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Abstract—We consider the recovery of an (approximately)
sparse signal from noisy linear measurements, in the case that
the signal is apriori known to be non-negative and obeys certain
linear equality constraints. For this, we propose a novel empirical-
Bayes approach that combines the Generalized Approximate
Message Passing (GAMP) algorithm with the expectation max-
imization (EM) algorithm. To enforce both sparsity and non-
negativity, we employ an i.i.d Bernoulli non-negative Gaussian
mixture (NNGM) prior and perform approximate minimum
mean-squared error (MMSE) recovery of the signal using sum-
product GAMP. To learn the NNGM parameters, we use the
EM algorithm with a suitable initialization. Meanwhile, the
linear equality constraints are enforced by augmenting GAMP’s
linear observation model with noiseless pseudo-measurements.
Numerical experiments demonstrate the state-of-the art mean-
squared-error and runtime of our approach.!

I. INTRODUCTION

We consider the recovery of an (approximately) sparse
signal € RY from the noisy linear measurements

y=Ax+w c R, (D)

where A is a known sensing matrix, w is additive white
Gaussian noise (AWGN), and M may be < N. In this paper,
we focus on non-negative signals (i.e., ,, > 0 Vn) that obey
linear equality constraints Bx = ¢ € R”. A notable example
is the simplex constraint, ie., x € AT 2 {x ¢ RV : z >
0 Vn, 1Tz = 1}, occurring in hyperspectral unmixing [1],
portfolio optimization [2], density learning [3], and many other
applications.

For this task, we propose a novel empirical-Bayes approach
that combines truncated Gaussian-mixture models, the expec-
tation maximization (EM) algorithm [4], and the Generalized
Approximate Message Passing (GAMP) algorithm [5], sum-
marized in Table I and contextualized in the sequel.

GAMP is a computationally efficient approach to (ap-
proximate) maximum a posteriori (MAP) or minimum mean-
squared error (MMSE) inference of a random vector € RY
with a known i.i.d prior pdf px (-) from a corrupted observation
VRS RM of the linear transform outputs z £ Az € RM where
{ym} are conditionally independent (given z) with known
likelihood py|z(y|-). GAMP, recently proposed by Rangan,
generalizes Donoho, Maleki, and Montanari’s Approximate
Message Passing (AMP) algorithm [6] from AWGN obser-
vations to arbitrary likelihoods py |z (y|-). AMP and GAMP
are both derived from (Taylor-series and central-limit-theorem
based) approximations of loopy belief propagation, and yield

IThis work has been supported in part by NSF grants IIP-0968910, CCF-
1018368, CCF-1218754, and by DARPA/ONR grant N66001-10-1-4090.

inDUISZ pX(')apY|Z(ym|')7 {Amn}7 Tmax, Tgamp
definitions:
pz|p(2m|Pm; kin)

2 Py |zWmlzm) N (zm:bm,ub,)
= T by 12 (vm 1) Neibm k) (DD
é px(zn)/\/(z”;fn,,u;) (DZ)

PX|R(EnlTni 1) = T S Nl ity

initialize:
vn:@n(1) = [ zpx(z) 1
Vi pf (1) = [ |z — 2.(1)*px (z) 12)
Ym : 8m (0) = 13)
fort =1 : Tmax,
Vm s b (8) = S0 JAmn |26 (t) R1)
Vm s P (t) = Sy Amndn(t) = phh(t) $m(t—1)  (R2)
Vm : pg, (t) = var{ Z|P = pm (t); b (£)} (R3)
Vm : 2 (t) = B{Z|P = pm(); i (1) } (R4)
Vm s s, (8) = (1= pd, (8)/ pin (1)) / i (2) (RS)
Vm : 8m(t) = (Zm(t) — Pm(t))/uhn (t) (R6)
Vs i (8) = (g Amn 2, (9) ™ ®7)
Vs i (t) = @n(t) 4 i () SO A% 5 (8) (R8)

Vn o pd (t+1) = var{ X |R = 7 (¢); pul, (¢) } (R9)

Vn : &n(t+1) = E{X|R = 7 (); u, (1)} (R10)

SN |0 (E41) — @0 (8)[2 < Tgamp oA | (1)]2, break (R11)
end

outputs: {2 (£), un ()}, {7n (8), 7 (D} {En (8+1), pr (E+1)}

TABLE 1.

THE GAMP ALGORITHM FROM [5]

computationally simple “first-order” algorithms that admit
rigorous analysis in the large-system limit (i.e., M, N — oo
for fixed ratio M/N) for i.i.d zero-mean sub-Gaussian A
[7] and that have been demonstrated to work well for many
deterministic matrices [8]. As we shall see, the generalization
that GAMP affords over AMP is essential for our approach to
enforcing the linear equality constraints Bx = c.

The GAMP algorithm requires specification of both the
signal prior px and the likelihood py|z, which are typically
unknown in practice. Recently, it was proposed to model
px as Bernoulli-Gaussian-Mixture (BGM) with determinis-
tic unknown parameters, and py|z as Gaussian with deter-
ministic unknown variance, and then compute (approximate)
maximum-likelihood estimates of these parameters using the
EM algorithm [9]. This combination of Bayesian and frequen-
tist techniques is usually referred to as “empirical Bayes” [10].
Extensive empirical evidence showed that the resulting EM-
GM-AMP algorithm offers state-of-the-art mean-squared error
(MSE) and runtime for large random A.

In this work, we extend the EM-GM-AMP approach from
[9] to support non-negativity and linear equality constraints
on x. In the sequel, we provide details on our new approach
and then present empirical evidence of its performance using
phase-transition curves for the recovery of simplex signals and
a sparse non-negative image-recovery experiment.



II. AUGMENTED MEASUREMENT MODEL

To enforce the linear equality constraint Bx = c using
GAMP, we extend the observation model (1) into

y| _ |A w

<] = 5]+ [3] @
and exploit the fact that GAMP supports a likelihood function
that varies with the measurement index m. Assuming the
elements of w are i.i.d Gaussian with variance 1), and defining
y = [Y, A= [4], and 2 £ Au, the likelihood function
corresponding to the augmented measurement model (2) is
N @i Zms ¥)
6(ym - 2771)

m=1,...M 3)

PY,.(Z. (ym|zm):{ m=M+1,... M+P.

GAMP approximates the marginal posterior p(Z,,|y) by

7, 1p,, (Fm|Pm (); 125, (1))
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at iteration ¢, where p,,(t) and p2,(t) are given in Table I.
The variance and mean of this posterior, used in lines (R3)
and (R4) of Table I, are (dropping the ¢ notation for brevity)
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III. NON-NEGATIVE GAUSSIAN MIXTURE GAMP

We now describe how GAMP can be used with an i.i.d
Bernoulli non-negative Gaussian mixture (NNGM) prior pdf
of the form

L
px(x) = (1= N8@) + XD wi Ny (w300, ¢0), (D)

=1
where A, () denotes the non-negative Gaussian pdf, i.e.,
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() is the complimentary cdf of the standard normal dis-
tribution, A € (0,1] is the sparsity rate, and wy, 8, and
¢¢ are the weight, location, and scale, respectively, of the
¢*" mixture component. For now, we treat the parameters
q = [\, w,0,$,v)] and the model order L as fixed and known.

GAMP approximates the marginal posterior p(z,|y) by
pX|R($n‘72n;M;,) OCpX(xn)N(mn§7ﬁn7M:L) (9)

where the quantities 7, and p;, (see Table I) vary with
the GAMP iteration ¢. Given this posterior, the sum-product
GAMP updates (R9) and (R10) are [11]
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in terms of the normalization factor
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where ¢(-) is the pdf of the standard normal distribution.
From (9), it is straightforward to show that the corresponding
posterior support probabilities 7, = Pr{z,, # 0|y;q} are

1
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IV. EM PARAMETER LEARNING

A

Since the parameters ¢ = [\, w,0,¢,] that best “fit”
the true signal and noise distributions are typically unknown,
we propose to learn them using an EM procedure [4]. The
EM algorithm is an iterative technique that is guaranteed
to converge to a local maximum (or a saddle point) of the
likelihood p(y;q). We choose the “hidden” data to be a,
resulting in the iteration-: EM update

¢ = argmaxE{lnp(z,y:q) | y:q'}- (20)
q
For reasons of tractability, we evaluate the “arg max” in (20)
one component at a time, while holding the others fixed, as
in the “incremental” variant of EM from [12], and we use
GAMP’s approximate posteriors to evaluate the expectation in
(20). With this approximation, the updates become? [11]
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where 3,, . £ Bn.k/ Y., Bn.e. Because all quantities needed for
the EM updates are by-products of sum-product GAMP, the
EM approach does not substantially increase the complexity
of our approach.

2The EM updates for the sparsity rate A and noise variance 1 are identical
to those given in [9].



A good EM initialization is essential to avoiding bad local
minima. We propose to set the initial sparsity rate at

N = Moo (AL, (24)

where psg(+) is the theoretical noiseless phase-transition-curve
(PTC) for /1 recovery of sparse non-negative (SNN) signals,
shown to have the closed-form expression
2
pee(8) = mae LN+ 0 —cile)]
>0 1+ —[(14c2)P(—c) — cp(c)]

in [13], where ®(-) and ©(-) denote the cdf and pdf of the
standard normal distribution. We then propose to set the initial
values of the NNGM weights {w,}, locations {6,}, and scales
{¢¢} at the values that best fit the uniform pdf on [0,1]
(which can be computed offline using the standard EM-based
approach described in [14, p. 435]). We propose to set the
initial noise variance at ¥° = [|y||3/((SNR + 1)M), where,
without knowledge of the true SNR 2 ||Ax|3/||w|3, we
suggest using the value SNR=100.

V. NUMERICAL RESULTS
A. Phase Transition Curves

First, we present empirically generated phase-transition
curves (PTCs) for the recovery of K-sparse /N-length simplex
signals from M noiseless measurements.

To evaluate each PTC, we fixed N = 500 and constructed a
20 x 20 uniformly spaced grid on the %-VCFSHS-% plane over
the ranges 4 € [0.05,1] and £ € [0.05, 1]. At each grid point,
we drew R=100 independent realizations of the pair (A, x),
where A € RM*N was constructed with ii.d N(0,M~1)
entries and € RY was constructed with K nonzero elements
{z, 1< | (placed uniformly at random), drawn i.i.d from a
symmetric Dirichlet distribution with concentration parameter
a > 0, whose pdf can be written as

F(aK) K _a—1 1
Pz, Ty ) rwr ez 2 €[0,1] (26a)
0 else
pEglzy, .z 1) =01 -2y — - —2p) (26b)

where T'(+) is the gamma function. Note that (26) enforces
the simplex constraint. For the r*" realization of (A,x), we
then recovered a from the noiseless observation y = Ax and
defined the recovery & to be “successful” if NMSE £ ||z —
z||%/||z]|3 < 1075. Using S, = 1 to mark a success and S, =
0 otherwise, the average success rate was then computed via
S & LS S, and the empirical PTC was then plotted as

the S = 0.5 level-curve using Matlab’s contour command.

Figures 1-2 show the empirical PTCs for symmetric
Dirichlet distributions with parameter ¢ = 1 (i.e., uniformly
distributed over the simplex) and ¢ = 100 (i.e., z;, ~ % k),
respectively, using the proposed “simplex EM-NNGM-AMP”
approach, greedy selection and simplex projection (GSSP)
[3], and Matlab’s 1sgnonneg (using the augmented model
(2)). In addition, Figures 1-2 show the theoretical SNN /;-
recovery PTC pSE(%) from [13], given by (25). For the
GSSP algorithm, we initialized 2" as the SPGL1 [15] solution
(using the augmented model from (2)) and set the step size as
100/||A||%, as it yielded the best overall PTCs.
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Fig. 1. Empirical PTCs and ¢1-SNN theoretical PTC for noiseless recovery
of length-/N =500, K-sparse, symmetric Dirichlet signals with concentration
a =1 from M measurements.
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Fig. 2. Empirical PTCs and ¢1-SNN theoretical PTC for noiseless recovery
of length-N =500, K-sparse, symmetric Dirichlet signals with concentration
a = 100 from M measurements.
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Figures 1-2 show that the proposed simplex-EM-NNGM-
AMP approach yields empirical PTCs that are significantly
better than those of the competing approaches. Its excellent
performance is the result of three factors: i) the generality of
the NNGM prior, ii) the ability of the EM approach to accu-
rately learn the prior parameters, and iii) the ability of GAMP
to exploit the learned prior. In fact, Fig. 2 shows simplex-
NNGM-AMP accurately reconstructing K -sparse signals from
only M = K measurements even while N > M, thereby
achieving a sort of “holy grail” in sparse reconstruction. The
latter is possible because the signal @ is highly structured when
a = 100, and because the proposed approach can learn and
exploit that structure.

B. Non-negative Image Recovery

As a practical example, we experimented with the recovery
of a sparse non-negative image. For this, we used the N =
256 x 256 satellite image shown in Fig. 3, which contained K =
6678 nonzero pixels and N — K = 58858 zero-valued pixels,
and thus was approximately 10% sparse. Linearly compressed
measurements y = Ax—+w were collected under i.i.d Gaussian
noise w whose variance was selected to achieve SNR = 60



Fig. 3.

EM-NNGM-AMP recovery at % = i on right.

Sparse non-negative image of a satellite: original image on left and

dB. Here, x represents the (rasterized) image and A a linear
measurement operator configured as A =®W¥.S, where ® €
{0, 1}M>*N was constructed from rows of the N x N identity
matrix selected uniformly at random, ¥ € {—1,1}¥*V was a
Hadamard transform, and S € RY*N was a diagonal matrix
with £+1 diagonal entries chosen uniformly at random. Note
that multiplication by A can be executed using a fast binary
algorithm, making it attractive for hardware implementation.
For this experiment, no linear equality constraints exist and so
the observation model was not augmented.

As a function of the sampling ratio % Fig. 4 shows the

NMSE and runtime averaged over R =100 realizations of A
and w for the proposed EM-NNGM-AMP in comparison to
EM-GM-AMP from [9], genie-tuned non-negative LASSO via
TFOCS [16],> EM-tuned non-negative LASSO GAMP (EM-
NNL-AMP) from [11],* and genie-tuned standard LASSO
implemented via SPGL1° [15]. Results for 1sqnonneg are
not shown because its per-realization runtime exceeded three
hours (since 1sgnonneg treats A as an explicit matrix).

Figure 4 (top) shows that the proposed EM-NNGM-AMP
algorithm provided the most accurate signal recoveries for
all undersampling ratios. Remarkably, its phase-transition oc-
curred at % ~ 0.25, whereas that of the other algorithms
occurred at % ~ 0.35. The gain of EM-NNGM-AMP over
EM-GM-AMP can be attributed to the former’s exploitation
of signal non-negativity, whereas the gain of EM-NNGM-
AMP over non-negative LASSO (either via EM-NNL-AMP
or genie-tuned TFOCS) can be attributed to former’s learn-
ing/exploitation of the true signal distribution. Finally, the
gain of non-negative LASSO over standard LASSO can be
attributed to the former’s exploitation of signal non-negativity.
In terms of runtime, EM-NNGM-AMP was about 3 x as fast as
EM-GM-AMP, between 3x to 15x as fast as standard LASSO
(via SPGL1), and 10x to 20x as fast as non-negative LASSO
(via TFOCS).
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