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Abstract— Through the use of antenna arrays at both ends the antenna inputs and outputs can preserve sparseness in th
of a wireless link, a channel with significant delay and Doppér  virtual multiple-input multiple-output (MIMO) channel ndel.

spread can be decomposed into parallel virtual channels wit i Y A\ ;
much smaller delay and Doppler spreads, thereby simplifyig the Notation: We use(-)* to denote transpose;)” conjugate,

H H .
tasks of channel tracking and ISI mitigation. While one migt @nd (-)” conjugate transposeD(b) denotes the diagonal
hope that a sparse physical environment (i.e., few, well-tmlized matrix created from vectdr, andI the identity matrix. We use

scatterers) would lead to a sparse virtual channel represeation, [B],, ,, to denote the element in the'” row andnt" column
this is not necessarily the case. Here we describe how a sirepl of B, where row/column indices begin with zeiiof-} denotes
scaling of aptenlrmah|nput7 ang ?Ptp”ts can yield a sparseness o, hactation,y, denotes the Kronecker delta with respect to
reserving virtual channel model: !
P g k € Z, Z the set of integers, andnc(x) := sin(x)/x.
. INTRODUCTION

Certain wireless communication scenarios are well charac- [I. BACKGROUND

terized by a sparse physical structure, where the pro ati . .
yasp Phy propay We consider a MIMO system withP? antennas at the

between transmitter and receiver occurs primarily over allsm nsmitter and) antennas at the receiver. In the absence of
number of paths. With even a few paths, however, the overgﬁ. . . s
ise, the input/output relation can be described by

channel delay spread can be long if the path delays are dig!
parate. Furthermore, the overall channel response cargehan
in a somewhat complicated fashion when the path delays
vary in time. The tracking and mitigation of inter-symbolyhere the matrixid € CR*F describes the effects of multi-
interference (ISI) induced by a quickly varying multipatiiay 4ih propagation.

profile is, in many applications, the most expensive fumctio \ye restrict ourselves to the case of uniform linear arrays

per_f_ormed by the r(_acgiver,_and, in some applications, tlaf)erating under the “narrowband” assumption. Wittprop-
limiting factor to achieving high throughput [1]. -agation paths, where th&" path departs at anglér, and

The use of antenna arrays at the transmitter and receiel os at anglesg ; with path gaing;, we have [3]
can simplify the multipath tracking task, especially foasge ’ '

x = Hs

channels [2]. For example, consider the case where thesarray L

can form narrow beams. Singeer-beamdelay and Doppler H = ZﬁlaR(eRJ)a?(GT,l) Q)

spreads will be much smaller than those of the overall cHanne =1

per-beam channel tracking can be made relatively simple. If ar(fr) = L [1 o—i2m0r ... e,jQﬁ(P,l)eT]t

in addition, only a few beams are active, then overall channe VP

tracking can be made quite manageable. 0o — 1 1 o-i2m0s ... o—i2n(@-1)0R]"
In the applications we consider, it is not usually the case ar(fr) = Q [ ¢ ¢ }

that the transmitter knows the active scattering anglessTh dr .

is convenient to consider @niform transmitter beam spacing, or = BY sin(¢r)

with the number of beams matching the number of transmit dr .

antennas. The same uniform-beam-spacing can be applied at Or = BN sin(gr).-

the receiving array without loss of generality, since, as we i i
will see, the corresponding signal transformation is kessl Here dr and dr denote the antenna spacings at transmitter
This uniform approach has been studied by Sayeed and is #¢l receiver, respectively, andl denotes the propagation
basis for his “virtual channel” model [3]. One weaknesscefthwavelength- It is typical to define the normallged antenna
virtual channel model is that a spansiysicalscattering envi- SPacing asv = d/A. Whereas) represents thphysicalangle
ronment does not necessarily lead to a spantaal channel of departure/arrivald can be interpreted as ttspatial angle.

representation. In this paper, we show how a simple scalingfe®" Simplicity we restrict ourselves to the critical sparin
ar = ag = 0.5, so that there exists a one-to-one mapping

This work was supported by NSF CAREER Award CCR-0237037.  betweery € [-0.5,0.5) and¢ € [—x/2,7/2). It is typical to



write the L-path physical model in matrix form as 1

H = [a(fr;1) -+ a(br)] D([Ar,- -, 0L]) 09
Ar(0g) Hp 08

x [a(br1) -+ albrp)]”,
A{(67) 06

whereH p is an L x L diagonal matrix. Note the dependence®
of Ag(6g) and A1(6;) on the spatial angles.
The finite dimensionality of the signal space also allows tf

virtual channel model [3] 03

S o) A 0.2

H = [a(§) a(—%+1) a(%)] Hy
0.1
Ag
z 2 5 11 s
< |a(E) (=) - a(f)]

Af Fig. 1.

whereP := £-1 and @ := % (assuming thaP and(Q are
odd), and WhereHV € (CQXP is no longer diagonal. Note Written
that Ag and A are channel invariant unitary DFT matrices. % = D(dr)H D(d})s
Using the fact thatH = AR HA;, it is possible to show ~ ~H .
[3] that = AR AR D(dR HD(dT)AT AT S
—Hy
L ~ . -H
(Hv]ggpip = ZﬁlfR(eR,l Sl —5) = ArHyv Ar s
=1 . Our aim is to designdt and dr so that theshaped virtual
for —Q<q<Q,-P<p<P channel matrixH - is sparse whenever the physical scattering
fr(8) = bln(ﬂQW o—i27Q0 3) clusters are well localized. Loosely speakirthe shaping
Qs1n(7r9) coefficients act as lenses through which the channel can be
2(60) = sin(mP0) o—i2nPO @ brought into focus. B
T(0) = Psin(6) 9) It is instructive to note that we can wrildy = CrHy C¥

for circulant (i.e., circular convolut|0n) matrice€r =
While the virtual channel representation is attractive umR D(dr)Ag andCr := AT D(dr)Ar. Left multiplication
many ways (see [3]), the “smoothing functiongz(¢) and by Cr can be interpreted as a filtering operation on the
fr(0) yield the undesirable behavior that the effects of locatolumns of Hy,, and right multiplication byC¥ can be
ized scattering may be distributed over many entrieHin. In  interpreted as a filtering operation on the rowsEd{-. This is
other wordsa sparse physical scattering environment does nggminiscent of linear filtering for I1SI-channel shortenipigor
necessarily lead to a sparse virtual channel representaffor to symbol detection in single carrier systems [4] and ofudac
example, Fig. 1 plotsfr(6)| versud, which can be interpreted filtering for ICI-channel shortening in multi-carrier sgss
as the response of virtual coefficignto a single scatterer at[5].
departure anglér = 6 + p/P. Note that the response does,

not decay quickly ird. In this paper, we propose a reIativerA' Max-SIR Shaping Coefficients

simple transformation that corrects this behavior. To design the shaping vectods anddg, we first consider
an single scattering cluster that consistsiopaths uniformly

distributed in a region around the center anglgsand fg.

I1l. THE SHAPED VIRTUAL CHANNEL Specifically, we model th&" path parameters as follows:

In (1), x = H s was used to relate the antenna outputs to the B ~ N(0, gf)
antenna inputs in the case of a multipath propagation channe O ~ U [9_R ~ We go 4 WR)
Consider now scaling the'" transmit antenna input by; ' ~ W
: o : 1D 9T71~u[9T——9T+ 5.
and scaling the" receive antenna output kg ,. Defining
the shaping coefficienvectorsdr := [dr1,...,dr p]" and Furthermore,{5;}, {67}, and {6r,} are assumed to be
dr = [dr1,...,drg]", the shapedMIMO output Z can be statistically independent. In the distributions aboi#; and



Wr denote the cluster widths. The virtual bin indices neareSguation (6) also implies that
the cluster center will be denoted Iy, n), and the distance

. ! n+Dt
between cluster and bin centers will be denoted/sy and  oH
Ar. Together we have €q = o7dy ZD Br(p,n, At) | dr
p=n—LIT
7 m+ AR 11 ~ ~ m+Dg
r = 0 ) ARE[_iai)a me{_Qﬂ"'vQ}a ng Z BR(CLm,AR) dr
_ A ~ ~ =m—D,
br="T5T Arel-dd) me({-P.. P} a=m= e

U2d-|1—iBT’n(AT)dT : ngR,n(AR)dR (12)

We quantify the “sparseness” &fy in terms of signal-to- where Euler’s identity yields
interference ratio (SIR) defined by the ratio of energy cegatu

— 1 i3 Aq(c—b) g m(c—b)
by the (m, n)" virtual bin to energy in other virtual bins. To [Brn(A7)l., = pe Far sine(=5—)
allow for the possibility that a scattering cluster cannet b Dr P
well-squeezed into a single bin, we allowdan’t care region 1+2 Zcos(%f(c -0))] (13)
of + Dt adjacent transmit bins andDg adjacent receive bins. p=1
Thus we define SIB, p, := & /&, where [Bra(AR)],, = &el @477 sine( =)
Dr
E = EHHV}Q-Hn 15+n‘ X <1+2Zcos(27r§(c—b))> .(14)
Q P qg=1
& = Z E[ HV}Q+q7P+p ? From (6) again we have
=~ r= P
& gt = 02d$< Z BT(p,n,AT)> dT
m~+Dg n+ Dy psz—"
= 2
Z Z E‘ [HV} Q+q,13+p Q
g=m—Drp=n—DPr X dé—l ( Z BR(Qa m, AR)) dR-
& =—Q
In the previous equatior; denotes the total energy agy Exploiting the P-periodicity of Br(p,n,Ar) and the Q-
the non-interference energy. periodicity of Br(g, m, Ar),
In the Appendix we show that P
Z [Bt(p,n, A7)]
[Hv] 51054 Zﬁl af (& —Or1)dr p==r | po
i AL(e=b) i mle=b)y L —jonBl(c—b) _
D = el P AT sine(=52) e P = Oc—b
x df aT(ﬁ —0r1) ) Pp p/z::o
E|[A * — 02d! Br(p,n, Ar)d 9
“ Vlgigpip| = o°dr Br(p.n, Ar)dr > [Brlg,m, Ar)]es
x dg Br(g,m, Ar)dr — (6)  —¢
Br(p,n, A = Lo—i%(p—n—Ar)(c=b) Q-1
[Br(p Doy =7 — 1% Ar(e-D) Sinc(ﬂ(cfb))l Zeﬁzﬂ Le=b) _ 5 ,
x sinc(TWr(c — b)) (7) Q Q4 A “r
q =
— 1,32 (g—m—Ag)(c—b)
[BR(‘LvaR)]C,b =ge e " so that
x sinc(TWgr(c — b)) (8)
& = o°||dr[*]|dr]*. (15)
for 0> := 3/ 07 Equation (6) implies thats = Combining (9), (12), and (15), we have
o2d¥ Br(n,n, At)dy - d Br(m, m, Ar)dg. Thus, from (7)
and (8) we see thafs is invariant to(m,n). To make this  SIRp; pg(dr, dR)
invariance explicit, we write d¥ Brs(Av)dr - df Brs(Ar)dr (16)
~ |ldrl?l|dr|]* - df Bra(Ar)dr - d& Bra(Ar)dr
£ = o”d{ Brs(Ar)dr - df{ Brs(Ar)dr (9) T o
[Brs(Ar)],, = Pej 2z Ar(c—b) Smc(w(cp—b)) (10) Note that SIR, p, is invariant to||dt||, ||dr]|, o%, and L.

) While the SIR expression (16) is invariant ta,m), the
[Brs(AR)],.;, = LI GAr(e=d) sinc(”(gb)). (11) virtual bin location nearest to the cluster center, it dejseon

Q



the offsetbetween the cluster center and this nearest bin (i. , Smoothing function

AT a.nd AR) But Since — Lsri%haped
0ol b1 L
BR,S(AR) = MR(AR HBRYS(O)MR(AR) — D=2
Brs(At) = MT(AT)HBT,S(O)MT(AT) 08 ya\
Brn(AR) = Mr(AR)" Brn(0)Mg(AR) o7
(

Brn(A1) = M+1(A1)" Brn(0)M1(A7) 06
for diagonal “modulation” matrices 05
M+ (A7) = D([ej%AT'O,ej%AT'l, .. ,e-j%AT(P_l)])

MRg(AR) = D([ej%rAR'o, ej%AR'l, . .e-j%AR(Q_l)]),

0.4

0.3

the SIR-maximizingdt and dg for the case of nonzerd
and Ar are modulated versions of the SIR-maximizidg
anddg for At = Ar = 0. The effect of the modulation is to o1
spatiallyde-rotatethe effective cluster center to the middle o |\ / \ \ ! A\ M\
the nearest virtual bin. In practice, it is unlikely thAt and %5 04 -3 <z -1 o o1 02 03 o4 o5
Agr will be known, especially at the transmitter. Furthermore, 0

when multiple clusters are present, it will not be possible _ _ o

to individually de-rotate each cluster using a single set @gki nﬁ-izing Sraapn%d d;’“}goi"gg:fulnft';z :aggtlﬁiﬁi(’@iﬂ:\ fAOL ilFOQ’-
shaping coefficients. In either of these cases, it would bstm@ng various choices ab = Dy = Dg. plotted on a linear scale.
appropriate to design the shaping coefficients based on the

assumption that\r = Ag = 0.

A closed form solution to the joint maximization of (16) IV. NUMERICAL EXPERIMENTS
appears difficult to obtain, so we propose to alternate
o In Figs. 5-8 we show examples of virtual channel coefficient
d<Ti> = argmax _dT BTvsdT a7) (e, H) magnitudes for a randomly generated 2-cluster
dr (I— dé”)HBR,ndsl)BTn> dr environment with L, = 100 paths per cluster. As in the
T SR ' other examples, we use® = Q = 11. Cluster widths
o df Brsdgr were chosen to bé&/r = Wr = +. The first cluster was
dg' = arg max . O I (18)  centered atr = r = %22 while the second was centered at
dr (I— WBRO dr fr = Or = —L7°, corresponding taAt = Ar = 0.25 and
' At = Ar = —0.25, respectively. In determining the max-

for i = 1,2,3,... with dy’ = 17. The optimizations (17) S|NR shaping coefficients, we assumag = Ag = 0 as per
and (18) follow from the solution of a generalized eigenealune discussion in Section I1I-A. Figure 5 plots theshaped
problem. In our numerical experiments, (17)-(18) converggirtual channel coefficients, which are non-sparse eveagho
within two iterations. Without loss of genera"ty, we scahe the clusters are well Separated_ Figures 6-8 p|0t3‘haped
shaping coefficients so thitlr|| = [|dr|| = 1. virtual channel coefficients foD = {0, 1,2}, respectively.
B. The Shaped Smoothing Functions While s_haping vyithD = 0 heIp_s tc_) co_ncentrate the_ph_y_sical
cluster into a single virtual bin, it still leaves a signiinta
ount of energy in other virtual bins. Shaping with= 1
queezes each physical cluster almost completely into-3-by
3 virtual blocks; the shaped virtual representation is @te
fr(0,dr) = af(% —0)dr (19) sparse. WithD = 2, the shaped virtual clusters grow larger in
fr(0,dR) = ag(% — 0)dr. (20) order to further suppress out—of—clgsterenergy, and se dot
further enhance sparseness for this example. For largsteclu

The shaped smoothing functions are plotted in Fig. 2 (line@idths, though, larger values @ would be appropriate.
scale) and Fig. 3 (log scale) for the case of SIR-maximizing

dr anddg, P = Q =11, Wr = Wr = 3, At = Ag = 0, V. CONCLUSION

and various choices oD = Dt = Dg. Also plotted is the

unshaped smoothing function. Note that larger valueDof In this paper we demonstrated that a simple scaling of
trade sidelobe height for mainlobe width. It is interestiog antenna inputs and outputs has the potential to create a MIMO
note that the cas® = 0 is relatively close to the unshapedchannel whose uniform-beam-space (i.e., “virtual” [3]pne
case. Figure 4 shows the corresponding shaping coefficiesg¢mtation is sparse when the physical scattering envirohme
dr. Note that the shaping vector is even-symmetric and realas well localized scattering clusters. Specifically, spaess
valued, and that, in this casdy = dg by symmetry. was quantified in terms of SIR, and a max-SIR shaping

Comparing (2) and (5), we see that the unshaped smooth
functions fr(#) and fr(f) are generalized by the shape
smoothing functiong’t(6, dt) and fr(6, dr):



smoothing function

-20

-30

=701

—— unshaped
— D=0
— D=1
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-80

Fig. 3. Shaped smoothing function magnltumﬂﬁr(é) dr)| for SIR-

maximizingdr anddg, P = Q = 11, Wy = Wr = ? At = Ag =0,
and various choices adb = Dt = Dg, plotted on a log scale.
shaping coefficients
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Fig. 4. SIR-maximizing Shaping coefficients; for P = Q = 11, Wy =

Wr = %, At = Agr = 0, and various choices dD = Dy = Dg.

APPENDIX
First note that

[Hv]g1054p
= of (3 ) (dR)HD(dT)OéT(%)

L P-1

— . . oD
E :ﬁl § : eJ2ﬂ-chR,ce j2mOR, E 6]2F9T’lbd-T—7b€ j2mpb
=1 c=0 b=0

L
Zﬁl af (& —bOr1)dr -df or(L —0r))
=1

Then
E|[Hy]

2
Q+q,ﬁ+p|
L
= ZE |ﬁ[|2 d-|H E{OCT(% — 6‘11)0?(% - HT,I)}dT
l_
X dR E{aR 9R l)aR (— — 9Rl }dR

Now, examining the expectation ovef;

[E{aT F—traf (B —0r)}],,
_ ﬁ E{e—ﬂﬁ(%—@m)(c—b)}

1 Or+Wr/2 ) »
_ / e (B -0r.0(c=) ggr
g

PWr Or+Wr/2
1 ;2T
= Fe_ﬂ? (p=n=AD)(e=b) ginc(nWr(c — b)).

A similar derivation leads to

{E{QR HRI)aH(— _HRZ)}] b
= iefj%(qufAR)(cfb) sinc(7Wr(c — b)).

Q
Then
= 2
E[[Hv]g1 454l
= o2d{ B1(p,n, At)dr - df Br(q,m, Ar)dr
for Bt(p,n, At) and Br(q, m, Ar) defined in (7) and (8).
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coefficient design procedure was proposed assuming a single

cluster with uniformly distributed scatterers.
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