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/Outline: \

1. Compressive sensing under structured sparsity
Adaptive compressive sensing via Bayesian experimental design

Approximate message passing (AMP) for structured-sparse recovery

How to make AMP (and other algorithms like LASSO) adaptive
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Empirical performance close to oracle bounds.
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/Compressive Sensing;: \

e In compressive sensing, we aim to recover a signal vector u from noisy

underdetermined linear measurements

y=®u+wecRY,

e Although the problem is underdetermined, accurate recovery maybe possible

if u can be sparsely represented in some dictionary ¥, i.e.,
u =Wz for K-sparse x € R,

where W is “incoherent” with P.

e |t is common to choose @ randomly and apply the LASSO algorithm to

recover an estimate &, in which case one can guarantee ||z — z||3 < C||lw]|3,

for some constant C', with

M > O(Klog(N/K)) measurements.
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/Structured Sparsity: \

e Often the signal u has a representation @ that is not simply sparse but rather

structured sparse.

For examples,
— wavelet coefficients of natural images are tree-sparse, and

— impulse responses of wideband wireless channels are clustered-sparse.

e In this case, similar reconstruction guarantees are possible with only
M > O(K) measurements

using structured-sparse recovery algorithms!
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/Adaptive Compressive Sensing:

N

e In some applications, we can afford T > 1 measurement rounds and adapt
the measurement matrix ®; for the t™ round based on the knowledge gained

from previous rounds.

e In this case, the observation model changes to

P, w, ;| €RMi
Yy q| _ | Ft1 u |1 |
Y, P, wy | € RM
Y, @ w, € R

where underbars are used to denote cumulative quantities.

So, how is ®; designed?

e In Bayesian experimental design [DeGroot 62|, ®; is chosen to maximize the

expected information gain (EIG).
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/Bayesian Experimental Design: \

e The information gain is defined as the KL divergence between the prior

and posterior distributions at measurement step t:
D) = [ atuly,iop 112,
u q(u)

where
A

g(u) = p(uly, ,) is the step-¢ prior, and

q(uly;) = p(uly, ,,y,) is the step-t posterior.

e Since y; is not yet known, we consider expected information gain:

EIG;, = E{D(y,) ]gt_l} = yt?(ytgt_lzLQ(u’yt)log%
£ q(y,)
_ u o Q(uvyt) — u:
—/yt/uq( Yol 5y = 1Y)

i.e., the mutual information between u ~ g(u) and y, ~ q(y,).
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/Gaussian Experimental Design: \

e Evaluating the expected information gain is often difficult.

e However, when all distributions are Gaussian, it becomes easy.

For example, if

noise: w ~ N(0,v,1)
step-t signal prior:  uly,  ~ N(p,, %y)

then it is straightforward to show that

EIG, = § log |- &, X, ®] +I|.

e Of course, in compressive sensing, the signal priors are non-Gaussian and

thus the above could only be used after approximations are made.
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/Gaussian design of P,: \

What is the EIG-maximizing ®; subject to the energy constraint | ®||% < £7

e Previous works [Seeger 08, Ji/Xu/Carin 08] studied the case of one scalar
measurement per step (i.e., M; = 1).
In this case, ®; is a row vector and so EIG; = %log ‘i@tEué[);r + I’ IS
maximized by the dominant eigenvector of XJ,,.

e In practice, though, we may want M; > 1 measurements per step.
For this case, we show that the EIG is maximized by waterfilling:

M

., are the M; dominant (eigenvalue,

Lemma 1 Say that (A, vp,)
eigenvector) pairs of X,,. Then for {E,,}) | and “water level” L satisfying

Ep =max {L — vy /A, 0} Vm e {1,..., M}
ZMt Em — ga

m=1

the m™ row of the EIG-maximizing ®; equals \/Ep,v,,.
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/Leveraging Gaussian design for Adaptive CS: \

e In CS, the step-¢ prior (i.e., step-(¢—1) posterior) p(uly, ,) is non-Gaussian,
and so a Gaussian posterior approximation must be made.

e Previous works have tackled this using a Gaussian prior approximation:
— Say p(z |y, ,) =~ [0, N(2,;0, ;") with “precision” ay,.
— Then p(z |y, )~ N(z; p,, X;) with

S, 2 (LA A + D)
H’x é izxé;r_lgt_l
At—l é (I)t—l\Il

and so p(u|y, )~ N(u;py,, E,) with g, = ¥, and 3, = Uy, o'
— To estimate «, [Ji/Xu/Carin 08] used Tipping's RVM (“Bayesian CS").
e Other works used different Gaussian posterior approximations:

— [Seeger 08] assumed Laplacian a and expectation propagation, and

\\ — [Seeger/Nickisch 11] used variational methods. /
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/Approximate Message Passing: \

e Efficient sparse reconstruction algorithms have been constructed using loopy

belief propagation with carefully constructed message approximations:

— The LASSO AMP [Donoho/Maleki/Montanari 09] assumes i.i.d
Laplacian signal, Gaussian noise, and i.i.d constructed A.

— The Bayesian AMP [Donoho/Maleki/Montanari 10] accepts generic

signal priors, Gaussian noise, and i.i.d constructed A.

— The generalized AMP [Rangan 10] accepts generic signal and noise
priors and arbitrary A. (We need this one!)

e These AMP algorithms are very fast iterative thresholding algorithms.
Their complexity is dominated by one application of A and AT per iteration,
and < 50 iterations (for any M and N) ...many fewer than FISTA.
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KI'urbo—AMP for Structured Sparsity: \

e AMP has been extended to generic structured-sparse reconstruction using
an approach inspired by turbo equalization and decoding.

e For this, the prior pdf is chosen as p(x) = p(s) Hf;;l p(xn | sn) with a generic
support prior p(s) and Bernoulli-Gaussian amplitudes:

p(Tn | Sn) = $nN(2n;0,v,) + (1 — 8p)0(x),  sn € {0,1}.

In this case, the factor graph becomes

*********

support
| dec%%ing !

,,,,,,,,,

and we pass extrinsic likelihoods on {s,} back and forth between the two

\\ soft-input/soft-output “decoders” [Schniter 10]. /
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KI'urbo—AMP for Adaptive CS: \

e To leverage Gaussian experiment design, we propose a variation on the
Gaussian prior approximation used in [Ji/Xu/Carin 08]:

N
pxly, )~ [ N(@n0,0,")
n=1

e Instead of using the RVM to ML-estimate {«a,,}, we we use AMP’s marginal
posteriors

p(@nl|y, ) = N(Tn;Zn,vn) and  Pr{s,=1ly,  } = \,.

In particular, we propose several surrogates for the inverse precisions o '
1. “Variance": a,! = v,.
2. “Mean”: a1 = |2, ...only point estimates (~~ adaptive Lasso!)
3. “Energy”: &, ! = |&.|* + v
4

“Support”: 4,1 = \v;

. /
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/Empirical Study: \

We now present empirical evidence showing that the proposed adaptive

turbo-AMP performs very close to oracle bounds.

e Clustered-sparse Bernoulli-Gaussian signal:
— length N = 500,
— sparsity K = 50,
— average cluster-size = 11.
e Canonical sparsifying dictionary ¥ =1 (i.e., u = x).
e AWGN vyielding average SNR = 15dB.
e T'=5 measurement steps, with My=100 i.i.d-N, then subsequently M;=>50.

e We report NMSE || — x||5/||x||3 averaged over 500 realizations.

e \We compare to the support oracle, for which signal is Gaussian, and so both

EIG-maximizing ®; and MSE-minimizing & can be computed in closed form.

. /
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/NMSE versus cumulative measurements ] ,: \
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e Performances gain from structured sparsity, adaptivity, and the combination.

e Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!

. /
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/Effect of surrogate choice in Gaussian prior approximation: \

|
=
(&)
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Relatively insensitive to the Gaussian-prior-approximation used in ®; design.

. /
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/Using the “mean” surrogate to create new algorithms: \
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e Adaptation using our “mean’” surrogate yields an adaptive LASSO.

e Adaptation using our “mean” surrogate improves BCS over [JXC 08].

. /
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/Summary and ongoing work: \

e Main focus:

Merging Bayesian experim. design with structured-sparse recovery.

e Contributions:
— Waterfilling solves Gaussian experimental design for M; > 1 meas/step.
— Novel adaptation heuristics leading to adaptive LASSO, etc.
— An adaptive turbo-AMP empirically performing near oracle bounds.
e Ongoing work:
— Optimal design of initial ®.
— Theoretical analysis using AMP’s state evolution.
— Extension to pre-measurement noise model y = ®(¥x + v) + w.
— Adaptation under constrained ® (e.g., Toeplitz).

— Development/analysis of simplified schemes (no eigendecomposition).

. /
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Thanks!
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