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Abstract— Through the use of antenna arrays at both ends
of a wireless link, a channel with significant delay and Doppler
spread can be decomposed into parallel virtual channels with
much smaller delay and Doppler spreads, thereby simplifying the
tasks of channel tracking and ISI mitigation. While one might
hope that a sparse physical environment (i.e., few, well-localized
scatterers) would lead to a sparse virtual channel representation,
this is not necessarily the case. Here we describe how a simple
scaling of antenna inputs and outputs can yield a sparseness-
preserving virtual channel model.1

I. I NTRODUCTION

Certain wireless communication scenarios are well charac-
terized by a sparse physical structure, where the propagation
between transmitter and receiver occurs primarily over a small
number of paths. With even a few paths, however, the overall
channel delay spread can be long if the path delays are dis-
parate. Furthermore, the overall channel response can change
in a somewhat complicated fashion when the path delays
vary in time. The tracking and mitigation of inter-symbol
interference (ISI) induced by a quickly varying multipath delay
profile is, in many applications, the most expensive function
performed by the receiver, and, in some applications, the
limiting factor to achieving high throughput [1].

The use of antenna arrays at the transmitter and receiver
can simplify the multipath tracking task, especially for sparse
channels [2]. For example, consider the case where the arrays
can form narrow beams. Sinceper-beamdelay and Doppler
spreads will be much smaller than those of the overall channel,
per-beam channel tracking can be made relatively simple. If,
in addition, only a few beams are active, then overall channel
tracking can be made quite manageable.

In the applications we consider, it is not usually the case
that the transmitter knows the active scattering angles. Thus it
is convenient to consider auniform transmitter beam spacing,
with the number of beams matching the number of transmit
antennas. The same uniform-beam-spacing can be applied at
the receiving array without loss of generality, since, as we
will see, the corresponding signal transformation is lossless.
This uniform approach has been studied by Sayeed and is the
basis for his “virtual channel” model [3]. One weakness of the
virtual channel model is that a sparsephysicalscattering envi-
ronment does not necessarily lead to a sparsevirtual channel
representation. In this paper, we show how a simple scaling of
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the antenna inputs and outputs can preserve sparseness in the
virtual multiple-input multiple-output (MIMO) channel model.

Notation: We use(·)t to denote transpose,(·)∗ conjugate,
and (·)H conjugate transpose.D(b) denotes the diagonal
matrix created from vectorb, andI the identity matrix. We use
[B]m,n to denote the element in themth row andnth column
of B, where row/column indices begin with zero.E{·} denotes
expectation,δk denotes the Kronecker delta with respect to
k ∈ Z, Z the set of integers, andsinc(x) := sin(x)/x.

II. BACKGROUND

We consider a MIMO system withP antennas at the
transmitter andQ antennas at the receiver. In the absence of
noise, the input/output relation can be described by

x = Hs

where the matrixH ∈ CQ×P describes the effects of multi-
path propagation.

We restrict ourselves to the case of uniform linear arrays
operating under the “narrowband” assumption. WithL prop-
agation paths, where thelth path departs at angleφT,l and
arrives at angleφR,l with path gainβl, we have [3]

H =

L∑

l=1

βlαR(θR,l)α
H
T (θT,l) (1)

αT(θT) =
1√
P

[
1 e−j2πθT · · · e−j2π(P−1)θT

]t

αR(θR) =
1√
Q

[
1 e−j2πθR · · · e−j2π(Q−1)θR

]t

θT =
dT

λ
sin(φT)

θR =
dR

λ
sin(φR).

Here dT and dR denote the antenna spacings at transmitter
and receiver, respectively, andλ denotes the propagation
wavelength. It is typical to define the normalized antenna
spacing asα = d/λ. Whereasφ represents thephysicalangle
of departure/arrival,θ can be interpreted as thespatial angle.
For simplicity we restrict ourselves to the critical spacing
αT = αR = 0.5, so that there exists a one-to-one mapping
betweenθ ∈ [−0.5, 0.5) andφ ∈ [−π/2, π/2). It is typical to



write theL-path physical model in matrix form as

H =
[
α(θR,1) · · · α(θR,L)

]

︸ ︷︷ ︸

AR(θR)

D
(
[β1, . . . , βL]

)

︸ ︷︷ ︸

HP

×
[
α(θT,1) · · · α(θT,L)

]H

︸ ︷︷ ︸

AH
T (θT)

,

whereHP is anL×L diagonal matrix. Note the dependence
of AR(θR) andAT(θT) on the spatial angles.

The finite dimensionality of the signal space also allows the
virtual channel model [3]

H =
[

α(−Q̃
Q ) α(−Q̃+1

Q ) · · · α( Q̃
Q )
]

︸ ︷︷ ︸

ÃR

HV

×
[

α(−P̃
P ) α(−P̃+1

P ) · · · α( P̃
P )
]H

︸ ︷︷ ︸

Ã
H

T

whereP̃ := P−1
2 andQ̃ := Q−1

2 (assuming thatP andQ are
odd), and whereHV ∈ CQ×P is no longer diagonal. Note
that ÃR and ÃT are channel-invariant unitary DFT matrices.
Using the fact thatHV = Ã

H

R HÃT, it is possible to show
[3] that

[HV ]Q̃+q,P̃+p =

L∑

l=1

βlfR(θR,l − q
Q )f∗

T (θT,l − p
P ) (2)

for − Q̃ ≤ q ≤ Q̃,−P̃ ≤ p ≤ P̃

fR(θ) =
sin(πQθ)

Q sin(πθ)
e−j2πQ̃θ (3)

fT(θ) =
sin(πPθ)

P sin(πθ)
e−j2πP̃θ (4)

While the virtual channel representation is attractive in
many ways (see [3]), the “smoothing functions”fR(θ) and
fT(θ) yield the undesirable behavior that the effects of local-
ized scattering may be distributed over many entries inHV . In
other words,a sparse physical scattering environment does not
necessarily lead to a sparse virtual channel representation. For
example, Fig. 1 plots|fT(θ)| versusθ, which can be interpreted
as the response of virtual coefficientp to a single scatterer at
departure angleθT = θ + p/P . Note that the response does
not decay quickly inθ. In this paper, we propose a relatively
simple transformation that corrects this behavior.

III. T HE SHAPED V IRTUAL CHANNEL

In (1),x = Hs was used to relate the antenna outputs to the
antenna inputs in the case of a multipath propagation channel.
Consider now scaling thepth transmit antenna input byd∗T,p

and scaling theqth receive antenna output bydR,q. Defining
the shaping coefficientvectorsdT := [dT,1, . . . , dT,P ]t and
dR := [dR,1, . . . , dR,Q]t, the shapedMIMO output x̄ can be
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Fig. 1. Smoothing function magnitude|fT(θ)| for P = 11.

written

x̄ = D(dR)H D(d∗
T)s

= ÃR Ã
H

R D(dR)H D(d∗
T)ÃT

︸ ︷︷ ︸

:=H̄V

Ã
H

T s

= ÃRH̄V Ã
H

T s

Our aim is to designdT and dR so that theshaped virtual
channel matrixH̄V is sparse whenever the physical scattering
clusters are well localized. Loosely speaking,the shaping
coefficients act as lenses through which the channel can be
brought into focus.

It is instructive to note that we can writēHV = CRHV C
H
T

for circulant (i.e., circular convolution) matricesCR :=

Ã
H

R D(dR)ÃR andCT := Ã
H

T D(dT)ÃT. Left multiplication
by CR can be interpreted as a filtering operation on the
columns of HV , and right multiplication byC

H
T can be

interpreted as a filtering operation on the rows ofHV . This is
reminiscent of linear filtering for ISI-channel shorteningprior
to symbol detection in single carrier systems [4] and of circular
filtering for ICI-channel shortening in multi-carrier systems
[5].

A. Max-SIR Shaping Coefficients

To design the shaping vectorsdT anddR, we first consider
an single scattering cluster that consists ofL paths uniformly
distributed in a region around the center anglesθ̄T and θ̄R.
Specifically, we model thelth path parameters as follows:

βl ∼ N (0, σ2
l )

θR,l ∼ U
[
θ̄R − WR

2 , θ̄R + WR
2

)

θT,l ∼ U
[
θ̄T − WT

2 , θ̄T + WT
2

)
.

Furthermore,{βl}, {θT,l}, and {θR,l} are assumed to be
statistically independent. In the distributions above,WT and



WR denote the cluster widths. The virtual bin indices nearest
the cluster center will be denoted by(m, n), and the distance
between cluster and bin centers will be denoted by∆T and
∆R. Together we have

θ̄R =
m + ∆R

Q
, ∆R ∈ [− 1

2 , 1
2 ), m ∈ {−Q̃, . . . , Q̃},

θ̄T =
n + ∆T

P
, ∆T ∈ [− 1

2 , 1
2 ), n ∈ {−P̃ , . . . , P̃}.

We quantify the “sparseness” of̄HV in terms of signal-to-
interference ratio (SIR) defined by the ratio of energy captured
by the(m, n)th virtual bin to energy in other virtual bins. To
allow for the possibility that a scattering cluster cannot be
well-squeezed into a single bin, we allow adon’t care region
of ±DT adjacent transmit bins and±DR adjacent receive bins.
Thus we define SIRDT,DR := Es/Ei, where

Es := E
∣
∣
[
H̄V

]

Q̃+m,P̃+n

∣
∣
2

Ei :=

Q̃
∑

q=−Q̃

P̃∑

p=−P̃

E
∣
∣
[
H̄V

]

Q̃+q,P̃+p

∣
∣
2

︸ ︷︷ ︸

Et

−
m+DR∑

q=m−DR

n+DT∑

p=n−DT

E
∣
∣
[
H̄V

]

Q̃+q,P̃+p

∣
∣
2

︸ ︷︷ ︸

Ed

.

In the previous equation,Et denotes the total energy andEd

the non-interference energy.
In the Appendix we show that

[
H̄V

]

Q̃+q,P̃+p
=

L∑

l=1

βl α
H
R ( q

Q − θR,l)dR

× d
H
T αT(

p

P
− θT,l) (5)

E
∣
∣
∣

[
H̄V

]

Q̃+q,P̃+p

∣
∣
∣

2

= σ2d
H
T BT(p, n, ∆T)dT

× d
H
R BR(q, m, ∆R)dR (6)

[
BT(p, n, ∆T)

]

c,b
:= 1

P e−j 2π
P

(p−n−∆T)(c−b)

× sinc
(
πWT(c − b)

)
(7)

[
BR(q, m, ∆R)

]

c,b
:= 1

Qe−j 2π
Q

(q−m−∆R)(c−b)

× sinc
(
πWR(c − b)

)
(8)

for σ2 :=
∑L

l=1 σ2
l . Equation (6) implies thatEs =

σ2d
H
T BT(n, n, ∆T)dT · dH

R BR(m, m, ∆R)dR. Thus, from (7)
and (8) we see thatEs is invariant to(m, n). To make this
invariance explicit, we write

Es = σ2
d

H
T BT,s(∆T)dT · dH

R BR,s(∆R)dR (9)

[BT,s(∆T)]c,b := 1
P ej 2π

P
∆T(c−b) sinc(π(c−b)

P ) (10)

[BR,s(∆R)]c,b := 1
Qej 2π

Q
∆R(c−b) sinc(π(c−b)

Q ). (11)

Equation (6) also implies that

Ed = σ2
d

H
T





n+DT∑

p=n−DT

BT(p, n, ∆T)



dT

× d
H
R





m+DR∑

q=m−DR

BR(q, m, ∆R)



dR

= σ2
d

H
T BT,n(∆T)dT · dH

R BR,n(∆R)dR (12)

where Euler’s identity yields

[BT,n(∆T )]c,b = 1
P ej 2π

P
∆T(c−b) sinc(π(c−b)

P )

×
(

1 + 2

DT∑

p=1

cos(2π
p

P
(c − b))

)

(13)

[BR,n(∆R)]c,b = 1
Qej 2π

Q
∆T(c−b) sinc(π(c−b)

Q )

×
(

1 + 2

DR∑

q=1

cos(2π
q

Q
(c − b))

)

.(14)

From (6) again we have

Et = σ2
d

H
T

(
P̃∑

p=−P̃

BT(p, n, ∆T )

)

dT

× d
H
R

(
Q̃
∑

q=−Q̃

BR(q, m, ∆R)

)

dR.

Exploiting the P -periodicity of BT(p, n, ∆T) and the Q-
periodicity of BR(q, m, ∆R),

P̃∑

p=−P̃

[BT(p, n, ∆T)]c,b

= ej 2π
P

∆T(c−b) sinc(π(c−b)
P )

1

P

P−1∑

p′=0

e−j2π p′

P
(c−b) = δc−b

Q̃
∑

q=−Q̃

[BR(q, m, ∆R)]c,b

= ej 2π
Q

∆R(c−b) sinc(π(c−b)
Q )

1

Q

Q−1
∑

q′=0

e−j2π q′

Q
(c−b) = δc−b

so that

Et = σ2‖dT‖2‖dR‖2. (15)

Combining (9), (12), and (15), we have

SIRDT,DR(dT, dR)

=
d

H
T BT,s(∆T)dT · dH

R BR,s(∆R)dR

‖dT‖2‖dR‖2 − d
H
T BT,n(∆T)dT · dH

R BR,n(∆R)dR
.(16)

Note that SIRDT,DR is invariant to‖dT‖, ‖dR‖, σ2, andL.
While the SIR expression (16) is invariant to(n, m), the

virtual bin location nearest to the cluster center, it depends on



the offsetbetween the cluster center and this nearest bin (i.e.,
∆T and∆R). But since

BR,s(∆R) = MR(∆R)H
BR,s(0)MR(∆R)

BT,s(∆T) = MT(∆T)H
BT,s(0)MT(∆T)

BR,n(∆R) = MR(∆R)H
BR,n(0)MR(∆R)

BT,n(∆T) = MT(∆T)H
BT,n(0)MT(∆T)

for diagonal “modulation” matrices

MT(∆T) := D
(
[ej 2π

P
∆T ·0, ej 2π

P
∆T ·1, . . . ej 2π

P
∆T (P−1)]

)

MR(∆R) := D
(
[ej 2π

Q
∆R·0, ej 2π

Q
∆R·1, . . . ej 2π

Q
∆R(Q−1)]

)
,

the SIR-maximizingdT and dR for the case of nonzero∆T

and ∆R are modulated versions of the SIR-maximizingdT

anddR for ∆T = ∆R = 0. The effect of the modulation is to
spatiallyde-rotatethe effective cluster center to the middle of
the nearest virtual bin. In practice, it is unlikely that∆T and
∆R will be known, especially at the transmitter. Furthermore,
when multiple clusters are present, it will not be possible
to individually de-rotate each cluster using a single set of
shaping coefficients. In either of these cases, it would be most
appropriate to design the shaping coefficients based on the
assumption that∆T = ∆R = 0.

A closed form solution to the joint maximization of (16)
appears difficult to obtain, so we propose to alternate

d
(i)

T = argmax
dT

d
H
T BT,sdT

d
H
T

(

I − d
(i−1)H

R BR,nd
(i−1)

R

‖d
(i−1)

R ‖2
BT,n

)

dT

(17)

d
(i)

R = argmax
dR

d
H
R BR,sdR

d
H
R

(

I − d
(i)H

T BT,nd
(i)

T

‖d
(i)

T ‖2
BR,n

)

dR

(18)

for i = 1, 2, 3, . . . with d
(0)

R = 1
T . The optimizations (17)

and (18) follow from the solution of a generalized eigenvalue
problem. In our numerical experiments, (17)-(18) converges
within two iterations. Without loss of generality, we scalethe
shaping coefficients so that‖dT‖ = ‖dR‖ = 1.

B. The Shaped Smoothing Functions

Comparing (2) and (5), we see that the unshaped smoothing
functions fT(θ) and fR(θ) are generalized by the shaped
smoothing functions̄fT(θ, dT) and f̄R(θ, dR):

f̄T(θ, dT) := αH
T ( p

P − θ)dT (19)

f̄R(θ, dR) := α
H
R ( q

Q − θ)dR. (20)

The shaped smoothing functions are plotted in Fig. 2 (linear
scale) and Fig. 3 (log scale) for the case of SIR-maximizing
dT and dR, P = Q = 11, WT = WR = 1

P , ∆T = ∆R = 0,
and various choices ofD = DT = DR. Also plotted is the
unshaped smoothing function. Note that larger values ofD
trade sidelobe height for mainlobe width. It is interestingto
note that the caseD = 0 is relatively close to the unshaped
case. Figure 4 shows the corresponding shaping coefficients
dT. Note that the shaping vector is even-symmetric and real-
valued, and that, in this case,dT = dR by symmetry.
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Fig. 2. Shaped smoothing function magnitude|f̄T(θ, dT)| for SIR-
maximizing dT and dR, P = Q = 11, WT = WR = 1

P
, ∆T = ∆R = 0,

and various choices ofD = DT = DR, plotted on a linear scale.

IV. N UMERICAL EXPERIMENTS

In Figs. 5-8 we show examples of virtual channel coefficient
(i.e., H̄V ) magnitudes for a randomly generated 2-cluster
environment withL = 100 paths per cluster. As in the
other examples, we usedP = Q = 11. Cluster widths
were chosen to beWT = WR = 1

P . The first cluster was
centered at̄θT = θ̄R = 2.25

11 while the second was centered at
θ̄T = θ̄R = − 1.75

11 , corresponding to∆T = ∆R = 0.25 and
∆T = ∆R = −0.25, respectively. In determining the max-
SINR shaping coefficients, we assumed∆T = ∆R = 0 as per
the discussion in Section III-A. Figure 5 plots theunshaped
virtual channel coefficients, which are non-sparse even though
the clusters are well separated. Figures 6-8 plot theshaped
virtual channel coefficients forD = {0, 1, 2}, respectively.
While shaping withD = 0 helps to concentrate the physical
cluster into a single virtual bin, it still leaves a significant
amount of energy in other virtual bins. Shaping withD = 1
squeezes each physical cluster almost completely into 3-by-
3 virtual blocks; the shaped virtual representation is indeed
sparse. WithD = 2, the shaped virtual clusters grow larger in
order to further suppress out-of-cluster energy, and so does not
further enhance sparseness for this example. For larger cluster
widths, though, larger values ofD would be appropriate.

V. CONCLUSION

In this paper we demonstrated that a simple scaling of
antenna inputs and outputs has the potential to create a MIMO
channel whose uniform-beam-space (i.e., “virtual” [3]) repre-
sentation is sparse when the physical scattering environment
has well localized scattering clusters. Specifically, sparseness
was quantified in terms of SIR, and a max-SIR shaping
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Fig. 3. Shaped smoothing function magnitude|f̄T(θ, dT)| for SIR-
maximizing dT and dR, P = Q = 11, WT = WR = 1
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, ∆T = ∆R = 0,
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coefficient design procedure was proposed assuming a single
cluster with uniformly distributed scatterers.

APPENDIX

First note that
[
H̄V

]

Q̃+q,P̃+p

= αH
R ( q

Q )D(dR)H D(d∗
T)αT( p

P )

=

L∑

l=1

βl

Q−1
∑

c=0

ej2π q

Q
cdR,ce

−j2πθR,lc
P−1∑

b=0

ej2πθT,lbd∗T,be
−j2π p

P
b

=

L∑

l=1

βl α
H
R ( q

Q − θR,l)dR · dH
T αT( p

P − θT,l)

Then

E
∣
∣
[
H̄V

]

Q̃+q,P̃+p

∣
∣
2

=
L∑

l=1

E |βl|2 d
H
T E

{
αT( p

P − θT,l)α
H
T ( p

P − θT,l)
}
dT

× d
H
R E

{
αR( q

Q − θR,l)α
H
R ( q

Q − θR,l)
}
dR.

Now, examining the expectation overθT,l

[
E
{
αT( p

P − θT,l)α
H
T ( p

P − θT,l)
}]

c,b

=
1

P
E
{
e−j2π( p

P
−θT,l)(c−b)

}

=
1

PWT

∫ θ̄T+WT/2

θ̄T+WT/2

e−j2π( p

P
−θT,l)(c−b)dθT,l

=
1

P
e−j 2π

P
(p−n−∆T)(c−b) sinc(πWT(c − b)).

A similar derivation leads to
[

E
{
αR( q

Q − θR,l)α
H
R ( q

Q − θR,l)
}]

c,b

=
1

Q
e−j 2π

Q
(q−m−∆R)(c−b) sinc(πWR(c − b)).

Then

E
∣
∣
[
H̄V

]

Q̃+q,P̃+p

∣
∣
2

= σ2d
H
T BT(p, n, ∆T)dT · dH

R BR(q, m, ∆R)dR

for BT(p, n, ∆T) andBR(q, m, ∆R) defined in (7) and (8).
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Fig. 5. HV coefficient magnitudes for 2-cluster scattering. (No shaping.)
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shaping forD = DT = DR = 0.
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Fig. 7. H̄V coefficient magnitudes for 2-cluster scattering with SIR-optimal
shaping forD = DT = DR = 1.
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Fig. 8. H̄V coefficient magnitudes for 2-cluster scattering with SIR-optimal
shaping forD = DT = DR = 2.


