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Abstract—We consider tracking a doubly-selective channel the channel corresponding to the data portion is obtained by
given a transmission stream which alternates between datand  MMSE interpolation of the observations due to pilot portién
pilot blocks. Current and previous pilots, as well as previaisly- decision-directed LMMSE prediction technique was propose
decoded data blocks, are used for estimation of channel pa- . . . .
rameters. The optimal Kalman and Wiener estimators for this !n (8], and modifications tP make the pred'Ctor_Coeﬁ'C'ems
scenario are computationally expensive. In response, we gpose independent of the transmitted data were also given.

a novel two-stage estimation technique whose performancesi  We consider the fast fading scenario, in which there is
close to that of the optimal estimators but whose complexitys  significant variation of the channel within each frame. For

significantly less. The first stage finds smoothed estimates$ the ; ; Ty s
channel during previous frames, while the second stage ustsese these fast fading scenarios, pilot-based least squarg

smoothed estimates for channel prediction within the currat -MMSE techniques were proposed in [10] and [9], respec-
frame.! tively, and a recursive decision-directed LS technique was

given in [11]. In [12], low complexity estimation technigzie
I. INTRODUCTION were presented based on a clever selection of pilot bloaks. T

We consider identification of a doubly-selective chann&Prove on the MSE performance available from pilot-only
when the transmitted signal is an infinite stream of frameSchemes, we consider decision-directed pilot-aided MMSE
where each frame consists of a symbol block followed by &timation. _ _
pilot block, as in Fig. 1. Identification is accomplishedngsi N Section Il we review the “standard” methods of (linear
the current pilot block and past frames, where the data i p4§1€-varying) channel identification, which include piloased
frames is assumed to be perfectly decoded. The length-MMSE estimation, decision-directed pilot-aided Wienee-pr
pilot block is assumed to have a Kronecker delta structutie wiiction, and decision-directed pilot-aided Kalman prédic
N, = 2N}, — 1, where N, is the channel delay spread.ThisThe pgrformance of the pllot_-only tec?mque is limited bg th
pilot sequence has been claimed to satisfy several MSE- dfMe intervalVy = Ny+Ny; if fo > a5, wheref; denotes
capacity-based optimality criteria in the case of non-siea- the normalized Doppler frequency, then the channel is under
directed identification of a doubly-selective channel fram Sampled and identification breaks down. The decision-tiitec
single zero-padded frame [1]. The structure of our |engtp§_alman and Wiener predlctors_ do not have this limitation
N, data block is not important; it could be composed Gind hence perform better for higher Doppler rates. However,
frequency-domain symbols, as in OFDM [2], [3], or time?NCce per frame they require the inversion of a matrix of size

domain symbols, as in single carrier cyclic prefix (SCCP) [4]Vs * IV Or larger, so their complexity may be prohibitive for
typical values ofN¢. Hence in Sections IV and V we propose

identification schemes with MSE performance close to that

! " FRAME of the standard Kalman and Wiener predictors but without
‘ M \ large matrix inverses. In Section VI we present numerical
T T T T simulations that demonstrate the efficacy of our proposed
DATA ‘ ‘ DATA ‘ ‘ DATA ‘ technlques_
Notation: We use(-)! to denote transposé;)* conjugate,
Fig. 1. Transmission pattern. and ()7 conjugate transposéZ{-} denotes expectation op-

erator, §(-) the Kronecker delta, and-)y the modulo®N
The channel estimation for OFDM systems has been consfieration.
ered in [5]-[10]. The works [5]-[8] considered fading scena

Il. SYSTEM MODEL
ios in which the channel variation within a frame (or OFDM

. .. .. . . . (i) ._ iy} Na—1 .
symbol) is negligible. Decision-directed adaptive altioris _thwe use?a E {ty o t(c;)denotg thﬁdggti?ortlon of the
for channel tracking were discussed in [5]. Pilot-baseedin ' transmission frame and,” := {t;’}, 2y *  to denote

MMSE (LMMSE) techniques were discussed in [7] wheréhe corresponding pilot portion. The Kronecker patternliesp
thatt(? = 0 for Ny <n < Ng+ N, —2 and Ny + Nj, <

. (@) _
1This work was supported by NSF CAREER CCR-0237037. n < Ny + 2N, — 2, and thattNdJrNh,f1 = 2N, — 1. The



complete set of samples transmitted durlng teframe is M previous frames, |e{y{,7 M1k=M Hence we form the
denoted byT® := 7,7 U T, = {t}27;*, and the multi- observation vectoy’ = [y, ..., y§ M”] Sinceh}’ and
Zp

frame transmitted S|gna(ltn} is defined byt,, := tz“;/Nf”. y are jointly Gaussian, the MMSE estimator is linear and

The transmitted signal passes through a noisy doublgiven by [13]
selective linear channel before observation at the receive

time-n observation can be written as hy’ oot = Rgp g (Rgp,gp)*lg:;), (3)
Np—1
Z hn,atn—d + vy, for neZ, (1) whereR,, j, = E{yé”hé”H} andR, , = E{yé”yé,”H}-
=0 =p = =p’Zp =P =

where h,, 4 denotes the response of the channel at time
to an impulse applied at time — d, and where{v,} is
proper complex zero-mean white Gaussian noise process witlThe decision-directed pilot-aided Wiener predictor (WP)

B. Wener Predictor

varianceag. If 3 = ying+n @and b’y = hin;4na @nd  uses the pilot block in thé frame {))5"} as well as all the
vy = ViN;4n, then received samples i/ previous frameg) ¢~} | Here we
Np—1 form the observation vectqy) = lyp D gt ot
= 3 RO 4l for 0<n<N;—1, (2) and the channel vectoh,, = [hy', h"" ”t,...,h“*M”]t._
=0 Since the channel is linear, we can relate the observation to

adopting the convention thdt? = 0 for n < 0, which is the channel coefficients via

vindicated due to the sufficient number of zeros in the pilot <1:>
block of the previous frame. Yu

The following notation will be useful in the sequély’ := o .
0} Nat N2 and e Ne—1 will denote whereT; is a matrix whose elements are constructed from
(v ) Yn Tn=Ny+Ny—1 the set{T“ WM and wherevy’ contains white Gaussian

t?f data and pilot portlons of the re%(?lved f)amples in trﬁ%|se samples. Assumlng that all the previous data blocks
frame, respectively, an@’” := )" U ),"”. Arrang-

have been correctly decoded, the maffiff’ is known and
(i) (4) (3)
ing the elements OD} ’y ,» and Y in increasing order the quantmeSy“ and k) are jointly Gaussian. Hence the
yields the vectora;/d , yp , andy®, respectively. Similarly,

= TR + o)) @

MMSE predlctor is given by
N¢—1
MY = {h® ! Vd}Nd-f-Nh 2 H‘()J = {hnded}niNﬁM_l,
and H® := Hg’ U Hy’. The vectorshy’ and h;,’ are R _ R“)H (T Ra, 1 TOH 4 521 y® (5)
defined element-wise a{ﬁé“] =h and [h$]; wiener Zu s v
LI/Nh tJ (D Ny p

) @) _ [pOF p ) . . .

Ny Ny —1 /N | (1, » ANDREY = [Rg™ R whereR{, , = E{y'h{’""} and Ry, pn, = E{hy/h"}.

Taking the point of view thah{’ is useful for detection
of the unknown data ir7”, our goal is estimation oh’
using current and past observatidds’—* }>o, current pilots
7,", and past transmission framg& “~*},~1. The pilots are
knowna priori by the receiver, and, under the assumption o
perfect decoding, past transmission frames are known ds wel
It is for reasons of simplicity that we assume perfect dengdi C. Kalman Predictor
error propagation will be addressed in future work.

We assume the channel to be Rayleigh-fading wide-se
stationary uncorrelated scattering (WSSUS). Tlhs; are
zero-mean circular Gaussian with correlatiogy, (I, m) =
E{hn.ah}, 1 q ) = 03Jo(2m fal)d(m), where Jo(-) is the
0" order Bessel function of first kindf, is the normalized
Doppler frequency, and? is the variance ofi*" tap.

In (5), the matrix to be inverted is of SiZ&/ Ny + Np,) x
(M Ny + Ny). The inverse must be computed for each frame
index since it depends on transmitted data. Thus increasing
f[ leads to higher performance but increased complexity.

In this section, we formulate channel estimation as a
R&Iman prediction (KP) problem [14].

1) Problem Setup: We assignh“~" as the currenstate of
the channelh as the next state, angl' " = [yS "y
as the current observation.

2) Dynamical Equation: The state dynamics can be written
as

I1l. REVIEW OF STANDARD ESTIMATORS

Here we review the “standard” methods of channel identifi- h' = A¢h"" + Dyw/™" (6)
cation and tracking. Though these techniques are well known - _ _ _
their presentation yields a notational framework that wit Where —w, is a white Gaussian vector, ie.,

useful in the sequel. E{w{ Vw1 = on I6(p). The matrices A, and
. ] Dy, and the state noise variance), , are obtained by
A. Pilot-based Channel Estimator auto regressive (AR) modeling of the Doppler channel.

The pilot-based channel estimator (PCE) uses only tiilhe WSSUS assumption implies that, Dy andcr are
received samples from the pilot block in tli# frame and constant from frame to frame.



3) Observation Equation: The first part of the observation A. Kalman Smoothing Stage

vector,yg~ ", can be written as The smoothed channel estimates of tie- 1) frame
y ™ = TE VR polY, (7) are obtained using Kalman filtering. We design the Kalman
smoother so that it take& adjacent received samples and
ds the smoothed estimates of the channel during that time
terval. To find the smoothed estimates of the channel durin
the entire frame, this procedure must be repedied- %
Yy = Gh"Y + vy, (8) times. Since we use onlyy measurements at a time, inversion

. . will be performed on at most alh x L matrix. Details are
for known constant matrikz (composed of samples from pilot ;
provided below.

() i i i
blocks), and where,’ is a white Gaussian vector. Using (6), Let H(—% and Y¢—*» denote thek™ subset of (¢~

whereT', " is a matrix whose elements are constructed fro
7%~V and wherev§ ™" is a white Gaussian vector. The secon
part of the observation vectog,’, can be written as

we rewrite (8) as | | | and Y-, respectively, WithHG-1% = {hS—dl) Vd}gllc:-f-le)L—l
v = GAh" Y+ GDaw + vy ®) and yooro = fyu DI for ko€ {0, K — 1),
Using (8) and (9), we have The vectorsh " andy“~** are defined element-wise as
- T|(:4) ) vglil) [hflflv’“)]l = hgiru/zvh,mmh and [y¢—»], = yl?f—?l' Let
b=l ea | T Dl + v | A0 hUP be the current channel state of the smoothér,"*
-~ K P be the next state, angl’~*'* be the current observation vector.
ci Y p Y We write the dynamical equation as
_ CI((i—l)h(i—l) +yl((i—1) (12) e N Dlwl(i—l,k) (15)
1 _ (i—-1) (i-1)H )
We define S = FE{w pc T} oand Ry where w{""" is a white Gaussian process with

E{vg Vvl "} for use in the sequel.
4) Predictor Equation: From (6) and (11), the MMSE esti-
mate ofh" using the observationgy~", ...,y” }, denoted

Ef{w{ w0 = 62 I6(p)é(q). The matrices
A, and D, and aful are obtained by AR modeling of the
channel. The current observatigif—*-*’can be written as

~ (4) . . .
by h ‘k ey’ 1S GIVEN recursively as _ e _
alman y(lfl,k) — Tl(z— s )h(m—uc) +,U(7,71,k) (16)

- (i) £ (i—1)
h

= Aih

kalman ‘kalman where (""" is a matrix whose elements are constructed

+ L|<(i—1>[yl<:—1) _ Cliifl)ﬁ“*” ](12) from a subset of “~". For the system described by (15) and
B (16), th’” denote thesmoothed MMSE estimate of“ "%
using observationg{y“ ", ..,y yt=2 L y©} and
LI = (APVCI T 4+ DySy) let b, " denote thepredicted MMSE estimate ofh ="
y (Cl(:—l)Pl((i—l)Cl((i—l)H +R)Y (13) using the observat_lon@“_*l”f”, U A T I VI
The smoothed estimate is given by [14]

~ (i—1,k) A (i—1,k)

‘kalman

where the predictor gait, " is given by

and P, ~" is given recursively as

A (i—1,k)

PV = 0% DDY + APV Al by =he T MY ST R A7)
Wk
—LE(CUP PV AR + SE D) (14) with smoother gain
N (i—1,k) __ (i—1,k)qr(i—1,k) H

with initializations P\ = E{h” R} and B caman = 0" M, = P v T _ _

Note that the Kalman predictor useli previous observa- x (TP RT T 4 621) 7 (18)
tions in its prediction ofh™”; this is the advantage of the KPThe redicted estimate is given recursively as
over the WP. However, the performance of the KP depends on P ‘ » 9 y
how well the model (6) describes the true evolution of théesta BV o= AR+ AMEY
process. Note also, from (13), that the KP requires a matrix (-1k1) _ pl-tk-p pETIRDT g0
inversion of sizeNy x Ny once per frame. xly o ! I (19

IV. Low COMPLEXITY PREDICTOR where P;"""" is given recursively as
In this section, we propose a novel computationally-effitie P = gilplplﬂ + AlP;H”f*UAlH

decision-directed channel tracker that does not requigela
matrix inversions.

We break the prediction diy’ into two stages. In the first with initializations P{~® = Pi—29 p{ 0 = 0
stage, we find “smoothed” channel estimates d.urmg(.the ©.0) _ E{h(o,o)h(o,o)H}, and ﬁlmm — 0. We form the
1)*" frame. In the second stage, we use the received pilot blo&%oot
in the i*" frame as well as smoothed channel estimates fr
M previous frames to prediué“. With some approximations, » o » .
the predictor can be made time-invariant. RV = R R (21)

_ AlMl(ifl,k—l)Tl(i—l,k—l)PI(i—l,k—l)Alf-I (20)

hed estimate of the channel tap vector for(the 1)
me as



This smoothed channel estimate vector is related to the tfeeLCP with Kalman Prediction

channel vector as The prediction stage of LCP was based on Wiener prediction

= h" Y " (22) using smoothed estimates dff previous frames. Instead,
LCP could be modified to use Kalman prediction (LCKP),
thus incorporatingall previously smoothed estimates. Using
B. Wener Prediction Stage h“ Y andh™ to denote the current and next channel states,
tréarspecuvely, the dynamical equation is described by (6 T
current observation vector can be written as

= (i-1)
hy

wheree"" denotes the smoothing error.

From (8) and (22), the prediction stage observation vec
y," is formed as

) ; (i—1)t
y|(1) _ [ ()t h(l 1)t7_ ,iL:kM)t]t (23) yfk Vo= [h é))t] (30)
= (i-1) = (i-1) i i
= h{" + v’ (24) ——
01rI By
B ~ (i
. . . where " is the smoothed channel estimate during the data
where A = [V A and v he hig . h - 9
R ol 1 . 1 Y portion of thg(z —1)™ frame. Using (6), (8), and (31}, "
p € 1 € . , .. can be rewritten as
Expenmentally, we find that the smoothing erref’ is
dominated by the measurement noise. So, to reduce predictor ., ,, | By RU-D 4 B.ke“ B (32)
complexity, we make the following approximations. Y T | GAx o)+ GDw ™"
(4) ( yH 2 ;
E{v/"v,""} =~ o1, (25) Ci oY
E{y “h( 7y =~ 0, (26) = Ckh“™" + o, (33)
E{h"v""} ~ 0. (27) _ o
Incorporating approximation (25), we have
With (25)-(27), the predictor equation is
0 , Ry = B{vi Vv "y (34)
) - H 21 Ik v,
ol = Py BRun BT @9 BB 0 (35)
where Ry, n, = E{y("hy’"'} and Ry, p, = E{h{"h;"""}. 0 oil + 0l GD(D{ G
The predictor coefﬁuents in (28) are time invariant; matri Sk = E{w“ ”vﬁ; UH} (36)
inversion is not required at the frame rate. Thus LCP reguire _ [ 0 012“ Df Gt ] _ 37)

at most anL x L matrix inversion in the smoothing stage

(18). The choice of. is a tradeoff between performance anjnce constant matrices are used in the dynamical equation

complexity. (6), the observation equation (33), and the correlatiorrimat
V. LCP MODIEICATIONS definitions (35) and (37), theteady state Kalman predictor

(i)
Here we discuss modifications to the LCP prediction Staagfﬁces Denotlngz( |1)kp as th)e MMSE estimate di™ using
motivated by further reductions in complexity and memortie observationgy;, ™", ..., y\’}, the recursive steady state

requirements. predictor equation is given by [14]
. . ~ () ~(i—1) (i—1)
A. LCP with Downsampling h oo = A ‘Ickp+L [yl — Cyh e kp] (38)
In “LCP with downsampling” (LCPD), we use a down-

sampled set of smoothed estimates for prediction. For émntegvith steady state predictor gain
downsampling ratia-, the downsampled smoothed estimates
of the (i — 1) frame are defined element-wise as Lo = (AxPCi+ DySi)(CikPCii + Ri)™"

= (i-1) = (i-1)

[y = [l ]LNL}LJTN;L+(Z>N}L (29)  and symmetric, positive semi-definite Riccati solution

The prediction is identical to LCP but Wilfn,(; " replacing P, = Dka + AP A — (AP Cy + D Si)
hfz Y. The downsampling helps in two ways. % (CkPoCH + Ry) " (Cy P AP + SEDI),
1) The observation vector for LCPD prediction is approx-
imately » times smaller than that of LCP, reducing Note thatL., and P, are frame invariant. Whereas the
complexity and memory requirements. LCP observation includes smoothed estimates frfnpre-
2) With downsampling, the time difference betweeRious frames, the LCKP observation includes only smoothed

smoothed estimates increases and hence approximag@tfimates from the most recently decoded frame, thus reguci
(25) becomes more accurate. memory requirements.



Technique | Sze of matrix inversion per frame
PCE n.a.
WP (MNy + Np) x (MNy + Np,)
KP Nf X Nf
LCP LxL
LCPD LxL
LCKP LxL
TABLE |

RELATIVE ALGORITHM COMPLEXITY.

VI. SIMULATION RESULTS

We consider frame sizéV; = 80, channel delay spread
N;, = 8, and (uniform) channel tap varianeg = Nh‘l. For
each estimation technique, the required matrix inversipa s
is given in Table I. The typical values a¥/ and L in our
simulations are2 and 10 respectively. Though LCP, LCPD
and LCKP requireK = % matrix inversions per frame, the
O(N?) matrix inversion complexity rule implies that LCP,
LCPD and LCKP are much more computationally efficient
than WP and KP. For all simulations, MSE performance is
averaged over at least 1000 channel realizations, whete eac
realization spans at least 10 frames.

As areference, we consider the so-called “persistentitigin
and prediction” (PTP) scheme. For PTP, we transmit pergiste
pilots instead of data:

[Ny f N €Z
= {O otherwise (39)

We predict A using all past observations and the pilot
observation of the” frame with an 1IR Wiener filter.

In Fig. 2, we plot MSE versus SNR gf; = 0.01. In
this case,f; > ﬁ and hence the performance of PCE is
poor. In Fig. 3, we plot MSE versus normalized Doppfer
at SNR= 15dB. As expected, MSE performance decreases as
fa increases. Note that LCP performance is not far from that
of WP and KP.

In Fig. 4, we show the effect af/ on LCP and WP. As\/
increases, both WP and LCP incorporate more observations
hence MSE performance improves. In Fig. 5, we show the
effect of L on LCP performance. Increasinfy improves
performance of the Kalman smoothing stage, at the cost of
increased complexity.

In Fig. 6, we plot the MSE performance of LCPD for
different downsampling ratios. Based on the discussion in
Section V-A, it is not surprising that the = 2 performance
is slightly better than the = 1 performance at high SNR.
Further increase im, however, degrades MSE performance
because too much information is lost through downsampling.

In Fig. 7, we compare LCKP to LCP and KP. As expected,
LCKP performs better than LCP, though the difference is sig-
nificant only at high SNR. Also as expected, LCKP performs
worse than KP, though the performance gap would decrease
with an increase in..
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MSE in dB
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Fig. 2. Comparison of estimation techniques figr= 0.01.
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Fig. 3. Effect of f; on MSE performance a&f N R = 15dB.
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Fig. 4. Effect of M on WP and LCP forf; = 0.01.



-10 VIl. CONCLUSION

We proposed a low-complexity two-stage doubly-selective-
channel tracking scheme for transmissions composed of an
infinite sequence of frames, where each frame has a data block
followed by a Kronecker-delta pilot block. The first-stage
computes smoothed estimates of previous channel coefficien
and the second stage uses these smoothed estimates, along
L with the current pilot observation, to predict the chanmel i
the current frame. Approximations are made to reduce the
complexity of the second stage predictor. Simulation tssul
show that the proposed low complexity scheme has MSE
performance comparable to the Wiener and Kalman predictors
but without requiring large matrix inverses. Modificatioos
- ‘ ‘ ‘ ‘ the low complexity scheme that reduce memory requirements

5 10 15 20 25

SNRindB were also introduced.
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