
Reduced-Complexity Decision-Directed Pilot-Aided
Tracking of Doubly-Selective Channels

Arun P. Kannu and Philip Schniter
Dept. ECE, The Ohio State University

Columbus, OH 43210

pachaik@ee.eng.ohio-state.edu, schniter@ee.eng.ohio-state.edu

Abstract— We consider tracking a doubly-selective channel
given a transmission stream which alternates between data and
pilot blocks. Current and previous pilots, as well as previously-
decoded data blocks, are used for estimation of channel pa-
rameters. The optimal Kalman and Wiener estimators for this
scenario are computationally expensive. In response, we propose
a novel two-stage estimation technique whose performance is
close to that of the optimal estimators but whose complexityis
significantly less. The first stage finds smoothed estimates of the
channel during previous frames, while the second stage usesthese
smoothed estimates for channel prediction within the current
frame.1

I. I NTRODUCTION

We consider identification of a doubly-selective channel
when the transmitted signal is an infinite stream of frames,
where each frame consists of a symbol block followed by a
pilot block, as in Fig. 1. Identification is accomplished using
the current pilot block and past frames, where the data in past
frames is assumed to be perfectly decoded. The length-Np

pilot block is assumed to have a Kronecker delta structure with
Np = 2Nh − 1, whereNh is the channel delay spread.This
pilot sequence has been claimed to satisfy several MSE- and
capacity-based optimality criteria in the case of non-decision-
directed identification of a doubly-selective channel froma
single zero-padded frame [1]. The structure of our length-
Nd data block is not important; it could be composed of
frequency-domain symbols, as in OFDM [2], [3], or time
domain symbols, as in single carrier cyclic prefix (SCCP) [4].
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Fig. 1. Transmission pattern.

The channel estimation for OFDM systems has been consid-
ered in [5]–[10]. The works [5]–[8] considered fading scenar-
ios in which the channel variation within a frame (or OFDM
symbol) is negligible. Decision-directed adaptive algorithms
for channel tracking were discussed in [5]. Pilot-based linear
MMSE (LMMSE) techniques were discussed in [7] where
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the channel corresponding to the data portion is obtained by
MMSE interpolation of the observations due to pilot portion. A
decision-directed LMMSE prediction technique was proposed
in [8], and modifications to make the predictor coefficients
independent of the transmitted data were also given.

We consider the fast fading scenario, in which there is
significant variation of the channel within each frame. For
these fast fading scenarios, pilot-based least squares (LS) and
LMMSE techniques were proposed in [10] and [9], respec-
tively, and a recursive decision-directed LS technique was
given in [11]. In [12], low complexity estimation techniques
were presented based on a clever selection of pilot blocks. To
improve on the MSE performance available from pilot-only
schemes, we consider decision-directed pilot-aided MMSE
estimation.

In Section III we review the “standard” methods of (linear
time-varying) channel identification, which include pilot-based
MMSE estimation, decision-directed pilot-aided Wiener pre-
diction, and decision-directed pilot-aided Kalman prediction.
The performance of the pilot-only technique is limited by the
frame intervalNf = Nd +Np; if fd > 1

2Nf
, wherefd denotes

the normalized Doppler frequency, then the channel is under-
sampled and identification breaks down. The decision-directed
Kalman and Wiener predictors do not have this limitation
and hence perform better for higher Doppler rates. However,
once per frame they require the inversion of a matrix of size
Nf ×Nf or larger, so their complexity may be prohibitive for
typical values ofNf . Hence in Sections IV and V we propose
identification schemes with MSE performance close to that
of the standard Kalman and Wiener predictors but without
large matrix inverses. In Section VI we present numerical
simulations that demonstrate the efficacy of our proposed
techniques.

Notation: We use(·)t to denote transpose,(·)∗ conjugate,
and (·)H conjugate transpose.E{·} denotes expectation op-
erator, δ(·) the Kronecker delta, and〈·〉N the modulo-N
operation.

II. SYSTEM MODEL

We useT (i)

d := {t(i)n }Nd−1
n=0 to denote the data portion of the

ith transmission frame andT (i)

p := {t(i)n }Nd+Np−1
n=Nd

to denote
the corresponding pilot portion. The Kronecker pattern implies
that t(i)n = 0 for Nd ≤ n ≤ Nd + Nh − 2 and Nd + Nh ≤
n ≤ Nd + 2Nh − 2, and thatt(i)Nd+Nh−1 =

√
2Nh − 1. The



complete set of samples transmitted during theith frame is
denoted byT (i) := T (i)

d ∪ T (i)

p = {t(i)n }Nf−1
n=0 , and the multi-

frame transmitted signal{tn} is defined bytn := t
(bn/Nfc)

〈n〉Nf

.

The transmitted signal passes through a noisy doubly-
selective linear channel before observation at the receiver. The
time-n observation can be written as

yn =

Nh−1∑

d=0

hn,dtn−d + vn for n ∈ Z, (1)

where hn,d denotes the response of the channel at timen

to an impulse applied at timen − d, and where{vn} is
proper complex zero-mean white Gaussian noise process with
varianceσ2

v . If y(i)
n := yiNf +n and h

(i)

n,d := hiNf+n,d and
v(i)

n := viNf +n, then

y(i)

n =

Nh−1∑

d=0

h
(i)

n,dt
(i)

n−d + v(i)

n for 0 ≤ n ≤ Nf − 1, (2)

adopting the convention thatt(i)n = 0 for n < 0, which is
vindicated due to the sufficient number of zeros in the pilot
block of the previous frame.

The following notation will be useful in the sequel.Y(i)

d :=

{y(i)
n }Nd+Nh−2

n=0 and Y(i)

p := {y(i)
n }Nf−1

n=Nd+Nh−1 will denote
the data and pilot portions of the received samples in the
ith frame, respectively, andY(i) := Y(i)

d ∪ Y(i)

p . Arrang-
ing the elements ofY(i)

d ,Y(i)

p , and Y(i) in increasing order
yields the vectorsy(i)

d , y
(i)

p , andy(i), respectively. Similarly,
H(i)

d := {h(i)

n,d ∀d}Nd+Nh−2
n=0 , H(i)

p := {h(i)

n,d ∀d}Nf−1
n=Nd+Nh−1,

and H(i) := H(i)

d ∪ H(i)

p . The vectorsh
(i)

d and h(i)

p are
defined element-wise as[h(i)

d ]l = h
(i)

bl/Nhc,〈l〉Nh
and [h(i)

p ]l =

h
(i)

Nd+Nh−1+bl/Nhc,〈l〉Nh
, andh(i) = [h(i)t

d , h(i)t
p ]t.

Taking the point of view thath(i)

d is useful for detection
of the unknown data inT (i), our goal is estimation ofh(i)

d
using current and past observations{Y(i−k)}k≥0, current pilots
T (i)

p , and past transmission frames{T (i−k)}k≥1. The pilots are
known a priori by the receiver, and, under the assumption of
perfect decoding, past transmission frames are known as well.
It is for reasons of simplicity that we assume perfect decoding;
error propagation will be addressed in future work.

We assume the channel to be Rayleigh-fading wide-sense
stationary uncorrelated scattering (WSSUS). Thushn,d are
zero-mean circular Gaussian with correlationrhh(l, m) =
E{hn,dh

∗
n−l,d−m} = σ2

dJ0(2πfdl)δ(m), whereJ0(·) is the
0th order Bessel function of first kind,fd is the normalized
Doppler frequency, andσ2

d is the variance ofdth tap.

III. R EVIEW OF STANDARD ESTIMATORS

Here we review the “standard” methods of channel identifi-
cation and tracking. Though these techniques are well known,
their presentation yields a notational framework that willbe
useful in the sequel.

A. Pilot-based Channel Estimator

The pilot-based channel estimator (PCE) uses only the
received samples from the pilot block in theith frame and

M previous frames, i.e.,{Y(i−k)

p }k=M
k=0 . Hence we form the

observation vectory(i)

p
= [y(i)t

p , ..., y
(i−M)t
p ]t. Sinceh

(i)

d and
y(i)

p
are jointly Gaussian, the MMSE estimator is linear and

given by [13]

ĥ
(i)

d
∣
∣
pilot

= RH
y

p
,hd

(Ry
p
,y

p
)−1y(i)

p
, (3)

whereRy
p
,hd = E{y(i)

p
h

(i)H
d } andRy

p
,y

p
= E{y(i)

p
y(i)H

p
}.

B. Wiener Predictor

The decision-directed pilot-aided Wiener predictor (WP)
uses the pilot block in theith frame{Y(i)

p } as well as all the
received samples inM previous frames{Y(i−k)}M

k=1. Here we
form the observation vectory(i)

w
= [y(i)t

p , y(i−1)t, ..., y(i−M)t]t

and the channel vectorh(i)

w = [h(i)t
p , h(i−1)t, ..., h(i−M)t]t.

Since the channel is linear, we can relate the observation to
the channel coefficients via

y(i)

w
= T (i)

w h
(i)

w + v(i)

w (4)

whereT (i)

w is a matrix whose elements are constructed from
the set{T (i−k)}M

k=1, and wherev(i)

w contains white Gaussian
noise samples. Assuming that all the previous data blocks
have been correctly decoded, the matrixT (i)

w is known and
the quantitiesy(i)

w
and h

(i)

w are jointly Gaussian. Hence the
MMSE predictor is given by

ĥ
(i)

d
∣
∣
wiener

= R
(i)H
y

w
,hd

(T (i)

w Rhw,hw
T (i)H

w + σ2
vI)−1y(i)

w
(5)

whereR
(i)

y
w
,hd

= E{y(i)

w
h

(i)H
d } andRhw,hw

= E{h(i)

w h
(i)H
w }.

In (5), the matrix to be inverted is of size(MNf + Nh)×
(MNf + Nh). The inverse must be computed for each frame
index i since it depends on transmitted data. Thus increasing
M leads to higher performance but increased complexity.

C. Kalman Predictor

In this section, we formulate channel estimation as a
Kalman prediction (KP) problem [14].

1) Problem Setup: We assignh(i−1) as the currentstate of
the channel,h(i) as the next state, andy(i−1)

k
= [y(i−1)t

d , y
(i)t
p ]t

as the current observation.
2) Dynamical Equation: The state dynamics can be written

as

h(i) = Akh
(i−1) + Dkw

(i−1)

k (6)

where w
(i−1)

k is a white Gaussian vector, i.e.,
E{w(i−1)

k w
(i−1−p)H
k } = σ2

wk
Iδ(p). The matricesAk and

Dk, and the state noise varianceσ2
wk

, are obtained by
auto regressive (AR) modeling of the Doppler channel.
The WSSUS assumption implies thatAk, Dk and σ2

wk
are

constant from frame to frame.



3) Observation Equation: The first part of the observation
vector,y(i−1)

d , can be written as

y
(i−1)

d = T
(i−1)

k h(i−1) + v
(i−1)

d , (7)

whereT
(i−1)

k is a matrix whose elements are constructed from
T (i−1) and wherev(i−1)

d is a white Gaussian vector. The second
part of the observation vector,y

(i)

p , can be written as

y
(i)

p = Gh(i) + v
(i)

p , (8)

for known constant matrixG (composed of samples from pilot
blocks), and wherev(i)

p is a white Gaussian vector. Using (6),
we rewrite (8) as

y
(i)

p = GAkh
(i−1) + GDkw

(i−1)

k + v
(i)

p (9)

Using (8) and (9), we have

y(i−1)

k
=

[
T

(i−1)

k
GAk

]

︸ ︷︷ ︸

C
(i−1)

k

h(i−1) +

[
v

(i−1)

d
GDkw

(i−1)

k + v
(i)

p

]

︸ ︷︷ ︸

v
(i−1)

k

(10)

= C
(i−1)

k h(i−1) + v
(i−1)

k (11)

We define Sk = E{w(i−1)

k v
(i−1)H
k } and Rk =

E{v(i−1)

k v
(i−1)H
k } for use in the sequel.

4) Predictor Equation: From (6) and (11), the MMSE esti-
mate ofh(i) using the observations{y(i−1)

k
, ..., y(0)

k
}, denoted

by ĥ
(i)∣

∣
kalman

, is given recursively as

ĥ
(i)∣

∣
kalman

= Akĥ
(i−1)∣

∣
kalman

+ L
(i−1)

k [y(i−1)

k
− C

(i−1)

k ĥ
(i−1)∣

∣
kalman

] (12)

where the predictor gainL(i−1)

k is given by

L
(i−1)

k = (AkP
(i−1)

k C
(i−1)H
k + DkSk)

× (C(i−1)

k P
(i−1)

k C
(i−1)H
k + Rk)

−1 (13)

andP
(i−1)

k is given recursively as

P
(i−1)

k = σ2
wk

DkD
H
k + AkP

(i−2)

k AH
k

− L
(i−2)

k (C(i−2)

k P
(i−2)

k AH
k + SH

k DH
k ) (14)

with initializationsP
(0)

k = E{h(0)h(0)H} andĥ
(0)∣

∣
kalman

= 0.
Note that the Kalman predictor usesall previous observa-

tions in its prediction ofh(i); this is the advantage of the KP
over the WP. However, the performance of the KP depends on
how well the model (6) describes the true evolution of the state
process. Note also, from (13), that the KP requires a matrix
inversion of sizeNf × Nf once per frame.

IV. L OW COMPLEXITY PREDICTOR

In this section, we propose a novel computationally-efficient
decision-directed channel tracker that does not require large
matrix inversions.

We break the prediction ofh(i)

d into two stages. In the first
stage, we find “smoothed” channel estimates during the(i −
1)th frame. In the second stage, we use the received pilot block
in the ith frame as well as smoothed channel estimates from
M previous frames to predicth(i)

d . With some approximations,
the predictor can be made time-invariant.

A. Kalman Smoothing Stage

The smoothed channel estimates of the(i − 1)th frame
are obtained using Kalman filtering. We design the Kalman
smoother so that it takesL adjacent received samples and
finds the smoothed estimates of the channel during that time
interval. To find the smoothed estimates of the channel during
the entire frame, this procedure must be repeatedK =

Nf

L
times. Since we use onlyL measurements at a time, inversion
will be performed on at most anL × L matrix. Details are
provided below.

Let H(i−1,k) and Y(i−1,k) denote thekth subset ofH(i−1)

andY(i−1), respectively, withH(i−1,k) = {h(i−1)

n,d ∀d}(k+1)L−1
n=kL

and Y(i−1,k) = {y(i−1)
n }(k+1)L−1

n=kL for k ∈ {0, ..., K − 1}.
The vectorsh(i−1,k) andy(i−1,k) are defined element-wise as
[h(i−1,k)]l = h

(i−1)

kL+bl/Nhc,〈l〉Nh
and [y(i−1,k)]l = y

(i−1)

kL+l. Let

h
(i−1,k) be the current channel state of the smoother,h

(i−1,k+1)

be the next state, andy(i−1,k) be the current observation vector.
We write the dynamical equation as

h(i−1,k+1) = Alh
(i−1,k) + Dlw

(i−1,k)

l (15)

where w
(i−1,k)

l is a white Gaussian process with
E{w(i−1,k)

l w
(i−1−p,k−q)

l } = σ2
wl

Iδ(p)δ(q). The matrices
Al and Dl and σ2

wl
are obtained by AR modeling of the

channel. The current observationy(i−1,k)can be written as

y(i−1,k) = T
(i−1,k)

l h(i−1,k) + v(i−1,k) (16)

where T
(i−1,k)

l is a matrix whose elements are constructed
from a subset ofT (i−1). For the system described by (15) and
(16), h̃

(i−1,k)

l denote thesmoothed MMSE estimate ofh(i−1,k)

using observations{y(i−1,k), ..., y(i−1,0), y(i−2), ..., y(0)} and
let ĥ

(i−1,k)

l denote thepredicted MMSE estimate ofh(i−1,k)

using the observations{y(i−1,k−1), ..., y(i−1,0), y(i−2), ..., y(0)}.
The smoothed estimate is given by [14]

h̃
(i−1,k)

l = ĥ
(i−1,k)

l + M
(i−1,k)

l [y(i−1,k) − T
(i−1,k)

l ĥ
(i−1,k)

l ](17)

with smoother gain

M
(i−1,k)

l = P
(i−1,k)

l T
(i−1,k)H
l

× (T (i−1,k)

l P
(i−1,k)

l T
(i−1,k)H
l + σ2

vI)−1.(18)

The predicted estimate is given recursively as

ĥ
(i−1,k)

l = Alĥ
(i−1,k−1)

l + AlM
(i−1,k−1)

l

× [y(i−1,k−1) − T
(i−1,k−1)

l ĥ
(i−1,k−1)

l ] (19)

whereP
(i−1,k)

l is given recursively as

P
(i−1,k)

l = σ2
wl

DlD
H
l + AlP

(i−1,k−1)

l AH
l

− AlM
(i−1,k−1)

l T
(i−1,k−1)

l P
(i−1,k−1)

l AH
l (20)

with initializations P
(i−1,0)

l = P
(i−2,K)

l , ĥ
(i−1,0)

l = ĥ
(i−2,K)

l ,

P
(0,0)

l = E{h(0,0)h(0,0)H}, and ĥ
(0,0)

l = 0. We form the
smoothed estimate of the channel tap vector for the(i − 1)th

frame as

h̃
(i−1)

l = [h̃
(i−1,0)t

l , ..., h̃
(i−1,K−1)t

l ]t. (21)



This smoothed channel estimate vector is related to the true
channel vector as

h̃
(i−1)

l = h(i−1) + e
(i−1)

l (22)

wheree
(i−1)

l denotes the smoothing error.

B. Wiener Prediction Stage

From (8) and (22), the prediction stage observation vector
y(i)

l
is formed as

y(i)

l
= [y(i)t

p , h̃
(i−1)t

l , ..., h̃
(i−M)t

l ]t (23)

=

[
G 0

0 I

]

︸ ︷︷ ︸

B

h
(i)

l + v
(i)

l , (24)

where h
(i)

l = [h(i)t, ..., h(i−M)t]t and v
(i)

l =
[v(i)t

p , e
(i−1)t
l , ..., e

(i−M)t
l ]t.

Experimentally, we find that the smoothing errore
(i)

l is
dominated by the measurement noise. So, to reduce predictor
complexity, we make the following approximations.

E{v(i)

l v
(i)H
l } ≈ σ2

vI, (25)

E{v(i)

l h
(i)H
d } ≈ 0, (26)

E{h(i)

l v
(i)H
l } ≈ 0. (27)

With (25)-(27), the predictor equation is

ĥ
(i)

d
∣
∣
lcp

= RH
y

l
,hd

(BRhl,hl
BH + σ2

vI)−1y(i)

l
, (28)

whereRy
l
,hd = E{y(i)

l
h

(i)H
d } andRhl,hl

= E{h(i)

l h
(i)H
l }.

The predictor coefficients in (28) are time invariant; matrix
inversion is not required at the frame rate. Thus LCP requires
at most anL × L matrix inversion in the smoothing stage
(18). The choice ofL is a tradeoff between performance and
complexity.

V. LCP MODIFICATIONS

Here we discuss modifications to the LCP prediction stage
motivated by further reductions in complexity and memory
requirements.

A. LCP with Downsampling

In “LCP with downsampling” (LCPD), we use a down-
sampled set of smoothed estimates for prediction. For integer
downsampling ratior, the downsampled smoothed estimates
of the (i − 1)th frame are defined element-wise as

[h̃
(i−1)

lr ]l = [h̃
(i−1)

l ]b l
Nh

crNh+〈l〉Nh
(29)

The prediction is identical to LCP but with̃h
(i−1)

lr replacing
h̃

(i−1)

l . The downsampling helps in two ways.

1) The observation vector for LCPD prediction is approx-
imately r times smaller than that of LCP, reducing
complexity and memory requirements.

2) With downsampling, the time difference between
smoothed estimates increases and hence approximation
(25) becomes more accurate.

B. LCP with Kalman Prediction

The prediction stage of LCP was based on Wiener prediction
using smoothed estimates ofM previous frames. Instead,
LCP could be modified to use Kalman prediction (LCKP),
thus incorporatingall previously smoothed estimates. Using
h(i−1) andh(i) to denote the current and next channel states,
respectively, the dynamical equation is described by (6). The
current observation vector can be written as

y(i−1)

lk
= [h̃

(i−1)t

ld y
(i)t
p ]t (30)

h̃
(i−1)

ld =
[

I 0
]

︸ ︷︷ ︸

Blk

h̃
(i−1)

l = B lkh
(i−1) + B lke

(i−1)

l , (31)

whereh̃
(i−1)

ld is the smoothed channel estimate during the data
portion of the(i− 1)th frame. Using (6), (8), and (31),y(i−1)

lk
can be rewritten as

y(i−1)

lk
=

[
B lk

GAk

]

︸ ︷︷ ︸

C lk

h(i−1) +

[
B lke

(i−1)

l
v

(i)

p + GDkw
(i−1)

k

]

︸ ︷︷ ︸

v
(i−1)

lk

(32)

= C lkh
(i−1) + v

(i−1)

lk . (33)

Incorporating approximation (25), we have

Rlk = E{v(i−1)

lk v
(i−1)H
lk } (34)

=

[
σ2

vB lkB
H
lk 0

0 σ2
vI + σ2

wk
GDkD

H
k GH

]

(35)

S lk = E{w(i−1)

k v
(i−1)H
lk } (36)

=
[
0 σ2

wk
DH

k GH
]
. (37)

Since constant matrices are used in the dynamical equation
(6), the observation equation (33), and the correlation matrix
definitions (35) and (37), thesteady state Kalman predictor
suffices. Denotinĝh

(i)∣
∣
lckp

as the MMSE estimate ofh(i) using

the observations{y(i−1)

lk , ..., y
(0)

lk }, the recursive steady state
predictor equation is given by [14]

ĥ
(i)∣

∣
lckp

= Akĥ
(i−1)∣

∣
lckp

+ L∞[y(i−1)

lk
− C lkĥ

(i−1)∣
∣
lckp

] (38)

with steady state predictor gain

L∞ = (AkP∞C lk + DkS lk)(C lkP∞CH
lk + Rlk)

−1

and symmetric, positive semi-definite Riccati solution

P∞ = σ2
wk

DkD
H
k + AkP∞AH

k − (AkP∞C lk + DkS lk)

× (C lkP∞CH
lk + Rlk)

−1(C lkP∞AH
k + SH

lk DH
lk ).

Note thatL∞ and P∞ are frame invariant. Whereas the
LCP observation includes smoothed estimates fromM pre-
vious frames, the LCKP observation includes only smoothed
estimates from the most recently decoded frame, thus reducing
memory requirements.



Technique Size of matrix inversion per frame
PCE n.a.
WP (MNf + Nh) × (MNf + Nh)
KP Nf × Nf

LCP L × L
LCPD L × L
LCKP L × L

TABLE I

RELATIVE ALGORITHM COMPLEXITY.

VI. SIMULATION RESULTS

We consider frame sizeNf = 80, channel delay spread
Nh = 8, and (uniform) channel tap varianceσ2

d = N−1
h . For

each estimation technique, the required matrix inversion size
is given in Table I. The typical values ofM and L in our
simulations are2 and 10 respectively. Though LCP, LCPD
and LCKP requireK =

Nf

L matrix inversions per frame, the
O(N3) matrix inversion complexity rule implies that LCP,
LCPD and LCKP are much more computationally efficient
than WP and KP. For all simulations, MSE performance is
averaged over at least 1000 channel realizations, where each
realization spans at least 10 frames.

As a reference, we consider the so-called “persistent training
and prediction” (PTP) scheme. For PTP, we transmit persistent
pilots instead of data:

tn =

{ √
Nh if n

Nh
∈ Z

0 otherwise
(39)

We predict h(i) using all past observations and the pilot
observation of theith frame with an IIR Wiener filter.

In Fig. 2, we plot MSE versus SNR atfd = 0.01. In
this case,fd > 1

2Nf
and hence the performance of PCE is

poor. In Fig. 3, we plot MSE versus normalized Dopplerfd

at SNR= 15dB. As expected, MSE performance decreases as
fd increases. Note that LCP performance is not far from that
of WP and KP.

In Fig. 4, we show the effect ofM on LCP and WP. AsM
increases, both WP and LCP incorporate more observations,
hence MSE performance improves. In Fig. 5, we show the
effect of L on LCP performance. IncreasingL improves
performance of the Kalman smoothing stage, at the cost of
increased complexity.

In Fig. 6, we plot the MSE performance of LCPD for
different downsampling ratiosr. Based on the discussion in
Section V-A, it is not surprising that ther = 2 performance
is slightly better than ther = 1 performance at high SNR.
Further increase inr, however, degrades MSE performance
because too much information is lost through downsampling.

In Fig. 7, we compare LCKP to LCP and KP. As expected,
LCKP performs better than LCP, though the difference is sig-
nificant only at high SNR. Also as expected, LCKP performs
worse than KP, though the performance gap would decrease
with an increase inL.

0 5 10 15 20 25
−24

−22

−20

−18

−16

−14

−12

−10

SNR in dB

M
S

E
 in

 d
B

PCE M=5
WP M=2
KP
LCP M=2,L=10
PTP

Fig. 2. Comparison of estimation techniques forfd = 0.01.
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Fig. 6. Performance of LCPD withM = 2 andL = 5 for fd = 0.01.
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VII. C ONCLUSION

We proposed a low-complexity two-stage doubly-selective-
channel tracking scheme for transmissions composed of an
infinite sequence of frames, where each frame has a data block
followed by a Kronecker-delta pilot block. The first-stage
computes smoothed estimates of previous channel coefficients,
and the second stage uses these smoothed estimates, along
with the current pilot observation, to predict the channel in
the current frame. Approximations are made to reduce the
complexity of the second stage predictor. Simulation results
show that the proposed low complexity scheme has MSE
performance comparable to the Wiener and Kalman predictors
but without requiring large matrix inverses. Modificationsof
the low complexity scheme that reduce memory requirements
were also introduced.
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