (29)
g(l) = [dlagO(H(Za O)) PR 7dlagN—1(H(27 0)) ] (15) (9)
0 N—-1 [qu ] = pm*n‘HINsv mvne {07"'5Nb_ 1}(30)
P = [@'D(p) --- "' D(p)] (16) m,n
o — oL, 1 17) It is well known that the Wiener estimation errgrD,W =
~ |In—1 On_1]|’ QD,W — g,, has covariance [28]

where D(+) transforms a vector argument into a diagonal - -H 4 1 pH
matrix. From (7), we can write Bl9padpuwt = oo = Ry Ry Ry, (31)
g(i) = Ch(i), (18) whereR,, := E{g g!'} is given by
gD(i) = CDh(i)a (19) R(o) R(fl) - R(lfp)
whereC € CN**Non €, € CEP+ONXNoNw | and h(i) € rl RO ... RGP
CNoNware defined element-wise as R, = % % % (32)
i o ) 20 L 3 . :
[h(i)],, () VLNﬂbJ(Z) (20) RE-D RP-D ... RO
_ 1 —i%| & |n RY .— ¢cpRYCH. (33)
Cl,m = Nb<m>Nba<m>Nb*[NﬂbJe b 99 i~ D
—jz| ] (<m>N No) (21) C. BEM-Constrained Least-Squares Estimation
X e b .
1 _jor [ﬂJn When it is difficult to obtain accurate knowledge of sta-
[Colim = Fbmin, Ty e ]° ML tistical quantities like{p,,}, {c?}, and o2, Wiener channel
—’ZJ(LH—;)( b> _N) estimation becomes infeasible. As an alternative, onedcoul
x e TNIN TNy ) (22) assume that the channel obeys a basis expansion model (BEM)

Note thath(i) contains all time-domain impulse respon
coefficients affectingH (i, 0), and that its statistics are easil
written in terms of{o7},Y% " and {p,,, 0t

Our goal is to estimatg , := [gp(i + 1)7,...,gp(i +
P—1)T)T, the channel coefficients required for coherent da
detection [via (4)], fromz := [z(i)T, (i + P)T]", the pilot
observations.

B. Wiener Channel Estimation

Sﬁnd estimate the BEM coefficients via least-squares (LS) fit.

generic LS-BEM channel estimation procedure is outlined
below for the pilot structure specified in Section IlI-A.

The BEM models the (estimated) time-domain channel
Fé)efﬁcients over the pilot/data/pilot interval; = N, + PNy,
using the same basis expansion at each delay:

]

A],, = h e CNrn (34)

h

(35)

We now derive a pilot-aided Wiener channel estimation
procedure based on the pilot structure in Section Ill-A. Thg (35), Q@ € CMs*K contains the basis vectors arg €

linear MMSE estimate of , from z is [28] CNK contains the (estimated) BEM coefficients. We can

g,., = RuRilz, (23) relateh to g(i + ¢) andg (i + ¢) via
where R, := E{g "} and R,, := E {zz"}. From (9), gli+q) = Cm% (36)
(14), and (18), gp(i+q) = CY'h (37)
[ R RO-P) caoy - L —i% | n
DRI (O = b a0 a5

Ry, = E (24) o o T LR (m) i, —aN. =) (38)
R~V RED @, _ L —i% | |n

‘RO RCP) O = P =) o= | 2] '
e = | pt "l (25) IR D) (¥ W) g




so that we get requires onlyN, K[2N + (P —1)(2D + 1) N] complex MACs
per P — 1 MCM data symbols.

9p = Cp(Iy, ® Q)0 . (40) Using Fy = UKWQ, the covariance of the RR Wiener
C, = [CS)T C%P—I)T} ) (41) estimation errog , =g, — g, can be expressed as
For channel estimation, we choose BEM coefficientto  E{g,, g7 } = FuRw..F{ — Ry Fl — FuR], + Ry,
LS-fit the pilot observationg. This yields, via (14) and (37), ' (50)
2
R . pc? IV. NUMERICAL RESULTS
7l = argmin |z — [P | I, @ Q)nl| . (42) |
n C The coefficient-averaged MSEs from (31), (45),
We then plug7,_ into (40) to obtain the estimated ICland (50), ie., & = %ﬁtr(E{QDWQgW )s
T~ ~ . 1 ~ ~
coeff|C|ent5gD7ls. & = mtr(E{gD,lsgD,ls ), and & =
9p = Frz (43) 7(2[)1}1)% tr(E{gD.rrgg,rr})’ respectively, are now analyzed

under various parameter settings. Both the OCE-BEM

PC(O’} )+ and polynomial-BEM tested. Wi loyed th
Fr = Cr(In ® In ® (44 polynomia were tested. We employe e
s = CpIn. ®Q) ({PC(P) (I, ® Q) (44) pulse-shaped MCM system from [¥]which chooses the
where(-)* denotes the pseudo-inverse. The covariance of ffifdulator/demodulator pulses to maximize SINR, where
LS-BEM estimation erog, =4, 9 is then signal energy” is def!ned as _that received through the
=DJs  =DJs <D channel constructed using the diagonal element$dt, 0),
E{QD Isgg IS} = FsR, F - Rng,’g — FIquHm + R,,,(45) and “interference energy” is defined as that received throug
o N _ ' ISI as well as the ICI coefficients outside the shaded region
for R,., Ry, and R, defined in Section IIl-B. W ! us! g

£ | f BEM< which d " ire statistical ch in Fig. 1. The system under consideration us¥d= 16
xamples o S Which do not require statisucal channg(,p_carriers, significant ICI radiu3 = 2, multicarrier symbol
knowledge include the polynomial BEM [15], [17]:

interval N, = N (i.e., operation at 1 symbol/second/Hz), pulse

. 1 _ Ng-1 k lengths N, = 24 and N, = 26, OCE-BEM oversampling
[Qlmr = (v/Ny) (m 2 ) ’ (46) factor M = 3, and (unless otherwise noted) pilot spacing
and oversampled complex exponential (OCE) BEM with ove? = 2. We used Jakes model to generate realizations
sampling factorM [16], [21]: of a Rayleigh fading WSSUS channel with maximum
L oe2m(p K=ly normalized delay spreadv, = 4 and exponential power
Qi = (VNj)'¢ Ry (47) decayo? = 27//Ns for | € {0,..., Nj, — 1}. Unless otherwise
BEMs which require statistical knowledge include the Siepi noted, the half-power length wa¥; = 4, the normalized
BEM [18] and the Karhunen-Loeve BEM [19]. Doppler frequency wagqT. = 0.01, and SNR*5dB. Note

that, for largeNs, the power profile becomes uniform, while,

D. Rank-Reduced Wiener Estimation for small N3, the channel becomes frequency-flat.
We now derive a rank-reduced (RR) version of the Wiener

channel estimation procedure outlined in Section 111-B anfd- Effect of Ranks
give a BEM interpretation. The intuition is that each of the Figure 2 shows the MSE of RR-Wiener and LS-BEM
N;, channel taps changes slowly over th&-duration pi- methods versus the rank paramef€r under the nominal
lot/data/pilot interval and thus contributes only abélt= 1+ conditions described earlier. For comparison, Fig. 2 dtews
[2f4T.N;] non-negligible singular values R, R,,. Thus, the minimum MSE (i.e., that attained by full-rank Wiener es-
optimal rank reduction [28] can be used to significantly lu timation). First, we see that the Wiener estimator is exélgm
the complexity of channel estimation with little perforncan robust to rank reduction. Next, we see that, while Wienewrerr
degradation [9]. decreases with rank, LS-BEM error does not. In fact, LS-BEM
The optimal rank®, K estimator ofg(i) is constructed as faces an inherent compromise between imposing too much
follows [28]. From the SVDngR;zl = UXVH we build Structure (i.e., X too low) or not enough (i.e.K too high).
Uk and Vi from the first N,K columns of U and v, For the remainder of our experiments, we use= 3 in an
respectively, and we buil& i from the first NV, K rows and attempt to get near-optimal performance out of all algonih
columns of®. We find thathzR;ml ~ UKW§ for U € keeping in mind that the Wiener estimator could be operated
CP-DEDHONXNLK gnd Wy = VS € C2VxNuK  atrankK =1 or K = 2 without much performance loss.

Note thatU i can be interpreted as the MMSE-optimal ordelg  Effect of f4T.., f4T.-Mismatch, and Pilot Spacing
VIMISE. ostimatar of the cortesponding BEM cosfiivems - FI9UTeS 34 show MSE versug, for LS-BEM, RR-
—  Wiener underfyT, mismatch, and Wiener under both mis-

The resulting rank-reduced estimation procedure matched and perfect knowledge #fT.,. Figure 3 uses pilot

A= Wiz (48)
. N 3Similar results were observed for other MCM systems, thothghresults
Ipnw = UkA (49)  are not reported here.



spacing P 2 while Fig. 4 usesP 5. There we
see that the OCE and polynomial BEMs perform similarly,
with a relatively constant MSE at lowy7,. and increasing 7
MSE at high f4T.. Wiener estimation performs substantially
better than LS-BEM, andnismatchedrR-Wiener estimation
performs about the same as LS-BEM over the entire rang[%]
of mismatch. Comparing Fig. 3 to Fig. 4, we see that MSE
decreases as the pilot density increases, as would be exlpec&

(6]

9]
C. Effect of SNR and SNR-Mismatch

Figure 5 shows MSE versus SNR for LS-BEM, RR-Wiener
under SNR mismatch, and Wiener under both mismatch&d!
and perfect knowledge of SNR. Here again, the OCE and
polynomial LS-BEMs perform similarly, the Wiener estimato([11]
outperforms both LS-BEMs (significantly so at low SNR),
and the mismatched reduced-rank Wiener outperforms the L
BEMSs over a wide range of mismatch.

D. Effect of Decay Paramete¥s and Its Mismatch (13]

Figure 5 shows MSE versus decay paramétgrfor the
LS-BEMs, RR-Wiener undeiNs; mismatch, and Wiener underl®
both mismatched and perfect knowledge/éf. It turns out
that estimation performance is almost completely invarian [15]
N3, so that the Wieners scheme significantly outperform the
LS-BEMs, regardless of mismatch and rank-reduction. [16]

V. CONCLUSION

In this paper, we proposed several methods for the pilot-
aided estimation of significant ICI coefficients resultingrh  [17]
pulse-shaped multicarrier transmissions over DD channels
The key to accurate estimation of these coefficients is the
exploitation of structure within the channel response. \We o
lined Wiener and RR-Wiener estimation schemes that Ieeeralgg]
statistical structure, as well as deterministic LS schethas
leverage BEM structure. We then reported the results of a
numerical study which suggested that RR-Wiener estimati&?!
outperforms LS estimation based on polynomial and OCE
BEMSs, even under significant statistical mismatch. In addit
it suggests that the rank-reduced Wiener estimator can de mg?!
computationally cheaper than the LS-BEM techniques withoo
much loss in performance. These findings have implications o
the practical design of PS-MCM channel estimation schemr-['%]
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Fig. 1. Quasi-banded channel matrix.

SYS=0, N=16, D=2, P=2, fdTc=0.01, Nh=4, N3:4, Mp:SO‘ SNR=15
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Fig. 2. Channel estimation MSE versus rank paraméfefor LS-BEM,
Wiener, and rank-reduced Wiener schemes.
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Fig. 3. Channel estimation MSE versu§7. for LS-BEM, Wiener,

mismatched Wiener, and mismatched rank-reduced Wienernseh when

rank parameter K

P = 2. The mismatched schemes assunfgd. = 0.0125.
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Channel estimation MSE versu§7. for LS-BEM, Wiener,

mismatched Wiener, and mismatched rank-reduced Wienexnszh when
P = 5. The mismatched schemes assunfgd. = 0.008.
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Fig. 6. Channel estimation MSE versus exponential decagnpater/N3 for
LS-BEM, Wiener, mismatched Wiener, and mismatched radikged Wiener
schemes. The mismatched schemes assuNeed: 4.



