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Abstract

In image recovery, one seeks to reconstruct an image from degraded measurements

that are distorted, incomplete, and/or noise-corrupted. Often times, image recovery is

posed as finding a single “best” reconstruction, which is known as point estimation.

Due to the ill-posed nature of the problem, however, there can exist many images that

are consistent with the measurements and the prior knowledge of the true image. In

the Bayesian framework, posterior sampling can be used to explore this vast solution

space by generating many probable reconstructions. This allows for uncertainty

quantification and/or navigation of the perception-distortion tradeoff.

In the first two chapters of the dissertation, we focus on posterior sampling with

conditional generative adversarial networks (cGANs). Typically, cGANs are regarded

as producing high quality samples that have low diversity. Therefore, in the first

chapter of the dissertation, we propose rcGAN which solves the lack-of-diversity issue

via a novel regularization that is comprised of a supervised-L1 loss plus an adaptively

weighted standard-deviation (SD) reward. We apply rcGAN to box inpainting and

magnetic resonance (MR) image recovery, demonstrating its advantages over existing

cGANs and contemporary diffusion methods.

In the second chapter of the dissertation we propose pcaGAN, an improvement

over rcGAN with a novel regularization that aims for correctness in the K principal

components of the posterior covariance matrix in addition to the posterior mean
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and trace-covariance. We demonstrate pcaGAN’s effectiveness on MNIST denoising,

large-scale random inpainting, and MRI recovery, and show its advantages over other

cGANs (including rcGAN), as well as contemporary diffusion methods.

For the third chapter of the dissertation, we shift our focus to diffusion models due

to their unmatched versatility. Doing so requires approximating the gradient of the

measurement-conditional score function in the diffusion reverse process. We show that

the approximations produced by existing methods are relatively poor, especially early

in the reverse process, and so we propose a new approach that iteratively reestimates

and “renoises” the estimate several times per diffusion step. This iterative approach,

which we call Fast Iterative REnoising (FIRE), injects colored noise that is shaped

to ensure that the pre-trained diffusion model always sees white noise, in accordance

with how it was trained. We then embed FIRE into the DDIM reverse process and

show that the resulting “DDfire” offers state-of-the-art accuracy and runtime on box

inpainting, Gaussian and motion deblurring, and 4x super-resolution.

Finally, we will propose some future research directions and share concluding

thoughts.
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D.1 Conditional Fréchet Inception Distance . . . . . . . . . . . . . . . . 106
D.2 Implementation Details for Chapter 2 . . . . . . . . . . . . . . . . 108

D.2.1 Accelerated MRI . . . . . . . . . . . . . . . . . . . . . . . . 108
D.2.2 CelebA-HQ Inpainting . . . . . . . . . . . . . . . . . . . . . 110

D.3 Implementation Details for Chapter 3 . . . . . . . . . . . . . . . . 111
D.3.1 Synthetic Gaussian Data . . . . . . . . . . . . . . . . . . . . 111
D.3.2 Synthetic Gaussian Recovery . . . . . . . . . . . . . . . . . 112
D.3.3 MNIST Denoising . . . . . . . . . . . . . . . . . . . . . . . 113
D.3.4 Accelerated MRI . . . . . . . . . . . . . . . . . . . . . . . . 114
D.3.5 FFHQ Inpainting . . . . . . . . . . . . . . . . . . . . . . . . 115

D.4 Implementation Details for Chapter 4 . . . . . . . . . . . . . . . . 117
D.4.1 Speeding up CG . . . . . . . . . . . . . . . . . . . . . . . . 117
D.4.2 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . 119
D.4.3 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . 119
D.4.4 Unconditional Diffusion Models . . . . . . . . . . . . . . . . 119
D.4.5 Recovery Methods . . . . . . . . . . . . . . . . . . . . . . . 119
D.4.6 Compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.4.7 DDfire Hyperparameter Tuning Curves . . . . . . . . . . . . 122

E. Additional Reconstruction Plots . . . . . . . . . . . . . . . . . . . . . . . 125

E.1 Additional Reconstructions for Chapter 2 . . . . . . . . . . . . . . 126
E.1.1 MRI at Acceleration R = 4 . . . . . . . . . . . . . . . . . . 126
E.1.2 MRI at Acceleration R = 8 . . . . . . . . . . . . . . . . . . 128
E.1.3 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xii



E.2 Additional Reconstructions for Chapter 3 . . . . . . . . . . . . . . 132
E.2.1 MNIST Denoising . . . . . . . . . . . . . . . . . . . . . . . 132
E.2.2 MRI at Acceleration R = 4 . . . . . . . . . . . . . . . . . . 135
E.2.3 MRI at Acceleration R = 8 . . . . . . . . . . . . . . . . . . 137
E.2.4 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xiii



List of Tables

Table Page

2.1 Average MRI results at R ∈ {4, 8}. Tested with VGG-16 features.
CFID1, FID, and APSD used 72 test samples and P =32, CFID2 used
2 376 test samples and P =8, and CFID3 used all 14 576 samples and
P =1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for R = 4
MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for R = 8
MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Average results for inpainting: FID was computed from 1 000 test
images with P =32, while CFID was computed from all 30 000 images
with P =1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The mean and covariance components of CFID, along with the total
CFID, for the generative models in the MRI and inpainting experiments.
For the MRI experiment, CFID1 used 72 test samples and P = 32,
CFID2 used 2 376 test samples and P = 8, and CFID3 used all 14 576
samples and P = 1. For the inpainting experiment, CFID1 used 1 000
test images and P = 32, CFID2 used 3 000 test and validation images
and P = 8, and CFID3 used all 30 000 images and P = 1. . . . . . . . 23

3.1 Average MNIST denoising results. . . . . . . . . . . . . . . . . . . . . 36

3.2 Average MRI results at acceleration R ∈ {4, 8} . . . . . . . . . . . . 39

3.3 Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for MRI at
R = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiv



3.4 Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for R = 4
MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Average FFHQ inpainting results. . . . . . . . . . . . . . . . . . . . . 41

4.1 DDfire ablation results for noisy FFHQ box inpainting with σw = 0.05
at 1000 NFEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Noisy FFHQ results with measurement noise standard deviation σw =
0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Noisy ImageNet results with measurement noise standard deviation
σw = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Average MRI results at acceleration R = 4. . . . . . . . . . . . . . . 69

5.2 Average MRI results at acceleration R = 8. . . . . . . . . . . . . . . 69

5.3 Optimal averaging constant P for each method/metric. . . . . . . . 70

D.1 Hyperparameter values used for DDfire. . . . . . . . . . . . . . . . . . 120

xv



List of Figures

Figure Page

2.1 The contours show the regularizer value versus θ = [µ, σ]⊤ for four
different regularizers: (a) supervised-ℓ1 plus SD reward with βSD=βN

SD

at Prc=2, (b) supervised-ℓ1 plus SD reward with βSD=βN
SD at Prc=8,

(c) supervised-ℓ2 at Prc=8, and (d) supervised-ℓ2 plus variance reward
at Prc=8. The red star shows the true posterior parameters [µ0, σ0]

⊤. 10

2.2 Example PSNR of x̂(P ) versus P , the number of averaged outputs, for
several training βSD and MRI recovery at R = 4. Also shown is the
theoretical behavior for true-posterior samples. . . . . . . . . . . . . . 12

2.3 Example R = 8 MRI reconstructions. Arrows show meaningful varia-
tions across samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Example R = 8 MRI reconstructions with P = 32. Row one: P -sample
average x̂(P ). Row two: pixel-wise absolute error |x̂(P ) − x|. Row three:
pixel-wise SD ( 1

P

∑P
i=1(x̂i − x̂(P ))

2)1/2. . . . . . . . . . . . . . . . . . 20

2.5 Example of inpainting a 128×128 square on a 256×256 resolution
CelebA-HQ image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Gaussian experiment. Wasserstein-2 distance versus (a) lazy update pe-
riod M for pcaGAN with d = 100 = K, (b) estimated eigen-components
K for pcaGAN with d = 100 and M = 100, and (c) problem dimension
d for all methods under test with K = d and M = 100. . . . . . . . . 33

3.2 For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors
{v̂k}, and two perturbations of µ̂x|y. . . . . . . . . . . . . . . . . . . . 35

3.3 Example MRI recoveries atR = 8. Arrows highlight meaningful variations. 37

xvi



3.4 Example MRI recoveries atR = 4. Arrows highlight meaningful variations. 38

3.5 Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Left column: True x0, noisy box inpainting y, and 50-iteration FIRE ap-
proximation of E{x0|y}. Other columns: Approximations of E{x0|xt,y}
at different t (as measured by % NFEs). Note the over-smoothing with
DDRM and DPS. Additionally, note the cut-and-paste artifacts of
DiffPIR and DAPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 For an FFHQ denoiser: the geometric DDIM variances {σ2
k}Kk=1 versus

DDIM step k for K = 10, the σ2
thresh corresponding to a δ=0.4 fraction

of single-FIRE-iteration DDIM steps, and the denoiser input variance
σ2 at each FIRE iteration of each DDIM step, for Ntot=25 total NFEs. 57

4.3 DDfire σ2, true denoiser input variance ∥r−x0∥22/d, DDfire ν, and true
denoiser output variance ∥x0 − x0∥22/d vs. DDfire iteration for noisy
4× super-resolution at t[k] = 1000 for a single validation sample x0. 61

4.4 LPIPS vs. single image sampling time for noisy Gaussian deblurring on
an A100 GPU. The evaluation used 1000 ImageNet images. Solid line:
DDfire with CG for various numbers of NFEs. Dashed line: DDfire
with SVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Example recoveries from noisy linear inverse problems with ImageNet
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Example recoveries from noisy linear inverse problems with FFHQ images. 67

5.1 Example MRI recoveries atR = 8. Arrows highlight meaningful variations. 70

xvii



D.1 For FFHQ Gaussian deblurring, the left plot shows the eigenspectrum
of the error covariance Cov{x−x0} with either σ̂2

w from (D.11) (if CG
speedup) or σ̂2

w = σ2
w (if no CG speedup), as well as the eigenspectrum

of the target error covariance σ2I to aim for when renoising. The right
plot shows the eigenvalues of the renoised error covariance Cov{r−x0}
for the ideal case when Σ is used (possible with SVD) and the case
when Σ̂ from (4.16) is used (if no SVD), with either σ̂2

w or σ2
w. Here we

used σ2
w = 10−6, ν = 0.16 (corresponding to the first FIRE iteration of

the first DDIM step), and ρ = 35.7 (corresponding to the example in
Fig. 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.2 PSNR and LPIPS tuning results for box inpainting with 50 ImageNet
validation images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.3 PSNR and LPIPS tuning results for gaussian deblurring with 50 Ima-
geNet validation images. . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.4 PSNR and LPIPS tuning results for motion deblurring with 50 ImageNet
validation images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.5 PSNR and LPIPS tuning results for 4x super resolution with 50 Ima-
geNet validation images. . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.1 Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.126

E.2 Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.127

E.3 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.128

xviii



E.4 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.129

E.5 Example of inpainting a 128×128 square on a 256×256 resolution
CelebA-HQ image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.6 Example of inpainting a 128×128 square on a 256×256 resolution
CelebA-HQ image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.7 Example of inpainting a 128×128 square on a 256×256 resolution
CelebA-HQ image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.8 Example of inpainting a 128×128 square on a 256×256 resolution
CelebA-HQ image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.9 For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors
{v̂k}, and two perturbations of µ̂x|y. . . . . . . . . . . . . . . . . . . . 132

E.10 For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors
{v̂k}, and two perturbations of µ̂x|y. . . . . . . . . . . . . . . . . . . . 133

E.11 For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors
{v̂k}, and two perturbations of µ̂x|y. . . . . . . . . . . . . . . . . . . . 134

E.12 Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.135

E.13 Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.136

xix



E.14 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.137

E.15 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4,
Row four: x̂(P ) with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.138

E.16 Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

E.17 Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

E.18 Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.19 Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xx



Chapter 1: Introduction

In image recovery, the goal is to recover the true image x from noisy/distorted/

incomplete measurements y = M(x). This arises in, e.g., linear inverse problems

such as denoising, deblurring, inpainting, and magnetic resonance imaging (MRI)

where y = Ax+w for w ∼ N (0, σ2
yI), as well as in non-linear inverse problems like

phase-retrieval and image-to-image translation.

In much of the literature, image recovery is posed as point estimation, where the

goal is to return a single best estimate x̂. However, there are several shortcomings of

this approach. First, it’s not clear how to define “best,” since L2- or L1-minimizing x̂

are often regarded as too blurry, while efforts to make x̂ perceptually pleasing can

sacrifice agreement with the true image x and cause hallucinations [8, 35, 59, 10, 30].

Another major limitation with point estimation is that it’s unclear how certain

one can be about the recovered x̂. Quantifying the uncertainty in x̂ is especially

important in medical applications such as MRI, where a diagnosis must be made based

on the measurements y. Rather than simply reporting our best guess of whether a

pathology is present or absent based on x̂, we might want to report the probability

that the pathology is present (given all available data).

To address the limitations of point estimation, posterior-sampling-based image

recovery [7, 99, 90, 98, 28, 93, 79, 37, 4, 111, 110, 9, 97, 85, 39, 87, 86, 48, 17, 96] aims
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to generate P ≥ 1 samples {x̂i}Pi=1 from the posterior distribution px|y(·|y). Posterior

sampling facilitates numerous strategies to quantify the uncertainty in estimating x,

or any function of x, from y [2, 52]. It also can help with visualizing uncertainty and

increasing robustness to adversarial attacks [66]. That said, the design of accurate

and computationally-efficient posterior samplers remains an open problem. The recent

literature has focused on conditional variational autoencoders (cVAEs) [28, 93, 79],

conditional normalizing flows (cNFs) [7, 99, 90, 98], conditional generative adversarial

networks (cGANs) [37, 4, 111, 110, 9], and Langevin/score/diffusion-based generative

models [97, 85, 39, 87, 86, 48, 17, 96].

In the first two chapters of the dissertation, we focus on posterior sampling cGANs.

We first propose rcGAN in Chapter 2, a novel cGAN regularization framework that

enforces correctness in the generated y-conditional mean and trace-covariance using

L1 regularization plus a correctly weighted standard-deviation (SD) reward. We

prove the correctness of the proposed regularization for the simple Gaussian case, and

empirically demonstrate rcGAN’s performance on accelerated MR image reconstrution

and box inpainting, outperforming both cGAN and diffusion competitors.

We then propose pcaGAN in Chapter 3, an extension of rcGAN that encourages

correctness in the K principal components of the y-conditional covariance matrix,

as well as the y-conditional mean and trace covariance when sampling from the

posterior. pcaGAN is inspired, in part, by a separate line of work where Nehme et al.

[61] trained a Neural Posterior Principal Components (NPPC) network to directly

estimate the eigenvectors and eigenvalues of the y-conditional covariance matrix, which

allows powerful insights into the nature of uncertainty in an inverse problem. We

demonstrate the effectiveness of pcaGAN on denoising, random large-scale inpainting,
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and accelerated MR image recovery. There, we show that pcaGAN outperforms

many contemporary diffusion and cGAN competitors, including rcGAN. We also

demonstrate that pcaGAN recovers the principal components more accurately than

NPPC using approximately the same runtime.

In Chapter 4, we shift our focus to diffusion-based methods. Diffusion modeling

has emerged as a powerful approach to generate samples from a complex distribution

p0 [78, 84, 34, 87, 82]. Recently, diffusion has also been used to solve inverse problems

[22], where the goal is to recover x0 ∼ p0 from measurements y in an unsupervised

manner. There, a diffusion model is trained to generate samples from p0 and, at test

time, the reverse process is modified to incorporate knowledge of the measurements y,

with the goal of sampling from the posterior distribution p(x0|y).

When implementing the reverse process, the main challenge is approximating the

conditional score function ∇x ln pt(xt|y) at each step t, where xt is an additive-white-

Gaussian-noise (AWGN) corrupted version of x0 ∈ Rd, and y ∈ Rm is treated as a

draw from a likelihood function p(y|x0). (See Sec. 4.1 for more details). A common

approach uses Tweedie’s formula [29] to write

∇x ln pt(xt|y) =
E{x0|xt,y} − xt

σ2
t

(1.1)

and then approximates the conditional denoiser E{x0|xt,y} (e.g., [48, 96, 114, 20]).

In Chapter 4, we aim to improve the approximation of E{x0|xt,y} at each step

t. In particular, we propose an iterative approach to approximating E{x0|xt,y}

that we call Fast Iterative REnoising (FIRE). FIRE is like a plug-and-play (PnP)

algorithm (see the PnP survey [5]) in that it iterates unconditional denoising with

linear estimation from xt and y. We then embed FIRE into the DDIM diffusion

reverse process [82], yielding the “DDfire” posterior sampler. Here, we show that

3



DDfire outperforms SOTA diffusion competitors in most metrics for a variety of linear

inverse problems.

Finally, we conclude the dissertation by proposing some future research directions

based on applying our cGAN regularization ideas from Chapters 2 and 3 in the context

of training direct diffusion bridge (DDB) models [55, 23].
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Chapter 2: A Regularized Conditional GAN for Posterior

Sampling in Image Recovery Problems

In this chapter, we discuss rcGAN, a regularized conditional GAN for posterior

sampling in inverse problems. Our proposed cGAN tackles the lack-of-diversity issue

that often plagues continuous-conditioned GANs using a novel regularization that

consists of supervised-ℓ1 loss plus an adaptively weighted standard-deviation (SD)

reward. The content of this chapter appears in “A regularized Conditional GAN for

Posterior Sampling in Image Recovery Problems,” which was published at the 37th

annual conference on Neural Information Processing Systems (NeurIPS).

2.1 Background

In this chapter, we build on the Wasserstein cGAN framework from [4]. The goal

is to design a generator network Gθ : Z × Y → X such that, for fixed y, the random

variable x̂ = Gθ(z,y) induced by z ∼ pz has a distribution that best matches the

posterior px|y(·|y) in Wasserstein-1 distance. Here, X , Y , and Z denote the sets of x,

y, and z, respectively, and z is drawn independently of y.

The Wasserstein-1 distance can be expressed as

W1(px|y(·,y), px̂|y(·,y)) = sup
D∈L1

Ex|y{D(x,y)} − Ex̂|y{D(x̂,y)}, (2.1)
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where L1 denotes functions that are 1-Lipschitz with respect to their first argument

and D : X × Y → R is a “critic” or “discriminator” that tries to distinguish between

true x and generated x̂ given y. Since we want the method to work for typical

values of y, we define a loss by taking an expectation of (2.1) over y ∼ py. Since the

expectation commutes with the supremum in (2.1), we have [4]

Ey{W1(px|y(·,y), px̂|y(·,y))} = sup
D∈L1

Ex,y{D(x,y)} − Ex̂,y{D(x̂,y)} (2.2)

= sup
D∈L1

Ex,z,y{D(x,y)−D(Gθ(z,y),y)}. (2.3)

In practice, D is implemented by a neural network Dϕ with parameters ϕ, and (θ,ϕ)

are trained by alternately minimizing

Ladv(θ,ϕ) ≜ Ex,z,y{Dϕ(x,y)−Dϕ(Gθ(z,y),y)} (2.4)

with respect to θ and minimizing −Ladv(θ,ϕ) + Lgp(ϕ) with respect to ϕ, where

Lgp(ϕ) is a gradient penalty that is used to encourage Dϕ ∈ L1 [31]. Furthemore, the

expectation over x and y in (2.4) is replaced in practice by a sample average over the

training examples {(xt,yt)}Tt=1.

One of the main challenges with the cGAN framework in image recovery problems

is that, for each measurement example yt, there is only a single image example xt.

Thus, with the previously described training methodology, there is no incentive for

the generator to produce diverse samples G(z,y)|z∼pz for a fixed y. This can lead

to the generator learning to ignore the code vector z, which causes a form of “mode

collapse.”

Although issues with stability and mode collapse are also present in unconditional

GANs (uGANs) or discretely conditioned cGANs [58], the causes are fundamentally

different than in continuously conditioned cGANs like ours. With continuously
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conditioned cGANs, there is only one example of a valid xt for each given yt, whereas

with uGANs there are many xt and with discretely conditioned cGANs there are many

xt for each conditioning class. As a result, most strategies that are used to combat

mode-collapse in uGANs [76, 43, 112] are not well suited to cGANs. For example,

mini-batch discrimination strategies like MBSD [42], where the discriminator aims to

distinguish a mini-batch of true samples {xt} from a mini-batch of generated samples

{x̂t}, don’t work with cGANs because the posterior statistics are very different than

the prior statistics.

To combat mode collapse in cGANs, Adler & Öktem [4] proposed to use a three-

input discriminator Dadler
ϕ : X × X × Y → R and replace Ladv from (2.4) with the

loss

Ladler
adv (θ,ϕ) ≜ Ex,z1,z2,y

{
1
2
Dadler

ϕ (x, Gθ(z1,y),y) +
1
2
Dadler

ϕ (Gθ(z2,y),x,y)

−Dadler
ϕ (Gθ(z1,y), Gθ(z2,y),y)

}
, (2.5)

which rewards variation between the first and second inputs toDadler
ϕ . They then proved

that minimizing Ladler
adv in place of Ladv does not compromise the Wasserstein cGAN

objective, i.e., argminθ Ladler
adv (θ,ϕ) = argminθ Ladv(θ,ϕ). As we show in Sec. 2.3,

this approach does prevent complete mode collapse, but it leaves much room for

improvement.
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2.2 Approach

2.2.1 Proposed Regularization: Supervised-ℓ1 Plus SD Re-
ward

We now propose a novel cGAN regularization framework, which we dub “rcGAN.”

To train the generator, we propose to solve

argminθ{βadvLadv(θ,ϕ) + L1,SD,Prc(θ, βSD)} (2.6)

with appropriately chosen βadv, βSD > 0 and Prc ≥ 2, where the regularizer

L1,SD,Prc(θ, βSD) ≜ L1,Prc(θ)− βSDLSD,Prc(θ) (2.7)

is constructed from the Prc-sample supervised-ℓ1 loss and standard-deviation (SD)

reward terms

L1,Prc(θ) ≜ Ex,z1,...,zP,y

{
∥x− x̂(Prc)∥1

}
(2.8)

LSD,Prc(θ) ≜
√

π
2Prc(Prc−1)

∑Prc

i=1 Ez1,...,zP,y

{
∥x̂i − x̂(Prc)∥1

}
, (2.9)

and where {x̂i} denote the generated samples and x̂(P ) their P -sample average:

x̂i ≜ Gθ(zi,y), x̂(P ) ≜ 1
P

∑P
i=1 x̂i. (2.10)

The use of supervised-ℓ1 loss and SD reward in (2.7) is not heuristic. As shown in

Proposition 1, it encourages the samples {x̂i} to match the true posterior in both

mean and covariance.

Proposition 1. Suppose Prc ≥ 2 and θ has complete control over the y-conditional

mean and covariance of x̂i. Then the parameters θ∗ = argminθ L1,SD,Prc(θ, β
N
SD) with

βN
SD ≜

√
2

πPrc(Prc+1)
(2.11)

8



yield generated statistics

Ezi|y{x̂i(θ∗)|y} = Ex|y{x|y} = x̂mmse (2.12a)

Covzi|y{x̂i(θ∗)|y} = Covx|y{x|y} (2.12b)

when the elements of x̂i and x are independent Gaussian conditioned on y. Thus,

minimizing L1,SD,Prc encourages the y-conditional mean and covariance of x̂i to match

those of the true x.

See App. C.1 for a proof. In imaging applications, x̂i and x may not be independent

Gaussian conditioned on y, and so the value of βSD in (2.11) may not be appropriate.

Thus we propose a method to automatically tune βSD in Sec. 2.2.2.

Figure 2.1 shows a toy example with parameters θ = [µ, σ]⊤, generator Gθ(z, y) =

µ+σz, and z ∼ N (0, 1), giving generated posterior px̂|y(x|y) = N (x;µ, σ2). Assuming

the true px|y(x|y) = N (x;µ0, σ
2
0), Figs. 2.1(a)-(b) show that, by minimizing the

proposed L1,SD,Prc(θ, β
N
SD) regularization over θ = [µ, σ]⊤ for any Prc ≥ 2, we recover

the true θ0 = [µ0, σ0]
⊤. They also show that the cost function steepens as Prc decreases,

which agrees with our empirical finding that Prc = 2 tends to work best in practice.

We note that regularizing a cGAN with supervised-ℓ1 loss alone is not new; see, e.g.,

[37]. In fact, the use of supervised-ℓ1 loss is often preferred over ℓ2 in image recovery

because it results in sharper, more visually pleasing results [109]. But regularizing a

cGAN using supervised-ℓ1 loss alone can push the generator towards mode collapse,

for reasons described below. For example, in [37], ℓ1-induced mode collapse led the

authors to use dropout to induce generator variation, instead of random zi.

Why not supervised-ℓ2 regularization? One may wonder: Why regularize using

supervised-ℓ1 loss plus an SD reward in (2.7) and not a more conventional choice like
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Figure 2.1: The contours show the regularizer value versus θ=[µ, σ]⊤ for four different
regularizers: (a) supervised-ℓ1 plus SD reward with βSD=βN

SD at Prc=2, (b) supervised-
ℓ1 plus SD reward with βSD = βN

SD at Prc = 8, (c) supervised-ℓ2 at Prc = 8, and (d)
supervised-ℓ2 plus variance reward at Prc=8. The red star shows the true posterior
parameters [µ0, σ0]

⊤.

supervised-ℓ2 loss plus a variance reward, or even supervised-ℓ2 loss alone? We start

by discussing the latter.

The use of supervised-ℓ2 regularization in a cGAN can be found in [37]. In this

case, to train the generator, one would aim to solve argminθ{Ladv(θ,ϕ) + λL2(θ)}

with some λ > 0 and

L2(θ) ≜ Ex,y

{
∥x− Ez{Gθ(z,y)}∥22

}
. (2.13)
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Ohayon et al. [64] revived this idea for the explicit purpose of fighting mode collapse.

In practice, however, the Ez term in (2.13) must be implemented by a finite-sample

average, giving

L2,Prc(θ) ≜ Ex,z1,...,zP,y

{∥∥x− 1
Prc

∑Prc

i=1 Gθ(zi,y)
∥∥2
2

}
(2.14)

for some Prc ≥ 2. For example, Ohayon’s implementation [65] used Prc = 8. As we

show in Proposition 2, L2,Prc induces mode collapse rather than prevents it.

Proposition 2. Say Prc is finite and θ has complete control over the y-conditional

mean and covariance of x̂i. Then the parameters θ∗ = argminθ L2,Prc(θ) yield gener-

ated statistics

Ezi|y{x̂i(θ∗)|y} = Ex|y{x|y} = x̂mmse (2.15a)

Covzi|y{x̂i(θ∗)|y} = 0. (2.15b)

Thus, minimizing L2,Prc encourages mode collapse.

The proof (see App. C.2) follows from the bias-variance decomposition of (2.14),

i.e.,

L2,Prc(θ)

= Ey

{
∥x̂mmse − Ezi|y{x̂i(θ)|y}∥22 + 1

Prc
tr[Covzi|y{x̂i(θ)|y}]

+ Ex|y{∥emmse∥22|y}
}
, (2.16)

where emmse ≜ x− xmmse is the MMSE error. Figure 2.1(c) shows that L2,Prc regular-

ization causes mode collapse in the toy example, and Sec. 2.3.2 shows that it causes

mode collapse in MRI.
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βSD = 0 βSD = βN
SD βSD = 1.2βN

SD βSD = 1.4βN
SD βSD = 1.6βN

SD βSD = 1.8βN
SD

Number of averaged outputs, P , on a log scale

Figure 2.2: Example PSNR of x̂(P ) versus P , the number of averaged outputs, for
several training βSD and MRI recovery at R = 4. Also shown is the theoretical behavior
for true-posterior samples.

Why not supervised ℓ2 plus a variance reward? To mitigate L2,Prc ’s incentive

for mode-collapse, the second term in (2.16) could be canceled using a variance reward,

giving

L2,var,Prc(θ) ≜ L2,Prc(θ)− 1
Prc
Lvar,Prc(θ) (2.17)

with Lvar,Prc(θ) ≜
1

Prc−1

∑Prc

i=1 Ez1,...,zP,y{∥x̂i(θ)− x̂(P )(θ)∥22}. (2.18)

since App. C.3 shows that Lvar,Prc(θ) is an unbiased estimator of the posterior trace-

covariance:

Lvar,Prc(θ) = Ey{tr[Covzi|y{x̂i(θ)|y}]} for any Prc ≥ 2. (2.19)

However, the resulting L2,var,Prc regularizer in (2.17) does not encourage the generated

covariance to match the true posterior covariance, unlike the proposed L1,SD,Prc regu-

larizer in (2.7) (recall Proposition 1). For the toy example, this behavior is visible in

Fig. 2.1(d).

2.2.2 Auto-tuning of SD Reward Weight βSD

We now propose a method to auto-tune βSD in (2.7) for a given training dataset.

Our approach is based on the observation that larger values of βSD tend to yield
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samples x̂i with more variation. But more variation is not necessarily better; we

want samples with the correct amount of variation. To assess the correct amount of

variation, we compare the expected ℓ2 error of the P -sample average x̂(P ) to that of x̂(1).

When {x̂i} are true-posterior samples, these errors follow a particular relationship, as

established by Proposition 3 below (see App. C.4 for a proof).

Proposition 3. Say x̂i ∼ px|y(·|y) are independent samples of the true posterior and,

for any P ≥ 1, their P -sample average is x̂(P ) ≜ 1
P

∑P
i=1 x̂i. Then

EP ≜ E{∥x̂(P ) − x∥22|y} = P+1
P
Emmse, which implies E1

EP
= 2P

P+1
. (2.20)

Experimentally we find that E1/EP grows with the SD reward weight βSD. (See

Fig. 2.2.) Thus, we propose to adjust βSD so that the observed SNR-gain ratio E1/EPval

matches the correct ratio (2Pval)/(Pval + 1) from (2.20), for some Pval ≥ 2 that does

not need to match Prc. (We use Pval = 8 in Sec. 2.3.) In particular, at each training

epoch τ , we approximate EPval
and E1 as follows:

ÊPval,τ ≜ 1
V

∑V
v=1 ∥

1
Pval

∑Pval

i=1Gθτ (zi,v,yv)− xv∥22 (2.21)

Ê1,τ ≜ 1
V

∑V
v=1 ∥Gθτ (z1,v,yv)− xv∥22, (2.22)

with validation set {(xv,yv)}Vv=1 and i.i.d. codes {zi,v}Pval
i=1. We update βSD using

gradient descent:

βSD,τ+1 = βSD,τ − µSD ·
(
[Ê1,τ/ÊPval,τ ]dB − [2Pval/(Pval + 1)]dB

)
βN
SD for τ = 0, 1, 2, . . .

(2.23)

with βSD,0 = βN
SD, some µSD > 0, and [x]dB ≜ 10 log10(x).
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2.3 Numerical Experiments

2.3.1 Conditional Fréchet Inception Distance

As previously stated, our goal is to train a generator Gθ so that, for typical fixed

values of y, the generated distribution px̂|y(·|y) matches the true posterior px|y(·|y). It

is essential to have a quantitative metric for evaluating performance with respect to

this goal. For example, it is not enough that the generated samples are “accurate” in

the sense of being close to the ground truth, nor is it enough that they are “diverse”

according to some heuristically chosen metric.

We quantify posterior-approximation quality using the Conditional Fréchet Incep-

tion Distance (CFID) [80], a computationally efficient approximation to the conditional

Wasserstein distance

CWD ≜ Ey{W2(px|y(·,y), px̂|y(·,y))}. (2.24)

In (2.24), W2(pa, pb) denotes the Wasserstein-2 distance between distributions pa and

pb, defined as

W2(pa, pb) ≜ min
pa,b∈Π(pa,pb)

Ea,b{∥a− b∥22}, (2.25)

where Π(pa, pb) ≜
{
pa,b : pa =

∫
pa,b db and pb =

∫
pa,b da

}
denotes the set of joint

distributions pa,b with prescribed marginals pa and pb. Similar to how FID [33]—a

popular uGAN metric—is computed, CFID approximates CWD (2.24) as follows: i)

the random vectors x, x̂, and y are replaced by low-dimensional embeddings x, x̂,

and y, generated by the convolutional layers of a deep network, and ii) the embedding

distributions px|y and px̂|y are approximated by multivariate Gaussians. More details

on CFID are given in App. D.1.
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2.3.2 MRI Experiments

We consider parallel MRI recovery, where the goal is to recover a complex-valued

multicoil image x from zero-filled measurements y (see App. A.1 for details).

Data. For training data {xt}, we used the first 8 slices of all fastMRI [102]

T2 brain training volumes with at least 8 coils, cropping to 384 × 384 pixels and

compressing to 8 virtual coils [108], yielding 12 200 training images. Using the same

procedure, 2 376 testing and 784 validation images were obtained from the fastMRI

T2 brain testing volumes. From the 2 376 testing images, 72 were randomly selected

to evaluate the Langevin technique [39] in order to limit its sample generation to

6 days. To create the measurement yt, we transformed xt to the Fourier domain,

sampled using pseudo-random GRO patterns [41] at acceleration R = 4 and R = 8,

and Fourier-transformed the zero-filled k-space measurements back to the (complex,

multicoil) image domain.

Architecture. We use a U-Net [74] for our generator and a standard CNN

for our discriminator, along with data-consistency as in App. A.2. Architecture and

training details are given in App. D.2.

Competitors. We compare our cGAN to the Adler and Öktem’s cGAN [4],

Ohayon et al.’s pscGAN [64], Jalal et al.’s fastMRI Langevin approach [39], and Sriram

et al.’s E2E-VarNet [89]. The cGAN from [4] uses generator loss βadvLadler
adv (θ,ϕ) and

discriminator loss −Ladler
adv (θ,ϕ)+α1Lgp(ϕ)+α2Ldrift(ϕ), while the cGAN from [64] uses

generator loss βadvLadv(θ,ϕ)+L2,P (θ) and discriminator loss −Ladv(θ,ϕ)+α1Lgp(ϕ)+

α2Ldrift(ϕ). Each used the value of βadv specified in the original paper. All cGANs

used the same generator and discriminator architectures, except that [4] used extra

discriminator input channels to facilitate the 3-input loss (2.5). For the fastMRI
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Langevin approach [39], we did not modify the authors’ implementation in [38] except

to use the GRO sampling mask. For the E2E-VarNet [89], we use the same training

procedure and hyperparameters outlined in [39] except that we use the GRO sampling

mask.

Testing. To evaluate performance, we converted the multicoil outputs x̂i

to complex-valued images using SENSE-based coil combining [70] with ESPIRiT-

estimated [94] coil sensitivity maps, as described in App. A.1. Magnitude images were

used to compute performance metrics.

Table 2.1: Average MRI results at R ∈ {4, 8}. Tested with VGG-16 features. CFID1,
FID, and APSD used 72 test samples and P =32, CFID2 used 2 376 test samples and
P =8, and CFID3 used all 14 576 samples and P =1

R = 4 R = 8

Model CFID1↓ CFID2↓ CFID3↓ FID↓ APSD Time (4)↓ CFID1↓ CFID2↓ CFID3↓ FID↓ APSD Time (4)↓

E2E-VarNet (Sriram et al. [89]) 7.47 6.99 6.61 8.84 0.0 310ms 7.82 6.81 6.31 8.40 0.0 316ms
Langevin (Jalal et al. [39]) 5.29 - - 6.12 5.9e-6 14 min 7.34 - - 14.32 7.6e-6 14 min

cGAN (Adler & Öktem [4]) 6.39 4.27 3.82 5.25 3.9e-6 217 ms 10.10 6.30 5.72 10.77 7.7e-6 217 ms
pscGAN (Ohayon et al. [64]) 4.06 3.27 2.95 6.45 7.2e-8 217 ms 6.04 4.59 4.27 11.05 7.7e-7 217 ms
rcGAN 3.10 1.54 1.29 3.75 3.8e-6 217 ms 4.87 2.23 1.79 7.72 7.6e-6 217 ms

Results. Table 2.1 shows CFID, FID, APSD ≜ ( 1
NP

∑P
i=1 ∥x̂(P ) − x̂i∥2)1/2,

and 4-sample generation time at R ∈ {4, 8}. (C)FID was computed using VGG-16

(not Inception-v3) to better align with radiologists’ perceptions [46]. As previously

described, the Langevin method was evaluated using only 72 test images. Because

CFID is biased at small sample sizes [80], we re-evaluated the other methods using all

2 376 test images, and again using all 14 576 training and test images. Table 2.1 shows

that our approach gave significantly better CFID and FID than the competitors. Also,

the APSD of Ohayon et al.’s pscGAN was an order-of-magnitude smaller than the
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Table 2.2: Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for R = 4 MRI

PSNR↑ SSIM↑
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 39.93 - - - - - 0.9641 - - - - -
Langevin (Jalal et al. [39]) 36.04 37.02 37.65 37.99 38.17 38.27 0.8989 0.9138 0.9218 0.9260 0.9281 0.9292

cGAN (Adler & Öktem [4]) 35.63 36.64 37.24 37.56 37.73 37.82 0.9330 0.9445 0.9478 0.9480 0.9477 0.9473
pscGAN (Ohayon et al. [64]) 39.44 39.46 39.46 39.47 39.47 39.47 0.9558 0.9546 0.9539 0.9535 0.9533 0.9532
rcGAN 36.96 38.14 38.84 39.24 39.44 39.55 0.9440 0.9526 0.9544 0.9542 0.9537 0.9533

LPIPS↓ DISTS↓
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 0.0316 - - - - - 0.0859 - - - - -
Langevin (Jalal et al. [39]) 0.0545 0.0394 0.0336 0.0320 0.0317 0.0316 0.1116 0.0921 0.0828 0.0793 0.0781 0.0777

cGAN (Adler & Öktem [4]) 0.0285 0.0255 0.0273 0.0298 0.0316 0.0327 0.0972 0.0857 0.0878 0.0930 0.0967 0.0990
pscGAN (Ohayon et al. [64]) 0.0245 0.0247 0.0248 0.0249 0.0249 0.0249 0.0767 0.0790 0.0801 0.0807 0.0810 0.0811
rcGAN 0.0175 0.0164 0.0188 0.0216 0.0235 0.0245 0.0546 0.0563 0.0667 0.0755 0.0809 0.0837

others, indicating mode collapse. The cGANs generated samples 3 800 times faster

than the Langevin approach from [39].

Tables 2.2 and 2.3 show PSNR, SSIM, LPIPS [107], and DISTS [27] for the P -

sample average x̂(P ) at P ∈ {1, 2, 4, 8, 16, 32} and R ∈ {4, 8}, respectively. While the

E2E-VarNet achieves the best PSNR at R ∈ {4, 8} and the best SSIM at R = 4, the

proposed rcGAN achieves the best LPIPS and DISTS performances at R ∈ {4, 8}

when P = 2 and the best SSIM at R = 8 when P = 8. The P dependence can be

explained by the perception-distortion tradeoff [11]: as P increases, x̂(P ) transitions

from better perceptual quality to lower ℓ2 distortion. PSNR favors P →∞ (e.g., ℓ2

optimality) while the other metrics favor particular combinations of perceptual quality

and distortion. The plots in Appendices E.1.1 and E.1.2 show zoomed-in versions of

x̂(P ) that visually demonstrate the perception-distortion tradeoff at P ∈ {1, 2, 4, 32}:

smaller P yield sharper images with more variability from the ground truth, while

larger P yield smoother reconstructions.
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Table 2.3: Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for R = 8 MRI

PSNR↑ SSIM↑
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 36.49 - - - - - 0.9220 - - - - -
Langevin (Jalal et al. [39]) 32.17 32.83 33.45 33.74 33.83 33.90 0.8725 0.8919 0.9031 0.9091 0.9120 0.9137

cGAN (Adler & Öktem [4]) 31.31 32.31 32.92 33.26 33.42 33.51 0.8865 0.9045 0.9103 0.9111 0.9102 0.9095
pscGAN (Ohayon et al. [64]) 34.89 34.90 34.90 34.90 34.91 34.92 0.9222 0.9217 0.9213 0.9211 0.9211 0.9210
rcGAN 32.32 33.67 34.53 35.01 35.27 35.42 0.9030 0.9199 0.9252 0.9257 0.9251 0.9246

LPIPS↓ DISTS↓
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 0.0575 - - - - - 0.1253 - - - - -
Langevin (Jalal et al. [39]) 0.0769 0.0619 0.0579 0.0589 0.0611 0.0611 0.1341 0.1136 0.1086 0.1119 0.1175 0.1212

cGAN (Adler & Öktem [4]) 0.0698 0.0614 0.0623 0.0667 0.0704 0.0727 0.1407 0.1262 0.1252 0.1291 0.1334 0.1361
pscGAN (Ohayon et al. [64]) 0.0532 0.0536 0.0539 0.0540 0.0534 0.0540 0.1128 0.1143 0.1151 0.1155 0.1157 0.1158
rcGAN 0.0418 0.0379 0.0421 0.0476 0.0516 0.0539 0.0906 0.0877 0.0965 0.1063 0.1135 0.1177

Figure 2.3 shows zoomed versions of two posterior samples x̂i, as well as x̂(P ), at

P = 32 and R = 8. The posterior samples show meaningful variations for the proposed

method, essentially no variation for pscGAN, and vertical or horizontal reconstruction

artifacts for Adler & Öktem’s cGAN and the Langevin method, respectively. The x̂(P )

plots show that these artifacts are mostly suppressed by sample averaging with large

P .

Figure 2.4 shows examples of x̂(P ), along with the corresponding pixel-wise absolute

errors |x̂(P ) − x| and pixel-wise SD images ( 1
P

∑P
i=1(x̂(P ) − x̂i)

2)1/2, for P = 32 and

R = 8. The absolute-error image for the Langevin technique looks more diffuse than

those of the other methods in the brain region. The fact that it is brighter in the air

region (i.e., near the edges) is a consequence of minor differences in sensitivity-map

estimation. The pixel-wise SD images show a lack of variability for the E2E-VarNet,

which does not generate posterior samples, as well as pscGAN, due to mode collapse.

The Langevin pixel-wise SD images show localized hot-spots that appear to be

reconstruction artifacts.
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Figure 2.3: Example R = 8 MRI reconstructions. Arrows show meaningful variations
across samples.

Appendices E.1.1 and E.1.2 show other example MRI recoveries with zoomed

pixel-wise SD images at R = 4 and R = 8, respectively.

2.3.3 Inpainting Experiments

In this section, our goal is to complete a large missing square in a face image.

Data. We used 256 × 256 CelebA-HQ face images [42] and a centered 128 ×

128 missing square. We randomly split the dataset, yielding 27 000 training, 2 000

validation, and 1 000 testing images.

Architecture. For our cGAN, we use the CoModGAN generator and discrimina-

tor from [111] with our proposed L1,SD,Prc regularization. Unlike [111], we do not use

MBSD [42] at the discriminator.
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Figure 2.4: Example R = 8 MRI reconstructions with P = 32. Row one: P -sample
average x̂(P ). Row two: pixel-wise absolute error |x̂(P ) − x|. Row three: pixel-wise SD

( 1
P

∑P
i=1(x̂i − x̂(P ))

2)1/2.

Training/validation/testing. We use the same general training and testing

procedure described in Sec. 2.3.2, but with βadv = 5e-3, nbatch = 100, and 110 epochs

of cGAN training. Running PyTorch on a server with 4 Tesla A100 GPUs, each with

82 GB of memory, the cGAN training takes approximately 2 days. FID was evaluated

on 1 000 test images using P =32 samples per measurement. To avoid the bias that

would result from evaluating CFID on only 1 000 images (see Sec. 2.3.4), CFID was

evaluated on all 30 000 images with P = 1.

Competitors. We compare with the state-of-the-art CoModGAN [111] and Score-

based SDE [87] approaches. For CoModGAN, we use the PyTorch implementation

from [103]. CoModGAN differs from our cGAN only in its use of MBSD and lack of

L1,SD,Prc regularization. For Song et al.’s SDE, we use the authors’ implementation
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Table 2.4: Average results for inpainting: FID was computed from 1 000 test images
with P =32, while CFID was computed from all 30 000 images with P =1

Model CFID↓ FID↓ Time (128)↓

Score-SDE (Song et al. [87]) 5.11 7.92 48 min
CoModGAN (Zhao et al. [111]) 5.29 8.50 217 ms
rcGAN 4.69 7.45 217 ms

from [88] with their pretrained weights and the settings they suggested for the 256×256

CelebA-HQ dataset.

Results. Table 2.4 shows test CFID, FID, and 128-sample generation time. The

table shows that our approach gave the best CFID and FID, and that the cGANs

generated samples 13 000 times faster than the score-based method. Figure 2.5 shows

an example of five generated samples for the three methods under test. The samples are

all quite good, although a few generated by CoModGAN and the score-based technique

have minor artifacts. Some samples generated by our technique show almond-shaped

eyes, demonstrating fairness. Additional examples are given in App. E.1.3.

2.3.4 CFID Decomposition

In this section, we investigate the small-sample bias effects of CFID, which have

been previously noted in [80]. To do this, we write the CFID from (D.1) as a sum

of two terms: a term that quantifies the conditional-mean error and a term that
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Figure 2.5: Example of inpainting a 128×128 square on a 256×256 resolution CelebA-
HQ image.

quantifies the conditional-covariance error:

CFID = CFIDmean +CFIDcov (2.26)

CFIDmean ≜ Ey{∥µx|y − µx̂|y∥22} (2.27)

CFIDcov ≜ tr
[
Σxx|y +Σx̂x̂|y − 2

(
Σ

1/2
xx|yΣx̂x̂|yΣ

1/2
xx|y
)1/2]

. (2.28)

To verify that (2.28) quantifies the error in Σx̂x̂|y, notice that (2.28) equals zero when

Σx̂x̂|y = Σxx|y and is otherwise positive (by Cauchy Schwarz).

In Table 2.5, we report CFIDmean and CFIDcov for the MRI and inpainting experi-

ments, in addition to the total CFID (also shown in Tables 3.2 and 3.5). As before, we

computed CFID on three test sets for each experiment, which contained 72, 2 376, and

14 576 samples respectively for MRI, and 1000, 3000, and 30 000 samples respectively

for inpainting. Due to the slow sample-generation time of the Langevin/score-based

methods [39, 87], we did not have the computational resources to evaluate them on

all datasets, and that’s why certain table entries are blank.
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Table 2.5: The mean and covariance components of CFID, along with the total
CFID, for the generative models in the MRI and inpainting experiments. For the
MRI experiment, CFID1 used 72 test samples and P = 32, CFID2 used 2 376 test
samples and P = 8, and CFID3 used all 14 576 samples and P = 1. For the inpainting
experiment, CFID1 used 1 000 test images and P = 32, CFID2 used 3 000 test and
validation images and P = 8, and CFID3 used all 30 000 images and P = 1.

Model CFID1
mean ↓ CFID1

cov ↓ CFID1 ↓ CFID2
mean ↓ CFID2

cov ↓ CFID2 ↓ CFID3
mean ↓ CFID3

cov ↓ CFID3 ↓

R = 4 MRI

Langevin (Jalal [39]) 1.89 3.40 5.29 - - - - - -
cGAN (Adler [4]) 3.12 3.27 6.39 2.79 1.48 4.27 2.71 1.10 3.82
pscGAN (Ohayon [64]) 1.94 2.12 4.06 2.27 1.00 3.27 2.29 0.66 2.95
rcGAN 0.98 2.12 3.10 0.86 0.68 1.54 0.86 0.43 1.29

R = 8 MRI

Langevin (Jalal [39]) 2.61 4.73 7.34 - - - - - -
cGAN (Adler [4]) 5.00 5.10 10.10 4.16 2.14 6.30 4.09 1.63 5.72
pscGAN (Ohayon [64]) 2.73 3.31 6.04 3.07 1.52 4.59 3.30 0.97 4.27
rcGAN 1.55 3.32 4.87 1.24 0.99 2.23 1.17 0.62 1.79

Inpainting

Score SDE (Song [87]) 0.97 38.69 39.66 - - - 0.90 4.21 5.11
CoModGAN (Zhao [111]) 0.42 41.21 41.63 0.35 25.39 25.74 0.32 4.98 5.29
rcGAN 0.32 39.41 39.73 0.25 22.32 22.58 0.24 4.45 4.69

For both MRI experiments, Table 2.5 shows our method outperforming the com-

peting methods in both the mean and covariance components of CFID (and thus the

total CFID) for all sample sizes. And, in the inpainting experiment, Table 2.5 shows

our method outperforming CoModGAN in both the mean and covariance components

(and thus the total CFID) for all sample sizes.

For the inpainting experiment, Table 2.5 shows our method outperforming the

score-based approach in total CFID on the 3000- and 30 000-sample test sets but not

on the 1000-sample test set. However, we now argue that the 1000-sample inpainting

experiment is heavily affected by small-sample bias, and therefore untrustworthy.

Looking at the mean component of CFID (i.e., CFID1
mean, CFID

2
mean, and CFID3

mean)

across the inpainting experiments, we see that the values are relatively small and

stable with sample size. But looking at the covariance component of CFID (i.e.,
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CFID1
cov, CFID

2
cov, and CFID3

cov) across the inpainting experiments, we see that the

values are large and heavily dependent on sample size. For the 1000-sample inpainting

experiment, the total CFID is dominated by the covariance component and thus

strongly affected by small-sample bias. Consequently, for the 1000-sample inpainting

experiment, the total CFID is not trustworthy.

2.4 Conclusion

In this chapter, we proposed a novel regularization framework for image-recovery

cGANs that consists of supervised-ℓ1 loss plus an appropriately weighted standard-

deviation reward. For the case of an independent Gaussian posterior, we proved that

our regularization yields generated samples that agree with the true-posterior samples

in both mean and covariance. We also established limitations for alternatives based on

supervised-ℓ2 regularization with or without a variance reward. For practical datasets,

we proposed a method to auto-tune our standard-deviation reward weight.

Experiments on parallel MRI and large-scale face inpainting showed our proposed

method outperforming all cGAN and score-based competitors in CFID, which measures

posterior-approximation quality, as well as other metrics like FID, PSNR, SSIM,

LPIPS, and DISTS. Furthermore, it generates samples thousands of times faster than

Langevin/score-based approaches.

Limitations. We acknowledge several limitations of our work in this chapter.

First, while we focused on how to build a fast and accurate posterior sampler, it’s not

yet clear how to best exploit the resulting posterior samples in each given application.

For example, in MRI, where the posterior distribution has the potential to help

assess uncertainty in image recovery, it’s still not quite clear how to best convey
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uncertainty information to radiologists (e.g., they may not gain much from pixel-wise

SD images). More work is needed on this front. Second, we acknowledge that, because

radiologists are risk-averse, more studies are needed before they will feel comfortable

incorporating generative deep-learning-based methods into the clinical workflow. Third,

we acknowledge that the visual quality of our R = 8 MRI reconstructions falls below

clinical standards. Fourth, some caution is needed when interpreting our CFID, FID,

and DISTS perceptual metrics because the VGG-16 backbone used to compute them

was trained on ImageNet data. Although there is some evidence that the resulting

DISTS metric correlates well with radiologists’ perceptions [46], there is also evidence

that ImageNet-trained features may discard information that is diagnostically relevant

in medical imaging [51]. Thus our results need to be validated with a pathology-centric

radiologist study before they can be considered relevant to clinical practice.
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Chapter 3: Improving Posterior-Sampling cGANs via

Principal Component Regularization

In this chapter, we discuss pcaGAN, an extension to the rcGAN method described

in Chapter 2. In addition to encouraging correctness in the posterior mean and trace-

covariance, pcaGAN also encourages correctness in the K principal components of the

y-conditional covariance matrix. The content of this chapter appears in “Improving

Posterior-Sampling cGANs via Principal Component Regularization,” which was

published at the 38th annual conference on Neural Information Processing Systems

(NeurIPS).

3.1 Background

In this chapter, we build on the rcGAN regularization framework from Chapter

2, which itself builds on the cGAN framework from [4], as detailed in Section 2.1.

Furthermore, in Chapter 2, we proposed to regularize the generator Gθ in a way that

encourages correct posterior means and trace-covariances, i.e.,

µx̂|y = µx|y for µx̂|y ≜ E{x̂|y} and µx|y ≜ E{x|y} (3.1)

tr(Σx̂|y) = tr(Σx|y) for Σx̂|y ≜ Cov{x̂|y} and Σx|y ≜ Cov{x|y}. (3.2)
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To do this, we replaced Ladv(θ,ϕ) in Section 2.2 with the regularized adversarial loss

LrcGAN(θ,ϕ) ≜ βadvLadv(θ,ϕ) + L1,Prc(θ)− βSDLSD,Prc(θ), (3.3)

which involves the Prc-sample supervised-ℓ1 loss and standard-deviation (SD) reward

terms

L1,P (θ) ≜ Ex,z1,...,zP,y

{
∥x− x̂(P )∥1

}
(3.4)

LSD,P (θ) ≜
∑P

i=1 Ez1,...,zP,y

{
∥x̂i − x̂(P )∥1

}
, (3.5)

where typically Prc = 2. Recall, {x̂i} are the generated samples and x̂(P ) is their

P -sample average:

x̂i ≜ Gθ(zi,y) for i = 1, . . . , Prc and x̂(P ) ≜ 1
P

∑P
i=1 x̂i. (3.6)

The reward weight βSD in (3.3) is then automatically adjusted to accomplish (3.2)

during training.

3.2 Approach

Whereas rcGAN aimed for correctness in the posterior mean and posterior trace-

covariance statistics, our proposed pcaGAN also aims for correctness in the K principal

components of the posterior covariance matrix Σx̂|y, where K is user-selectable. To do

this, pcaGAN adds two additional regularization terms to the rcGAN objective:

LpcaGAN(θ,ϕ) ≜ LrcGAN(θ,ϕ) + βpcaLevec(θ) + βpcaLeval(θ) (3.7)

Levec(θ) ≜ −Ey

{
Ex,z1,...,zP|y

{∑K
k=1[v̂

⊤
k (x− µx|y)]

2
∣∣y}} (3.8)

Leval(θ) ≜ Ey

{
Ex,z1,...,zP|y

{∑K
k=1

(
1− λk/λ̂k

)2∣∣y}}. (3.9)

Here, {(v̂k, λ̂k)}Kk=1 denote the principal eigenvectors and eigenvalues of the θ-dependent

generated covariance matrix Σx̂|y and {(vk, λk)}Kk=1 denote the principal eigenvectors
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and eigenvalues of the true covariance matrix Σx|y. Because (3.8) is the classical PCA

objective [40], minimizing Levec(θ) over θ will drive the generated principal eigen-

vector v̂k towards the true principal eigenvector vk for each k = 1, . . . , K. Likewise,

minimizing Leval(θ) over θ will drive the generated principal eigenvalue λ̂k towards

the true principal eigenvalue λk for each k = 1, . . . , K. Based on our experiments,

putting λ̂k in the denominator works better than the numerator and the squared error

in (3.9) works better than an absolute value.
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Algorithm 1 pcaGAN generator-training iteration

Require: number of estimated eigen-components K, number of samples used for
eigenvector and eigenvalue regularization Ppca, number of samples used for rcGAN
regularization Prc, epoch at which to involve eigenvector regularization Eevec,
epoch at which to involve eigenvalue regularization Eeval, lazy update period
M , adversarial loss weight βadv, std regularization weight βSD, eigenvector and
eigenvalue regularization weight βpca, training batch {(xb,yb)}Bb=1, current model
parameters θ, current training epoch e, the current training step s

1: L(θ)← 0
2:

3: for b = 1, . . . , B do
4: zi ∼ N (0, I) for i = 1, . . . , Prc

5: x̂i ← Gθ(zi,yb) for i = 1, . . . , Prc

6: L(θ)← L(θ)− βadv

∑Prc

i=1 Dϕ(x̂i,yb)

7: x̂(Prc) =
1
Prc

∑Prc

i=1 x̂i

8: L(θ)← L(θ) + ∥xb − x̂(Prc)∥1 − βSD

∑Prc

i=1 Ez1,...,zP,y

{
∥x̂i − x̂(Prc)∥1

}
9:

10: if e ≥ Eevec and s mod M = 0 then
11: zj ∼ N (0, I) for j = 1, . . . , Ppca

12: x̂j ← Gθ(zj,yb) for j = 1, . . . , Ppca

13: µ̂← StopGrad( 1
Ppca

∑Ppca

j=1 x̂j)

14: Û ŜV̂ ⊤ ← SVD([x̂1 − µ̂, . . . , x̂Ppca − µ̂]⊤)

15: v̂k ← [V̂ ]:,k for k = 1, . . . , K

16: L(θ)← L(θ)− βpca

∑K
k=1[v̂

⊤
k (xb − µ̂)]2

17: end if
18:

19: if e ≥ Eeval and s mod M = 0 then
20: λ̂k ← [Ŝ]2kk for k = 1, . . . , K

21: X̃ ← [xb − µ̂, x̂1 − µ̂, x̂2 − µ̂, . . . , x̂Ppca − µ̂]⊤

22: L(θ)← L(θ) + βpca

∑K
k=1

(
1− 1

λ̂k
StopGrad( 1

Ppca+1
∥v̂⊤

k X̃∥2)
)2

23: end if
24: end for
25:

26: θ ← Adam(θ,∇L(θ))

In practice, the expectations in (3.8)-(3.9) are replaced by sample averages over the

training data. In the typical case that the training data includes only a single image
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xt for each measurement vector yt, the quantities µx|y and {λk} in (3.8)-(3.9) are

unknown and non-trivial to estimate for each yt. Hence, when training the pcaGAN,

we approximate them with learned quantities. This must be done carefully, however.

For example, if µx|y in (3.8) was simply replaced by the θ-dependent quantity µx̂|y,

then minimizing Levec(θ) over θ would encourage µx̂|y to become overly large in order

to drive Levec(θ) to a large negative value.

Algorithm 1 details our proposed approach to training the pcaGAN. In particular,

it describes the steps used to perform a single update of the generator parameters θ

based on the training batch {(xb,yb)}Bb=1. Before diving into the details, we offer a

brief summary of Algorithm 1. For the initial epochs, the rcGAN objective LrcGAN

alone is optimized, which allows the generated posterior mean µx̂|y to converge to the

vicinity of µx|y. Starting at Eevec epochs, the Levec(θ) regularization from (3.8) is added,

but with µx|y approximated as StopGrad(µx̂|y). The use of StopGrad forces Levec(θ)

to be minimized by manipulating the eigenvectors {v̂k}Kk=1 and not the generated

posterior mean µx̂|y. These eigenvectors are computed using an SVD of centered

approximate-posterior samples. To reduce the computational burden imposed by this

SVD, a “lazy regularization” [45] approach is adopted, which computes Levec(θ) only

once every M training steps. Training proceeds in this manner until the eigenvectors

{v̂k} converge. Starting at Eeval epochs, the Leval(θ) regularization from (3.9) is added,

but with λk approximated as

λk ≈ StopGrad
(

1
1+Ppca

∥∥v̂⊤
k [xb − µx̂|y, x̂1 − µx̂|y, . . . , x̂Ppca − µx̂|y]

∥∥2), (3.10)

where StopGrad is used so that the optimization focuses on {λ̂k}. The rationale

behind (3.10) is that, when v̂k = vk and µx̂|y = µx|y, the terms [v̂⊤
k (xb − µx̂|y)]

2 and

[v̂⊤
k (x̂j − µx̂|y)]

2 ∀j all equal λk in yb-conditional expectation. This expectation is
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approximated using a (1 + Ppca)-term sample average in (3.10) via the squared norm.

The eigenvalues {λ̂k} in (3.9) are computed using the previously described SVD and

the regularization schedule is again M -lazy.

We now provide additional details on Algorithm 1. After the loss is initialized in

line 1, the following steps are executed for each measurement vector yb in the batch.

First, approximate posterior samples {x̂i}Prc
i=1 are generated in line 5, where Prc = 2 as

done in Chapter 2. Using these samples, the adversarial component of the loss is added

in line 6 and the rcGAN regularization is added in line 8. Starting at epoch Eevec,

lines 11-16 are executed whenever the training iteration is a multiple of M . Nominally,

Eevec is set where the validation PSNR of µ̂ (an empirical approximation of µx̂|y)

stabilizes and M = 100. Within those lines, samples {x̂j}Ppca

j=1 are generated in line 12

(where nominally Ppca = 10K), their sample mean is computed in line 13, and the

SVD of the centered samples is computed in line 14. The top K right singular vectors

are then extracted in line 15 in order to construct the Levec(θ) regularization, which

is added to the overall generator loss L(θ) in line 16. Starting at epoch Eeval, where

nominally Eeval = Eevec + 25, lines 20-22 are executed whenever the training iteration

is a multiple of M . In line 20, the top K eigenvalues {λ̂k} are constructed from the

previously computed singular values and, in line 22, the Leval(θ) regularization is

constructed and added to the overall training loss. The construction of Leval(θ) was

previously described around (3.10). Finally, once the losses for all batch elements

have been incorporated, the gradient ∇L(θ) is computed using back-propagation and

a gradient-descent step of θ is performed using the Adam optimizer [50] in line 26.
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3.3 Numerical Experiments

We now present experiments with Gaussian data, MNIST denoising, MRI, and

FFHQ face inpainting. Additional implementation and training details for each

experiment are provided in Appendix D.3.

3.3.1 Recovering Synthetic Gaussian Data

Here our goal is to recover x ∼ N (µx,Σx) ∈ Rd from y = Mx+w ∈ Rd, where

M masks x at even indices and noise w ∼ N (0, σ2I) is independent of x with

σ2 = 0.001. Since x and y are jointly Gaussian, the posterior is Gaussian with

µx|y = µx +ΣxyΣ
−1
y (y − µy) and Σx|y = Σx −ΣxyΣ

−1
y Σyx, where µx,µy,Σx,Σy are

marginal and Σxy,Σyx are joint statistics.

We generate random µx ∼ N (0, I) and Σx with half-normal eigenvalues λk

(see additional details in App. D.3.1), and consider a sequence of problem sizes

d = 10, 20, 30, . . . , 100. For each d, we generate 70 000 training, 20 000 validation, and

10 000 test samples. The generator and discriminator are simple multilayer perceptrons

(see App. D.3.2) trained for 100 epochs with K = d, Eevec = 10, βadv = 10−5, and

βpca = 10−2.

Competitors. We compare the proposed pcaGAN to rcGAN and NPPC [61].

rcGAN uses the same generator and discriminator architectures as pcaGAN and is

trained according to (3.3) with βadv = 10−5 and Prc = 2. For NPPC, we use the

authors’ implementation [62] with K = d and some minor modifications to work

with vector data. To evaluate performance, we use the Wasserstein-2 (W2) distance

between px|y and p̂x|y, which in the Gaussian case reduces to

W2(px|y, p̂x|y) = ∥µx|y − µ̂x|y∥22 + tr
[
Σx|y + Σ̂x|y − 2(Σ

1/2
x|yΣ̂x|yΣ

1/2
x|y)

1/2
]
. (3.11)
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(a) W2(px|y, px̂|y) vs. M (b) W2(px|y, px̂|y) vs. K (c) W2(px|y, px̂|y)/d vs. d

Figure 3.1: Gaussian experiment. Wasserstein-2 distance versus (a) lazy update period
M for pcaGAN with d = 100 = K, (b) estimated eigen-components K for pcaGAN
with d = 100 and M = 100, and (c) problem dimension d for all methods under test
with K = d and M = 100.

For the cGANs, we compute µ̂x|y and Σ̂x|y empirically from 10d samples, while for

NPPC we use the conditional mean, eigenvalues, and eigenvectors returned by the

approach.

Results. Figure 3.1a examines the impact of the lazy update period M on

pcaGAN’s W2 distance at d = 100 with K = d. Based on this figure, to balance

performance with training overhead, we set M = 100 for all future experiments.

Figure 3.1b examines the impact of K on W2 distance for the pcaGAN with d = 100.

It shows that using K < d causes a relatively mild increase in W2 distance, as expected

due to the half-normal distribution on the true eigenvalues λk. Figure 3.1c shows that

the proposed pcaGAN outperforms rcGAN and NPPC in W2 distance for all problem

sizes d.

3.3.2 MNIST Denoising

Now our goal is to recover an MNIST digit x ∈ [0, 1]28×28 from noisy measurements

y = x + w with w ∼ N (0, I). We randomly split the MNIST training fold into

50 000 training and 10 000 validation images, and we use the entire MNIST test set
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for testing. For pcaGAN and rcGAN, we use a U-Net [74] generator and the encoder

portion of the same U-Net followed by one dense layer as the discriminator. pcaGAN

was trained for 125 epochs with Eevec = 25, βadv = 10−5, βpca = 10−1, and K ∈ {5, 10}.

Competitors. We again compare the proposed pcaGAN to rcGAN and NPPC.

For rcGAN we used the same generator and discriminator architectures as pcaGAN

and trained according to (3.3) with βadv = 10−5 and Prc = 2. For NPPC, we used the

authors’ MNIST implementation from [62].

Following the NPPC paper [61], we evaluate performance using root MSE (rMSE)

Ex,y{∥x − µ̂x|y∥2} and Residual Error Magnitude (REM5) Ex,y

{∥∥(I − V̂5V̂5
⊤)e
∥∥
2

}
,

where e = x − µ̂x|y and V̂5 is an 282 × 5 matrix whose kth column equals the kth

principal eigenvector v̂k. For the cGANs, we use µ̂x|y = x̂(P ) and compute {v̂k} from

the SVD of a matrix of centered samples {x̂i}Pi=1, both with P = 100. For NPPC, we

use the conditional means and eigenvectors returned by the approach. For performance

evaluation, we also consider Conditional Fréchet Inception Distance (CFID) [80] with

InceptionV3 features. CFID is analogous to Fréchet Inception Distance (FID) [33]

but applies to conditional distributions (see Appendix D.1 for more details).
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(a) pcaGAN (K = 10)
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Figure 3.2: For (a) pcaGAN and (b) NPPC, this figure shows the true image x, noisy
measurements y, the conditional mean µ̂x|y, principal eigenvectors {v̂k}, and two
perturbations of µ̂x|y.

Results. Table 3.1 shows rMSE, REM5, CFID, and the reconstruction time for a

batch of 128 images on the test fold. (NPPC does not generate image samples and

35



Table 3.1: Average MNIST denoising results.

Model rMSE ↓ REM5 ↓ CFID ↓ Time(128) ↓

NPPC (Nehme et al. [61]) 3.94 3.63 – 112 ms
rcGAN 4.04 3.41 63.44 118 ms
pcaGAN (K = 5) 4.02 3.31 61.48 118 ms
pcaGAN (K = 10) 4.02 3.25 60.16 118 ms

so CFID does not apply.) The table shows that the proposed pcaGAN wins in all

metrics, except for rMSE where NPPC wins.

This is not surprising because NPPC computes µ̂x|y using a dedicated network

trained to minimize MSE loss. NPPC also generates its eigenvectors slightly quicker

than pcaGAN generates samples. Table 3.1 also shows that pcaGAN performance

improves as K increases from 5 to 10, despite the fact that REM5 uses only the

top 5 eigenvectors. Figure 3.2 shows examples of the 5 principal eigenvectors and

posterior mean learned by pcaGAN and NPPC. The eigenvectors of pcaGAN are more

structured and less noisy than those of NPPC. Figure 3.2 also shows µ̂x|y+αvk for

α ∈ [−3, 3] and k ∈ {1, 4}. Additional figures can be found in App. E.2.1.

3.3.3 Accelerated MRI

We now consider accelerated MRI, where the goal is to recover a complex-valued

multicoil image x from masked frequency-domain (i.e., “k-space”) measurements y.

To build the image data {xt}, we follow the approach in Chapter 2, which uses the

first 8 slices of all fastMRI [102] T2 brain volumes with at least 8 coils, crops to

384× 384 pixels, and compresses to 8 virtual coils [108]. This yields 12 200 training,

2 376 testing, and 784 validation images. To create each yt, we transform xt to the
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Figure 3.3: Example MRI recoveries at R = 8. Arrows highlight meaningful variations.

k-space, subsample using the Cartesian GRO mask [41] at accelerations R = 4 and

R = 8, and transform the zero-filled k-space measurements back to the image domain.

We train pcaGAN for 100 epochs with K = 1, Eevec = 25, βadv = 10−5, and

βpca = 10−2 and select the final model using validation CFID computed with VGG-16

features.

Competitors. We compare the proposed pcaGAN to rcGAN, pscGAN [64],

Adler & Öktem’s cGAN [4], the Langevin approach [39], and the E2E-VarNet [89].

All cGANs use the generator and discriminator architectures as rcGAN and enforce

data-consistency [81]. For rcGAN and the Langevin approach, we did not modify

the authors’ implementation from [38] except to use the GRO sampling mask. For

E2E-VarNet, we use the GRO mask, hyperparameters, and training procedure from

[39].
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Figure 3.4: Example MRI recoveries at R = 4. Arrows highlight meaningful variations.

Following Chapter 2, we convert the multicoil outputs x̂i to complex-valued images

using SENSE-based coil combining [70] with ESPIRiT-estimated [94] coil sensitivity

maps, and compute performance on magnitude images. All feature-based metrics

(CFID, FID, LPIPS, DISTS) were computed with AlexNet features to show that

pcaGAN does not overfit to the VGG-16 features used for validation. It was shown in

[3] that image-quality metrics computed using ImageNet-trained feature generators

like AlexNet and VGG-16 perform comparably to metrics computed using MRI-trained

feature generators in terms of correlation with radiologists’ scores.

Results. Table 3.2 shows CFID, FID, APSD ≜ ( 1
P

∑P
i=1

1
N
∥x̂(P )− x̂i∥2)1/2, and 4-

sample generation time for the methods under test. Due to its slow sample-generation

time, we evaluate the CFID, FID, and APSD of the Langevin technique [39] using

the 72-image test from Chapter 2. But due to the bias of CFID at small sample sizes

[80], we evaluate the other methods using all 2 376 test images (CFID2) and again
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Table 3.2: Average MRI results at acceleration R ∈ {4, 8}

R = 4 R = 8

Model CFID1↓ CFID2↓ CFID3↓ FID↓ APSD Time (4)↓ CFID1↓ CFID2↓ CFID3↓ FID↓ APSD Time (4)↓

E2E-VarNet (Sriram et al. [89]) 16.08 13.07 10.26 38.88 0.0 310ms 36.86 29.90 23.82 44.04 0.0 316ms
Langevin (Jalal et al. [39]) 33.05 - - 31.43 5.9e-6 14 min 48.59 - - 52.62 7.6e-6 14 min

cGAN (Adler & Öktem [4]) 19.00 12.05 7.00 29.77 3.9e-6 217 ms 59.94 40.24 26.10 31.81 7.7e-6 217 ms
pscGAN (Ohayon et al. [64]) 13.74 10.56 7.53 37.28 7.2e-8 217 ms 39.67 31.81 24.06 43.39 7.7e-7 217 ms
rcGAN 9.71 5.27 1.69 25.62 3.8e-6 217 ms 24.04 13.20 3.83 28.43 7.6e-6 217 ms
pcaGAN 8.78 4.48 1.29 25.02 4.4e-6 217 ms 21.65 11.47 3.21 28.35 6.5e-6 217 ms

Table 3.3: Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for MRI at
R = 8

PSNR↑ SSIM↑
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 36.49 - - - - - 0.9220 - - - - -
Langevin (Jalal et al. [39]) 32.17 32.83 33.45 33.74 33.83 33.90 0.8725 0.8919 0.9031 0.9091 0.9120 0.9137

cGAN (Adler & Öktem [4]) 31.31 32.31 32.92 33.26 33.42 33.51 0.8865 0.9045 0.9103 0.9111 0.9102 0.9095
pscGAN (Ohayon et al. [64]) 34.89 34.90 34.90 34.90 34.91 34.92 0.9222 0.9217 0.9213 0.9211 0.9211 0.9210
rcGAN 32.32 33.67 34.53 35.01 35.27 35.42 0.9030 0.9199 0.9252 0.9257 0.9251 0.9246
pcaGAN 33.28 34.47 35.20 35.61 35.82 35.94 0.9136 0.9257 0.9283 0.9275 0.9262 0.9253

LPIPS↓ DISTS↓
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 0.0575 - - - - - 0.1253 - - - - -
Langevin (Jalal et al. [39]) 0.0769 0.0619 0.0579 0.0589 0.0611 0.0611 0.1341 0.1136 0.1086 0.1119 0.1175 0.1212

cGAN (Adler & Öktem [4]) 0.0698 0.0614 0.0623 0.0667 0.0704 0.0727 0.1407 0.1262 0.1252 0.1291 0.1334 0.1361
pscGAN (Ohayon et al. [64]) 0.0532 0.0536 0.0539 0.0540 0.0534 0.0540 0.1128 0.1143 0.1151 0.1155 0.1157 0.1158
rcGAN 0.0418 0.0379 0.0421 0.0476 0.0516 0.0539 0.0906 0.0877 0.0965 0.1063 0.1135 0.1177
pcaGAN 0.0358 0.0344 0.0391 0.0442 0.0479 0.0499 0.0804 0.0799 0.0920 0.1026 0.1099 0.1144

using all 14 576 training and test images (CFID3). Table 3.2 shows that pcaGAN

yields better CFID and FID than the competitors. All cGANs generated samples 3–4

orders-of-magnitude faster than the Langevin approach [39].

Table 3.3 shows PSNR, SSIM, LPIPS [107], and DISTS [27] for the P -sample

average x̂(P ) at P ∈ {1, 2, 4, 8, 16, 32} and R = 8. It has been shown that DISTS

correlates particularly well with radiologist scores [47]. The E2E-VarNet achieves the

best PSNR, but the proposed cGAN achieves the best LPIPS and DISTS when P = 2
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Table 3.4: Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus P for R = 4 MRI

PSNR↑ SSIM↑
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 39.93 - - - - - 0.9641 - - - - -
Langevin (Jalal et al. [39]) 36.04 37.02 37.65 37.99 38.17 38.27 0.8989 0.9138 0.9218 0.9260 0.9281 0.9292

cGAN (Adler & Öktem [4]) 35.63 36.64 37.24 37.56 37.73 37.82 0.9330 0.9445 0.9478 0.9480 0.9477 0.9473
pscGAN (Ohayon et al. [64]) 39.44 39.46 39.46 39.47 39.47 39.47 0.9558 0.9546 0.9539 0.9535 0.9533 0.9532
rcGAN 36.96 38.14 38.84 39.24 39.44 39.55 0.9440 0.9526 0.9544 0.9542 0.9537 0.9533
pcaGAN 37.32 38.43 39.11 39.47 39.67 39.77 0.9463 0.9541 0.9557 0.9553 0.9546 0.9542

LPIPS↓ DISTS↓
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [89]) 0.0316 - - - - - 0.0859 - - - - -
Langevin (Jalal et al. [39]) 0.0545 0.0394 0.0336 0.0320 0.0317 0.0316 0.1116 0.0921 0.0828 0.0793 0.0781 0.0777

cGAN (Adler & Öktem [4]) 0.0285 0.0255 0.0273 0.0298 0.0316 0.0327 0.0972 0.0857 0.0878 0.0930 0.0967 0.0990
pscGAN (Ohayon et al. [64]) 0.0245 0.0247 0.0248 0.0249 0.0249 0.0249 0.0767 0.0790 0.0801 0.0807 0.0810 0.0811
rcGAN 0.0175 0.0164 0.0188 0.0216 0.0235 0.0245 0.0546 0.0563 0.0667 0.0755 0.0809 0.0837
pcaGAN 0.0164 0.0159 0.0188 0.0214 0.0231 0.0242 0.0542 0.0548 0.0662 0.0754 0.0811 0.0843

and the best SSIM when P = 8. This P -dependence is related to the perception-

distortion trade-off [11] and consistent with that reported in Chapter 2.

Table 3.4 shows PSNR, SSIM, LPIPS [107], and DISTS [27] for the P -sample

average x̂(P ) at P ∈ {1, 2, 4, 8, 16, 32} for R = 4. In this case, the E2E-VarNet attains

the best PSNR and SSIM, while pcaGAN performs best in LPIPS and DISTS when

P = 2 and P = 1, respectively. These results, in conjunction with the R = 8 results

discussed in Sec. 3.3.3, show that pcaGAN yields a notable improvement over rcGAN

in all metrics.

Figure 3.3 shows zoomed versions of two recoveries x̂i and the sample average x̂(P )

with P = 32 at R = 8. Similarly, Figure 3.4 shows zoomed versions of two recoveries x̂i

and the sample average x̂(P ) with P = 32 at R = 4. Appendices E.2.2 and E.2.3 show

additional plots of x̂(P ) that visually demonstrate the perception-distortion trade-off.
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Table 3.5: Average FFHQ inpainting results.

Model CFID↓ FID↓ LPIPS↓ Time (40 samples)↓

DPS (Chung et al. [17]) 7.26 2.00 0.1245 14 min
DDNM (Wang et al. [96]) 11.30 3.63 0.1409 30 s
DDRM (Kawar et al. [48]) 13.17 5.36 0.1587 5 s
pscGAN (Ohayon et al. [64]) 18.44 8.40 0.1716 325 ms
CoModGAN (Zhao et al. [111]) 7.85 2.23 0.1290 325 ms
rcGAN 7.51 2.12 0.1262 325 ms
pcaGAN 7.08 1.98 0.1230 325 ms

3.3.4 Large-Scale Inpainting

Our final goal is to inpaint a face image with a large randomly generated masked

region. For this task, we use 256 × 256 FFHQ face images [44] and the mask generation

procedure from [111]. We randomly split the FFHQ training fold into 45 000 training

and 5 000 validation images, and we use the remaining 20 000 images for testing.

For pcaGAN, we use CoModGAN’s [111] generator and discriminator architecture

and train for 100 epochs using K = 2, Eevec = 25, βadv = 5× 10−3, and βpca = 10−3.

Competitors. We compare with CoModGAN [111], pscGAN [64], rcGAN, and

state-of-the-art diffusion methods DDRM (20 NFEs) [48], DDNM (100 NFEs) [96],

and DPS (1000 NFEs) [17]. CoModGAN, pscGAN, and rcGAN differ from pcaGAN

only in generator regularization and CoModGAN’s use of discriminator MBSD [42].

For DDNM, DDRM, and DPS, we use the authors’ implementations from [95], [49],

and [16] with mask generation from [111]. FID and CFID were evaluated on our

20 000 image test set with P =1.

Results. Table 3.5 shows test CFID, FID, LPIPS, and 40-sample generation time.

The table shows that the proposed pcaGAN wins in CFID, FID and LPIPS, and that

the four cGANs generate samples 3–4 orders-of-magnitude faster than DPS. Figure 3.5
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Figure 3.5: Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image.

shows five generated samples for each method under test, along with the true and

masked image. pcaGAN shows better subjective quality than the competitors, as well

as good diversity. Additional figures can be found in App. E.2.4.

3.4 Discussion

When training a cGAN, the overall goal is that the samples {x̂i} generated from a

particular y accurately represent the true posterior px|y(·|y). Achieving this goal is
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challenging when training from paired data {(xt,yt)}, because such datasets provide

only one example of x for each given y. Early methods like [37, 4, 111] focused on

providing some variation among {x̂i}, but did not aim for the correct variation. rcGAN

focused on providing the correct amount of variation by enforcing tr(Σx̂|y) = tr(Σx|y),

and the proposed pcaGAN goes farther by encouraging Σx̂|y and Σx|y to agree along

K principal directions. Our experiments demonstrate that pcaGAN yields a notable

improvement over rcGAN and outperforms contemporary diffusion approaches like

DPS [17].

PCA principles have also been used in unconditional GANs, where the goal is to

train a generator Gθ that turns codes z ∼ N (0, I) into outputs x̂ = Gθ(z) that match

the true marginal distribution px from which the training samples {xt} are drawn.

For example, the eigenGAN from [32] aims to train in such a way that semantic

attributes are learned (without supervision) and can be independently controlled by

manipulating individual entries of z. But their goal is clearly different from ours.

3.5 Conclusion

In this chapter, we proposed pcaGAN, a novel image-recovery cGAN that enforces

correctness in the K principal components of the conditional covariance matrix Σx̂|y,

as well as in the conditional mean µx̂|y and trace-covariance tr(Σx̂|y). Experiments

with synthetic Gaussian data showed pcaGAN outperforming both rcGAN and NPPC

[61] in Wasserstein-2 distance across a range of problem sizes. Experiments on

MNIST denoising, accelerated multicoil MRI, and large-scale image inpainting showed

pcaGAN outperforming several other cGANs and diffusion models in CFID, FID,
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PSNR, SSIM, LPIPS, and DISTS metrics. Furthermore, pcaGAN generates samples 3–

4 orders-of-magnitude faster than the tested diffusion models. The proposed pcaGAN

thus provides fast and accurate posterior sampling for image recovery problems,

enabling uncertainty quantification, fairness in recovery, and easy navigation of the

perception/distortion trade-off.

Limitations. We acknowledge several limitations of our work in this chapter.

First, generating Ppca = 10K samples during training can impose a burden on memory

when x is high dimensional. In the multicoil MRI experiment, x ∈ Rd for d = 2.4e6,

which limited us to K = 1 at batch size 2. Second, although our focus is on designing

a fast and accurate posterior sampler, more work is needed on how to best use

the generated samples across different applications. Using them to compute rigorous

uncertainty intervals seems like a promising direction [6, 92, 60]. Third, the application

to MRI is preliminary; additional tuning and validation is needed before it can be

considered for clinical practice.
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Chapter 4: Solving Inverse Problems using Diffusion with

Iterative Colored Renoising

In this chapter, we discuss DDfire, a novel diffusion inverse solver. We show that

the approximations produced by existing methods for the posterior score ∇xtpt(xt|y)

are relatively poor, especially early in the reverse process. We propose a new approach

that iteratively “renoises” the estimate several times per diffusion step. This iterative

approach, which we call Fast Iterative REnoising (FIRE), injects colored noise such

that the pre-trained diffusion model always sees white noise, in accordance with how

it was trained. We leverage FIRE in the DDIM reverse process and show that the

resulting “DDfire” offers state-of-the-art accuracy and runtime on several linear inverse

problems. The content of this chapter appears in “Solving Inverse Problems using

Diffusion with Iterative Colored Renoising,” which was published in Transactions on

Machine Learning Research (TMLR) in 2025.

4.1 Background

Given training data drawn from distribution p0, diffusion models corrupt the

data with ever-increasing amounts of noise and then learn to reverse that process

in a way that can generate new samples from p0. In this chapter, we assume the

variance-exploding (VE) diffusion formulation [87], whereas Appendix B.1 provides
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details on the variance-preserving (VP) formulation, including DDPM [34] and DDIM

[82].

The VE diffusion forward process can be written as a stochastic differential equation

(SDE) dx =
√

d[σ2(t)]/ dt dw over t from 0 to T , where σ2(t) is a variance schedule

and dw is the standard Wiener process (SWP) [87]. The corresponding reverse process

runs the SDE dx = −σ2(t)∇x ln pt(x) dt+
√

d[σ2(t)]/ dt dw backwards over t from

T to 0, where pt(·) is the marginal distribution of x at t and dw is the SWP run

backwards. The “score function” ∇x ln pt(x) can be approximated using a deep neural

network (DNN) sθ(x, t) trained via denoising score matching [36].

In practice, time is discretized to t ∈ {0, 1, . . . , T}, yielding the SMLD from [84],

whose forward process, xt+1 = xt +
√

σ2
t+1 − σ2

twt, with i.i.d {wt} ∼ N (0, I) and

σ2
0 = 0, implies that

xt = x0 + σtϵt, ϵt ∼ N (0, I) (4.1)

for all t ∈ {0, 1, . . . , T}. The SMLD reverse process then uses i.i.d {nt} ∼ N (0, I) in

xt = xt+1 + (σ2
t+1 − σ2

t )∇x ln pt+1(xt+1) +

√
σ2
t (σ

2
t+1 − σ2

t )

σ2
t+1

nt+1. (4.2)

To exploit side information about x0, such as the measurements y in an inverse

problem, one can simply replace pt(·) with pt(·|y) in the above equations [87]. However,

most works aim to avoid training a y-dependent approximation of the conditional

score function ∇x ln pt(xt|y). Rather, they take an “unsupervised” approach, where

sθ(xt, t) ≈ ∇x ln pt(xt) is learned during training but y is presented only at inference

[22]. In this case, approximating ∇x ln pt(xt|y) is the key technical challenge.
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There are two major approaches to approximate ∇x ln pt(xt|y). The first uses

the Bayes’ rule to write ∇x ln pt(xt|y) = ∇x ln pt(xt) + ∇x ln pt(y|xt) and then re-

places ∇x ln pt(xt) with the score approximation sθ(xt, t). But the remaining term,

∇x ln pt(y|xt), is intractable because pt(y|xt) =
∫
p(y|x0)p(x0|xt) dx0 with unknown

p(x0|xt), and so several approximations have been proposed. For example, DPS [17]

uses p(x0|xt) ≈ δ(x0 − x̂0|t), where x̂0|t is the approximation of E{x0|xt} computed

from sθ(xt, t) using Tweedie’s formula:

x̂0|t = xt + σ2
t sθ(xt, t). (4.3)

Similarly, ΠGDM [83] uses p(x0|xt) ≈ N (x0; x̂0|t, ζtI) with some ζt. However, a

drawback to both approaches is that they require backpropagation through sθ(·, t),

which increases the cost of generating a single sample. In Fig. 4.4, we show that

DDfire offers a 1.5× speedup over DPS at an equal number of NFEs.

The second major approach to approximating ∇x ln pt(xt|y) uses (1.1) with

E{x0|xt,y} approximated by a quantity that we’ll refer to as x̂0|t,y. For example,

with AWGN-corrupted linear measurements

y = Ax0 + σww ∈ Rm, w ∼ N (0, I), (4.4)

DDNM [96] approximates E{x0|xt,y} by first computing x̂0|t from (4.3) and then

performing the hard data-consistency step x̂0|t,y = A+y + (I −A+A)x̂0|t, where (·)+

is the pseudo-inverse. DDS [20] and DiffPIR [114] instead use the soft data-consistency

step x̂0|t,y = argminx ∥y −Ax∥2 + γt∥x − x̂0|t∥2 with some γt > 0. DDRM [48] is

a related technique that requires a singular value decomposition (SVD), which is

prohibitive in many applications.
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There are other ways to design posterior samplers. For example, [53] and [39]

use Langevin dynamics. RED-diff [57] and SNORE [72] inject white noise into

the RED algorithm [73], whose regularizer’s gradient equals the score function [71].

[13, 21, 100, 101, 105] use Markov-chain Monte Carlo (MCMC) in the diffusion reverse

process.

A key shortcoming of the aforementioned approaches is that their conditional-score

approximations are not very accurate, especially early in the reverse process. For

the methods that approximate E{x0|xt,y}, we can assess the approximation quality

both visually and via mean-square error (MSE) or PSNR, since the exact E{x0|xt,y}

minimizes MSE given xt and y. For the methods that approximate ∇x ln pt(xt|y),

we can compute their equivalent conditional-denoiser approximations using

E{x0|xt,y} = xt + σ2
t∇x ln pt(xt|y), (4.5)

which follows from (1.1). Figure 4.1 shows E{x0|xt,y}-approximations from the

DDRM [48], DiffPIR [114], DPS [17], and DAPS [105] solvers at times 25%, 50%, and

75% through their reverse processes for noisy box inpainting with σw = 0.05. The

approximations show unwanted artifacts, especially early in the reverse process.

4.2 Approach

In this chapter, we aim to accurately approximate the conditional denoiser

E{x0|xt,y} at each step of the diffusion reverse process.

4.2.1 Fast Iterative REnoising (FIRE)

In this section, we describe the FIRE algorithm, which approximates E{x0|rinit,y}

assuming y from (4.4) and rinit = x0 + σinitϵ with ϵ ∼ N (0, I) and some σinit > 0.
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Figure 4.1: Left column: True x0, noisy box inpainting y, and 50-iteration FIRE
approximation of E{x0|y}. Other columns: Approximations of E{x0|xt,y} at differ-
ent t (as measured by % NFEs). Note the over-smoothing with DDRM and DPS.
Additionally, note the cut-and-paste artifacts of DiffPIR and DAPS.

FIRE performs half-quadratic splitting (HQS) PnP with a scheduled denoising variance

σ2, similar to DPIR from [106], but injects colored noise c to ensure that the error in

the denoiser input r remains white. It is beneficial for the denoiser to see white input

error during inference, because it is trained to remove white input error. The basic

FIRE algorithm iterates the following steps N ≥ 1 times, after initializing r ← rinit

and σ ← σinit:

S1) Denoise r assuming AWGN of variance σ2, giving x.

S2) MMSE estimate x0 given y from (4.4) and the prior x0 ∼ N (x, νI) with some

ν > 0, giving x̂.

S3) Update the denoising variance σ2 via σ2 ← σ2/ρ with some ρ > 1,
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S4) Update r ← x̂+c using colored Gaussian noise c created to ensure Cov{r−x0} =

σ2I.

S1)-S3) are essentially DPIR with regularization strength controlled by ν and a

geometric denoising schedule with rate controlled by ρ, while S4) injects colored

noise. In contrast, other renoising PnP approaches like SNORE [72] inject white noise.

Section 4.3.1 examines the effect of removing c or replacing it with white noise. Next

we provide details and enhancements of the basic FIRE algorithm.

In the sequel, we use “d(x, σ)” to denote a neural-net approximation of the

conditional-mean denoiser E{x0|x} of x = x0 + σϵ with ϵ ∼ N (0, I). Given a score

function approximation sθ(x, t) ≈ ∇x ln pt(x) as discussed in Sec. 4.1, the denoiser

can be constructed via (4.3) as

d(x, σ) = x+ σ2sθ(x, t) with t such that σt = σ. (4.6)

When FIRE estimates x0 from the measurements y and the denoiser output x,

it employs a Gaussian approximation of the form x0 ∼ N (x, νI), similar to DDS,

DiffPIR, and prox-based PnP algorithms. But it differs in that ν is explicitly estimated.

The Gaussian approximation x0 ∼ N (x, νI) is equivalent to

x0 = x+
√
νe, e ∼ N (0, I). (4.7)

Suppose x0 = x+
√
ν0e with e ∼ N (0, I), where ν0 denotes the true error variance.

Then (4.4) and (4.7) imply

E{∥y −Ax∥2} = E{∥Ax0 + σww −Ax0 +
√
ν0Ae∥2}

= E{∥σww +
√
ν0Ae∥2}

= mσ2
w + ν0∥A∥2F , (4.8)
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assuming independence between e and w. Consequently, an unbiased estimate of ν0

can be constructed as

(
∥y −Ax∥2 −mσ2

w

)
/∥A∥2F ≜ ν. (4.9)

Figure 4.3 shows that, in practice, the estimate (4.9) accurately tracks the true error

variance ∥x0 − x∥2/d.

Under (4.4) and (4.7), the MMSE estimate of x0 from y and x can be written as

[69]

x̂ ≜ argmin
x

{
1

2σ2
w

∥y −Ax∥2 + 1

2ν
∥x− x∥2

}
=

(
A⊤A+

σ2
w

ν
I

)−1(
A⊤y +

σ2
w

ν
x

)
. (4.10)

Equation (4.10) can be computed using conjugate gradients (CG) or, if practical, the

SVD A = USV ⊤ via

x̂ = V

(
S⊤S +

σ2
w

ν
I

)−1(
S⊤U⊤y +

σ2
w

ν
V ⊤x

)
. (4.11)

In any case, from (4.7) and (4.10), the error in x̂ can be written as

x̂− x0 =

(
A⊤A+

σ2
w

ν
I

)−1(
A⊤[Ax0 + σww] +

σ2
w

ν
[x0−

√
νe]

)
−x0

=

(
A⊤A+

σ2
w

ν
I

)−1(
σwA

⊤w− σ2
w√
ν
e

)
, (4.12)

and so the covariance of the error in x̂ can be written as

Cov{x̂− x0} =
(
A⊤A+

σ2
w

ν
I

)−1(
σ2
wA

⊤A+
σ4
w

ν
I

)(
A⊤A+

σ2
w

ν
I

)−1

=

(
1

σ2
w

A⊤A+
1

ν
I

)−1

≜ C. (4.13)

From (4.13) we see that the error in x̂ can be strongly colored. For example, in

the case of inpainting, where A is formed from rows of the identity matrix, the error
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variance in the masked pixels equals ν, while the error variance in the unmasked

pixels equals (1/σ2
w + 1/ν)−1 ≤ σ2

w. These two values may differ by many orders of

magnitude. Since most denoisers are trained to remove white noise with a specified

variance of σ2, direct denoising of x̂ performs poorly, as we show in Sec. 4.3.1.

To circumvent the issues that arise from colored denoiser-input error, we propose to

add “complementary” colored Gaussian noise c ∼ N (0,Σ) to x̂ so that the resulting

r = x̂+ c has an error covariance of σ2I, i.e., white error. This requires that

Σ = σ2I −C

= σ2I −
(

1

σ2
w

V S⊤SV ⊤ +
1

ν
I

)−1

= V Diag(λ)V ⊤ for λi = σ2 − 1

s2i /σ
2
w + 1/ν

(4.14)

for s2i ≜ [S⊤S]i,i. By setting σ2 ≥ ν, we ensure that λi ≥ 0 ∀i, needed for Σ to be a

valid covariance matrix. In the case that the SVD is practical to implement, we can

generate c using

c = V Diag(λ)1/2ε, ε ∼ N (0, I). (4.15)

In the absence of an SVD, we propose to approximate Σ by

Σ̂ ≜ (σ2 − ν)I + ξA⊤A (4.16)

with some ξ ≥ 0. Note that Σ̂ agrees with Σ in the nullspace of A (i.e., when sn = 0)

for any ξ. By choosing

ξ =
1

s2max

(
ν − 1

s2max/σ
2
w + 1/ν

)
, (4.17)

Σ̂ will also agree with Σ in the strongest measured subspace (i.e., when sn = smax).

Without an SVD, smax can be computed using the power iteration [68]. Finally,
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c ∼ N (0, Σ̂) can be generated via

c =
[√

σ2 − νI
√
ξA⊤

]
ε, ε ∼ N (0, I) ∈ Rd+m. (4.18)

Figure D.1 shows a close agreement between the ideal and approximate renoised error

spectra in practice. Next, we provide the main theoretical result on FIRE.

Theorem 4. Suppose that, for any input r = x0 + σϵ with ϵ ∼ N (0, I), the denoiser

output d(r, σ) has white Gaussian error with known variance ν < σ2 and independent

of the noise w in (4.4). Then if initialized using rinit = x0+σinitϵ with arbitrarily large

but finite σinit and ϵ ∼ N (0, I), there exists a ρ > 1 under which the FIRE iteration

S1)-S4) converges to the true x0.

Appendix C.5 provides a proof. Note that a key assumption of Theorem 4 is

that the denoiser output error is white and Gaussian. Because this may not hold in

practice, we propose to replace S1) with a “stochastic denoising” step (4.20), in which

AWGN is explicitly added to the denoiser output. As the AWGN variance increases,

the denoiser output becomes closer to white and Gaussian but its signal-to-noise

ratio (SNR) degrades. To balance these competing objectives, we propose to add

AWGN with variance approximately equal to that of the raw-denoiser output error.

We estimate the latter quantity from the denoiser input variance σ2 by training a

predictor of the form

ν̂ϕ(σ) ≈ E{∥d(x0 + σϵ, σ)− x0∥2/d}, (4.19)

where the expectation is over ϵ ∼ N (0, I) and validation images x0 ∼ p0. Recall that

d is the dimension of x0. In our experiments, ν̂ϕ(·) is implemented using a lookup
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Algorithm 2 FIRE: x̂ = FIRESLM(y,A, σw, rinit, σinit, N, ρ)

Require: d(·, ·),y,A, smax, σw, N, ρ > 1, rinit, σinit. Also A = U Diag(s)V ⊤ if using
SVD.

1: r = rinit and σ = σinit ▷ Initialize
2: for n = 1, . . . , N do
3: x← d(r, σ) +

√
ν̂ϕ(σ)v, v ∼ N (0, I) ▷ Stochastic denoising

4: ν ← (∥y −Ax∥2 − σ2
wm)/∥A∥2F ▷ Error variance of x

5: x̂← argmin
x
∥y −Ax∥2/σ2

w + ∥x− x∥2/ν ▷ Estimate x0 ∼ N (x, νI) from

y ∼ N (Ax0, σ
2
wI)

6: σ2 ← max{σ2/ρ, ν} ▷ Decrease target variance
7: if have SVD then
8: λi ← σ2 − (s2i /σ

2
w + 1/ν)−1, i = 1, . . . , d

9: c← V Diag(λ)1/2ε, ε ∼ N (0, I) ▷ Colored Gaussian noise
10: else
11: ξ ←

(
ν − (s2max/σ

2
w + 1/ν)−1

)
/s2max

12: c←
[√

σ2−νI
√
ξA⊤

]
ε, ε ∼ N (0, I) ▷ Colored Gaussian noise

13: end if
14: r ← x̂+ c ▷ Renoise so that Cov{r − x0} = σ2I
15: end for
16: return x̂

table. The stochastic denoising step is then

x = d(x, σ) +
√

ν̂ϕ(σ)v, v ∼ N (0, I). (4.20)

Algorithm 2 summarizes the FIRE algorithm for (4.4). In App. D.4.1, we describe

a minor enhancement to Alg. 2 that speeds up the MMSE estimation step when CG

is used.

4.2.2 Putting FIRE into Diffusion

Sections 4.2.1 detailed the FIRE algorithm for (4.4). There, the FIRE algorithm

approximates E{x0|r,y} given the measurements y and the side-information r =

x0 + σϵ, where ϵ ∼ N (0, I). Thus, recalling the discussion in Sec. 4.1, FIRE can
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be used in the SMLD reverse process as an approximation of E{x0|xt,y} by setting

r = xt and σ = σt.

Instead of using SMLD for the diffusion reverse process, however, we use DDIM

from [82], which can be considered as a generalization of SMLD. In the sequel, we

distinguish the DDIM quantities by writing them with subscript k. As detailed in

App. B.3, DDIM is based on the model

xk = x0 + σkϵk, ϵk ∼ N (0, I), (4.21)

for k = 1, . . . , K, where {σ2
k}Kk=1 is a specified sequence of variances. The DDIM

reverse process iterates

xk−1 = hkxk + gk E{x0|xk,y}+ ςknk (4.22)

ςk = ηddim

√
σ2
k−1(σ

2
k − σ2

k−1)

σ2
k

, hk =

√
σ2
k−1 − ς2k
σ2
k

, gk = 1− hk (4.23)

over k = K, . . . , 2, 1, starting from xK ∼ N (0, σ2
KI), using i.i.d {nk}Kk=1 ∼ N (0, I)

and some ηddim ≥ 0. When ηddim = 1 and K = T , DDIM reduces to SMLD. But when

ηddim = 0, the DDIM reverse process (4.22) is deterministic and can be considered as

a discretization of the probability-flow ODE [82], which can outperform SMLD when

the number of discretization steps K is small [15].

For a specified number K of DDIM steps (which we treat as a tuning parameter),

we set the DDIM variances {σ2
k}Kk=1 as the geometric sequence

σ2
k = σ2

min

(σ2
max

σ2
min

) k−1
K−1

, k = 1, . . . , K (4.24)

for some σ2
min and σ2

max that are typically chosen to match the minimum and maximum

variances used to train the denoiser d(·, ·) or score approximation sθ(·, ·). So for

example, if sθ(·, ·) was trained over the DDPM steps t ∈ {1, . . . , T} for T = 1000,
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then we would set σ2
min = (1− α1)/α1 and σ2

max = (1− α1000)/α1000 with αt; see (B.7)

for additional details.

Next we discuss how we set the FIRE iteration schedule {Nk}Kk=1 and variance-

decrease-factor ρ > 1. In doing so, we have two main goals:

G1) Ensure that, at every DDIM step k, the denoiser’s output-error variance is

at most νthresh at the final FIRE iteration, where νthresh is some value to be

determined.

G2) Meet a fixed budget of Ntot ≜
∑K

k=1 Nk total NFEs.

Note that, because the denoiser’s output-error variance increases monotonically with

its input-error variance, we can rephrase G1) as

G1*) Ensure that, at every DDIM step k, the denoiser’s input-error variance is at most

σ2
thresh at the final FIRE iteration, where σ2

thresh is some value to be determined.

Although σ2
thresh could be tuned directly, it’s not the most convenient option because a

good search range can be difficult to construct. Instead, we tune the fraction δ ∈ [0, 1)

of DDIM steps k that use a single FIRE iteration (i.e., that use Nk = 1) and we set

σ2
thresh at the DDIM variance σ2

k of the first reverse-process step k that uses a single

FIRE iteration, i.e., 1 + ⌊(K − 1)δ⌋ ≜ kthresh. (Note that kthresh = 1 when δ = 0

and kthresh = K − 1 for δ ≈ 1.) All subsequent1 DDIM steps k < kthresh will then

automatically satisfy G1*) because σ2
k decreases with k.

To ensure that the earlier DDIM steps k > kthresh also satisfy G1*), we need that

σ2
k/ρ

Nk−1 ≤ σ2
thresh, since σ2

k is the denoiser input-error variance at the first FIRE

iteration and σ2
k/ρ

Nk−1 is the denoiser input-error variance at the last FIRE iteration.

1Recall that the reverse process counts backwards, i.e., k = K,K−1, . . . , 2, 1.
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Figure 4.2: For an FFHQ denoiser: the geometric DDIM variances {σ2
k}Kk=1 versus

DDIM step k for K = 10, the σ2
thresh corresponding to a δ=0.4 fraction of single-FIRE-

iteration DDIM steps, and the denoiser input variance σ2 at each FIRE iteration of
each DDIM step, for Ntot=25 total NFEs.

For a fixed ρ > 1, we can rewrite this inequality as

Nk ≥
lnσ2

k − lnσ2
thresh

ln ρ
+ 1 ≜ Nk. (4.25)

Because Nk is a positive integer, it suffices to choose

Nk = ⌈max{1, Nk}⌉ ∀k. (4.26)

Finally, ρ is chosen as the smallest value that meets the NFE budget G2) under (4.26).

We find this value using bisection search. For a given kthresh, a lower bound on the

total NFEs is kthresh · 1 + (K − kthresh) · 2. The definition of kthresh then implies that

Ntot ≥ K(2− δ) + δ − 1 and thus K ≤ (Ntot + 1− δ)/(2− δ) ≜ Kmin.

In summary, for a budget of Ntot total NFEs, we treat the number of DDIM steps

K ∈ {1, . . . , Kmin} and the fraction of single-FIRE-iteration steps δ ∈ [0, 1) as tuning

parameters and, from them, compute {σ2
k}Kk=1, {Nk}Kk=1, and ρ. Figure 4.2 shows an
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Algorithm 3 DDfire

Require: y,A, σw or py|z, ρ, {σk}Kk=1, {Nk}Kk=1, ηddim ≥ 0
1: xK ∼ N (0, σ2

KI)
2: for k = K,K−1, . . . , 1 do
3: x̂0|k = FIRE(y,A, ∗,xk, σk, Nk, ρ) ▷ FIRE via Alg. 2

4: ςk = ηddim

√
σ2
k−1(σ

2
k − σ2

k−1)

σ2
k

5: xk−1 =

√
σ2
k−1 − ς2k
σ2
k

xk +

(
1−

√
σ2
k−1 − ς2k
σ2
k

)
x̂0|k + ςknk, nk ∼ N (0, I) ▷

DDIM update
6: end for
7: return x̂0|k

example. The pair (K, δ) can be tuned using cross-validation. Algorithm 3 details

DDIM with the FIRE approximation of E{x0|xk,y}, which we refer to as “DDfire.”

4.2.3 Relation to Other Methods

To solve inverse problems, a number of algorithms have been proposed that iterate

denoising (possibly score-based), data-consistency (hard or soft), and renoising. Such

approaches are referred to as either plug-and-play, Langevin, or diffusion methods.

(Recall the discussion in Section 4.1). While existing approaches use white renoising,

the proposed DDfire uses colored renoising that whitens the denoiser input error.

When estimating x0 from the measurements y of (4.4), methods such as DDS,

DiffPIR, DAPS, and SNORE use a Gaussian prior approximation of the form x0 ∼

N (x, νI). But while they control ν with tuning parameters, DDfire explicitly estimates

ν via (4.9). See Sec. 4.4 for a detailed comparison of DDfire to DDS, DiffPIR, and

SNORE.
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Table 4.1: DDfire ablation results for noisy FFHQ box inpainting with σw = 0.05 at
1000 NFEs.

Method PSNR↑ LPIPS↓ Runtime

DDfire 24.31 0.1127 34.37s
DDfire w/o renoising 18.48 0.2349 34.37s
DDfire w/o colored renoising 23.64 0.1553 34.37s
DDfire w/ stochastic denoising 24.30 0.1143 34.37s
DDfire w/o estimating ν 23.02 0.1755 34.37s
DDfire w/o CG early stopping 24.31 0.1127 52.12s
DDfire w/ SVD 24.31 0.1124 30.97s

4.3 Numerical Experiments

We use 256× 256 FFHQ [44] and ImageNet [24] datasets with pretrained diffusion

models from [17] and [26], respectively. As linear inverse problems, we consider box

inpainting with a 128×128 mask, Gaussian deblurring using a 61×61 blur kernel with

3-pixel standard deviation, motion deblurring using a 61× 61 blur kernel generated

using [12] with intensity 0.5, and 4× bicubic super-resolution. We compare to DDRM

[48], DiffPIR [114], ΠGDM [83], DDS [20], DPS [17], RED-diff [57], and DAPS [105].

Unless specified otherwise, DDfire was configured as follows. For the linear inverse

problems, CG is used (no SVD), 1000 NFEs are used without stochastic denoising,

and the (K, δ) hyperparameters are tuned to minimize LPIPS [107] on a 100-sample

validation set (see Table D.1). Appendix D.4 contains additional details on the

implementation of DDfire and the competing methods.

4.3.1 Ablation Study

We first perform an ablation study on the DDfire design choices in Sec. 4.2 using

noisy FFHQ box inpainting and a 100-image validation set. The results are summarized
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in Table 4.1. We first see that both PSNR and LPIPS suffer significantly when FIRE

is run without renoising (i.e., c = 0 in line 14 in Alg. 2). Similarly, renoising using

white noise (i.e., c ∼ N (0, σ2I) in line 14 of Alg. 2) gives noticeably worse PSNR

and LPIPS than the proposed colored noise. Using stochastic denoising gives nearly

identical performance to plain denoising (i.e., ν̂ϕ(σ) = 0 in line 3 of Alg. 2), and so

we use plain denoising by default with linear inverse problems. A more significant

degradation results when the denoiser output-error variance ν is not adapted to x in

line 4 of Alg. 2 but set at the data-average value ν̂ϕ(σ). On the other hand, when CG

doesn’t use early stopping (as described in App. D.4.1) the runtime increases without

improving PSNR or LPIPS. Thus, we use early stopping by default. Finally, using

an SVD instead of CG, which also avoids the noise approximation in (4.16), gives

essentially identical PSNR and LPIPS but with a slightly faster runtime. Figure 4.4

shows another LPIPS/runtime comparison of the SVD and CG versions of DDfire.

4.3.2 Accuracy of σ2 and ν

Figure 4.3 shows DDfire’s σ2 versus iteration i, for comparison to the true denoiser

input variance ∥r − x0∥22/d, and DDfire’s ν, for comparison to the true denoiser

output variance ∥x0 − x0∥22/d, for 25 FIRE iterations with ρ = 1.5 for noisy 4×

super-resolution at t[k] = 1000. We see that the DDfire estimates σ2 and ν track the

true error variances quite closely.

4.3.3 PSNR, LPIPS, and FID Results

For noisy linear inverse problems, Tables 4.2–4.3 show PSNR, LPIPS, and FID

[33] on a 1000-sample test set for FFHQ and ImageNet data, respectively. DDRM
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Figure 4.3: DDfire σ2, true denoiser input variance ∥r − x0∥22/d, DDfire ν, and true
denoiser output variance ∥x0−x0∥22/d vs. DDfire iteration for noisy 4× super-resolution
at t[k] = 1000 for a single validation sample x0.

Figure 4.4: LPIPS vs. single image sampling time for noisy Gaussian deblurring on an
A100 GPU. The evaluation used 1000 ImageNet images. Solid line: DDfire with CG
for various numbers of NFEs. Dashed line: DDfire with SVD.

was not applied to motion deblurring due to the lack of an SVD. Tables 4.2–4.3 show

that DDfire wins in most cases and otherwise performs well.
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Table 4.2: Noisy FFHQ results with measurement noise standard deviation σw = 0.05.

Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4× Super-resolution

Model PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

DDRM 21.71 0.1551 40.61 25.35 0.2223 51.70 - - - 27.32 0.1864 45.82
DiffPIR 22.43 0.1883 31.98 24.56 0.2394 34.82 26.91 0.1952 26.67 24.89 0.2486 32.33
ΠGDM 21.41 0.2009 44.41 23.66 0.2525 45.34 25.14 0.2082 41.95 24.40 0.2520 51.41
DDS 20.28 0.1481 30.23 26.74 0.1648 25.47 27.52 0.1503 27.59 26.71 0.1852 27.09
DPS 22.54 0.1368 35.69 25.70 0.1774 25.18 26.74 0.1655 27.17 26.30 0.1850 27.38
RED-diff 23.58 0.1883 48.86 26.99 0.2081 38.82 16.47 0.5074 128.68 25.61 0.3569 70.86
DAPS 23.61 0.1415 31.51 26.97 0.1827 31.10 27.13 0.1718 30.74 26.91 0.1885 30.83
DDfire 24.75 0.1101 25.26 27.10 0.1533 24.97 28.14 0.1374 26.12 27.13 0.1650 25.73

Table 4.3: Noisy ImageNet results with measurement noise standard deviation σw =
0.05.

Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4× Super-resolution

Model PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

DDRM 18.24 0.2423 67.47 22.56 0.3454 68.78 - - - 24.49 0.2777 64.68
DiffPIR 18.03 0.2860 65.55 21.31 0.3683 56.35 24.36 0.2888 54.11 23.31 0.3383 63.48
ΠGDM 17.69 0.3303 86.36 20.87 0.4191 75.43 22.15 0.3591 70.91 21.25 0.4149 78.57
DDS 16.68 0.2222 63.07 23.14 0.2684 50.84 23.34 0.2674 50.08 23.03 0.3011 52.13
DPS 18.23 0.2314 59.10 21.30 0.3393 50.46 21.77 0.3307 80.27 23.38 0.2904 49.86
RED-diff 18.95 0.2909 108.88 23.45 0.3190 65.65 15.21 0.5647 198.74 22.99 0.3858 83.06
DAPS 19.99 0.2199 61.53 23.91 0.2863 56.87 24.58 0.2722 54.83 24.04 0.2729 55.54
DDfire 20.39 0.1915 55.54 23.71 0.2353 50.05 24.59 0.2314 49.25 23.58 0.2629 49.67

Fig. 4.5 shows image examples for inpainting, motion deblurring, Gaussian deblur-

ring, and 4× super-resolution on ImageNet. Similarly, Fig. 4.6 shows image examples

for inpainting, motion deblurring, Gaussian deblurring, and 4× super-resolution on

FFHQ. In both cases, the zoomed regions show that DDfire did a better job recovering

fine details.

4.3.4 Runtime Results

Figure 4.4 shows LPIPS vs. average runtime (in seconds on an A100 GPU) to

generate a single image for noisy Gaussian deblurring on the 1000-sample ImageNet
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Algorithm 4 DDS [20]

Require: d(·, ·),y,A, γdds,Mcg, {σk}Kk=1, ηddim ≥ 0
1: xK ∼ N (0, σ2

KI)
2: for k = K,K−1, . . . , 1 do
3: xk = d(xk, σk) ▷ Denoising
4: x̂0|k = CG(A⊤A + γddsI,A

⊤y + γddsxk,xk,Mcg) ≈ argminx

{
∥y − Ax∥2 +

γdds∥x− xk∥2
}

5: ςk = ηddim

√
σ2
k−1(σ

2
k − σ2

k−1)

σ2
k

6: xk−1 =

√
σ2
k−1 − ς2k
σ2
k

xk +

(
1−

√
σ2
k−1 − ς2k
σ2
k

)
x̂0|k + ςknk, nk ∼ N (0, I) ▷

DDIM update
7: end for
8: return x̂0|k

test set. The figure shows that DDfire gives a better performance/complexity tradeoff

than the competitors. It also shows that DDfire is approximately 1.5 times faster than

DPS when both are run at 1000 NFEs, due to DPS’s use of backpropagation.

4.4 Discussion

In this section, we compare DDfire to other renoising PnP schemes for the SLM

that involve a proximal data-fidelity step or, equivalently, MMSE estimation of x0

under the Gaussian prior assumption (4.7): DDS, DiffPIR, and SNORE, which are

detailed in Alg. 4, Alg. 5, and Alg. 6, respectively.

Comparing DDfire (see Alg. 2 and Alg. 3) to DDS, we see that both approaches

use CG for approximate MMSE estimation under a Gaussian prior approximation

and both use a DDIM diffusion update. But DDS uses the hyperparameters γdds and

Mcg (the number CG iterations, which is usually small, such as four) to adjust the

noise variance ν in the Gaussian prior approximation (4.7), while DDfire estimates ν
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Algorithm 5 DiffPIR [114]

Require: d(·, ·),y,A, σw, λdiffpir, {σk}Kk=1, ηdiffpir
1: xK ∼ N (0, σ2

KI)
2: for k = K,K−1, . . . , 1 do
3: xk = d(xk, σk) ▷ Denoising

4: x̂0|k = argmin
x

{
1

2σ2
w

∥y −Ax∥2 + λdiffpir

2σ2
k

∥x− xk∥2
}

▷ Approximate MMSE

estimation
5: ϱk =

√
1− ηdiffpir

σk−1

σk
6: xk−1 = ϱkxk + (1− ϱk)x̂0|k +

√
ηdiffpirσk−1nk, nk ∼ N (0, I) ▷ DDIM-like

update
7: end for
8: return x̂0|k

at each iteration. Also, DDfire injects colored Gaussian noise to whiten the denoiser

input error while DDS injects no noise outside of DDIM.

Comparing DDfire to DiffPIR, we see that both perform MMSE estimation under

a Gaussian prior approximation and both use a DDIM-like diffusion update. But

DiffPIR uses the hyperparameter λdiffpir to adjust the noise variance ν in the Gaussian

prior approximation (4.7), while DDfire estimates ν at each iteration. Also, DDfire

injects colored Gaussian noise to whiten the denoiser input error while DiffPIR injects

no noise outside of its DDIM-like step.

Comparing DDfire to SNORE, we see that both perform MMSE estimation under

a Gaussian prior approximation and both use renoising. But SNORE uses white

renoising while DDfire uses colored renoising to whiten the denoiser input error. Also,

SNORE uses the hyperparameter δsnore to adjust the noise variance ν in the Gaussian

prior approximation (4.7), while DDfire estimates it at each iteration. Furthermore,

since SNORE is based on the RED algorithm [73], its denoiser output is scaled and

shifted. Finally, SNORE has many more tuning parameters than DDfire.
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Algorithm 6 Annealed Proximal SNORE [72]

Require: d(·, ·),y,A, σw, δsnore,Msnore, {σi}Msnore
i=1 , {αi}Msnore

i=1 , {Ki}Msnore
i=1 , x̂init

1: x̂0|KMsnore
= x̂init

2: for i = Msnore,Msnore − 1 . . . , 1 do
3: for k = Ki, Ki − 1, . . . , 1 do
4: rk = x̂0|k + σini,k, ni,k ∼ N (0, I) ▷ Renoising

5: xk =

(
1− δsnoreαi

σ2
i

)
x̂0|k +

δsnoreαi

σ2
i

d(rk, σi) ▷ RED update

6: x̂0|k−1 = argmin
x

{
1

2σ2
w

∥y −Ax∥2 + 1

2δsnore
∥x− xk∥2

}
▷ Approximate

MMSE estimation
7: end for
8: end for
9: return x̂0|k

4.5 Conclusion

In this chapter, we proposed the Fast Iterative Renoising (FIRE) algorithm, which

can be interpreted as the HQS plug-and-play algorithm with a colored renoising step

that aims to whiten the denoiser input error. Since the FIRE algorithm approximates

the measurement-conditional denoiser E{x0|xt,y}, or equivalently the measurement-

conditional score ∇x ln pt(xt|y), it can be readily combined with DDIM for diffusion

posterior sampling, giving the “DDfire” algorithm. Experiments on box inpainting,

Gaussian and motion deblurring, and 4× super-resolution with FFHQ and ImageNet

images show DDfire outperforming DDRM, ΠGDM, DDS, DiffPIR, DPS, RED-diff,

and DAPS in PSNR, LPIPS, and FID metrics in nearly all cases. Finally, DDfire

offers fast inference, with better LPIPS-versus-runtime curves than the competitors.
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Figure 4.5: Example recoveries from noisy linear inverse problems with ImageNet
images.
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Figure 4.6: Example recoveries from noisy linear inverse problems with FFHQ images.
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Chapter 5: Final Thoughts

5.1 Final Experiment

As a final exercise, we compare rcGAN (Chapter 2), pcaGAN (Chapter 3), and

DDfire (Chapter 4) on accelerated multicoil MRI reconstruction at R ∈ {4, 8}, using

the same training/validation/test splits and testing procedure described in Chapter 3.

For DDfire, we trained a new EDM-style denoiser using the fastMRI-EDM [1] training

code from [75]. At inference, the A matrix used by DDfire is of the form

A = MFS, (5.1)

where M ∈ RCM×CN is a subsampling operator, F CN×CN is a block-diagonal ma-

trix where each N × N block contains the unitary 2D discrete Fourier transform,

S ∈ CCN×N is a block-diagonal matrix containing the sensitivity maps of the C

measurement coils, and M,N are our single-coil measurement and image dimensions,

respectively. However, our denoiser operates on the coil-combined image, not the

multicoil measurements (or individual coil images, like our cGANs). We do not add

any noise to the k-space, but the fastMRI data is inherently noisy, and so we set

σy=0.01 and tune DDfire via a grid search, finding the LPIPS-minimizing choices of

(K, δ) which were found to be (50, 0.2) for both R = 4 and R = 8.
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Table 5.1: Average MRI results at acceleration R = 4.

Model PSNR↑ SSIM↑ LPIPS↓ DISTS↓ CFID↓ FID↓ APSD Time (4)↓

E2E-VarNet (Sriram et al. [89]) 39.93 0.9641 0.0316 0.0859 16.08 38.88 0.0 310 ms
rcGAN 39.55 0.9544 0.0164 0.0546 9.71 25.62 3.8e-6 217 ms
pcaGAN 39.77 0.9557 0.0159 0.0542 8.78 25.02 4.4e-5 217 ms
DDfire (K = 500) 38.87 0.9489 0.0288 0.0746 10.46 27.49 4.0e-6 1.5 min
DDfire (K = 200) 39.31 0.9531 0.0198 0.0710 8.76 24.90 2.3e-6 1.5 min
DDfire (K = 100) 39.44 0.9542 0.0191 0.0699 8.32 22.21 1.2e-6 1.5 min
DDfire (K = 50) 39.61 0.9562 0.0178 0.0672 7.63 20.07 9.2e-7 1.5 min

Table 5.2: Average MRI results at acceleration R = 8.

Model PSNR↑ SSIM↑ LPIPS↓ DISTS↓ CFID↓ FID↓ APSD Time (4)↓

E2E-VarNet (Sriram et al. [89]) 36.49 0.9220 0.0575 0.1253 36.86 44.04 0.0 316 ms
rcGAN 35.42 0.9257 0.0379 0.0877 24.04 28.43 7.6e-6 217 ms
pcaGAN 35.94 0.9283 0.0344 0.0799 21.65 28.35 6.5e-5 217 ms
DDfire (K = 500) 33.99 0.9194 0.0480 0.0954 26.46 30.21 7.7e-6 1.5 min
DDfire (K = 200) 35.72 0.9384 0.0311 0.0823 16.62 25.66 7.4e-6 1.5 min
DDfire (K = 100) 36.27 0.9428 0.0277 0.0810 14.74 24.54 7.1e-6 1.5 min
DDfire (K = 50) 37.18 0.9486 0.0251 0.0748 14.89 23.29 7.0e-6 1.5 min

Table 5.1 shows test results for PSNR, SSIM, LPIPS, and DISTS for each method

under test with optimal averaging constant P . For each method, we draw P ∈

{1, 2, 4, 8, 16, 32} independent samples for each y, average those P outputs to form a

single estimate, compute the metric on that estimate, and repeat for every P . We then

select the “optimal” P per method and metric, i.e., the P that maximizes PSNR/SSIM

or minimizes LPIPS/DISTS, and report that best score in the table. The specific P

values for each method/metric are listed in Table 5.3. We also list CFID, FID, APSD,

and the reconstruction time of 4 samples. The E2E-VarNet still wins in PSNR and

SSIM, while pcaGAN still wins in LPIPS and DISTS. However, DDfire performs best

in CFID and FID.
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Table 5.3: Optimal averaging constant P for each method/metric.

R = 4 R = 8

Model PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS

rcGAN 32 4 2 1 32 8 2 2
pcaGAN 32 4 2 1 32 4 2 2
DDfire (K = 500) 32 8 2 1 32 8 4 2
DDfire (K = 200) 32 16 8 1 32 16 8 2
DDfire (K = 100) 32 32 8 1 32 32 16 2
DDfire (K = 50) 32 32 8 1 32 32 16 2
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Figure 5.1: Example MRI recoveries at R = 8. Arrows highlight meaningful variations.

Table 5.2 similarly shows test results for PSNR, SSIM, LPIPS, and DISTS for each

method under test with optimal averaging constant P , as well as CFID, FID, APSD,

and the reconstruction time of 4 samples. There, we see that DDfire outperforms

both rcGAN and pcaGAN in all metrics, however the cGANs are notably faster with

respect to sample generation time. Even so, DDfire nets a significant speedup over

the previously evaluated MRI diffusion method from Jalal et al. (see Chapters 2 and
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3). DDfire also outperforms the E2E-VarNet from Sriram et al. in PSNR, unlike

the cGANs. Figure 5.1 shows zoomed versions of two recoveries x̂i and the sample

average x̂(P ) with P = 32 at R = 8, as well as the estimate from the E2E-VarNet.

As shown in the figure, DDfire trades some sample diversity for higher fidelity—the

arrowed structure appears in the ground truth and DDfire, but is missing or faint in

rcGAN/pcaGAN.

In these experiments, DDfire’s sample diversity is chiefly governed by the number

of DDIM steps K. Our LPIPS-driven grid search yields a relatively small K = 50 (for

both accelerations), which steers the sampler toward mode-seeking behavior: distortion

is reduced, but between-sample variability (measured by APSD) is suppressed. The

“optimal P” still shifts by metric, tending lower for perceptual scores (LPIPS/DISTS)

and higher for distortion-style metrics (PSNR/SSIM). However, when computing SSIM

and LPIPS, one may note that the optimal P values of DDfire are notably higher

than those of rcGAN/pcaGAN at K = 50 (see Table 5.3). This is a consequence of

lower sample diversity relative to the cGANs, which can be improved by increasing K.

However, this comes at the expense of worse fidelity. Our experimental results, shown

in Tables 5.1 and 5.2, verify this empirically and we also see P values in Table 5.3 that

are more inline with what we may expect. In short, the LPIPS-based tuning explicitly

prioritizes fidelity over diversity in DDfire, whereas the cGAN baselines balance these

aims via their training objectives.

5.2 Potential Future Work

Similar to how diffusion models transition from noise realizations to clean images,

direct diffusion bridges (DDBs) [55, 23] transition from corrupted images to clean
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images (or, more generally, from one distribution of images to another). Using x0 to

denote a clean image and x1 to denote a corrupted image, the DDB process generates

intermediate samples xt via

xt = (1− αt)x0 + αtx1 + σtzt, zt ∼ N (0, I), (5.2)

for some increasing αt ∈ [0, 1] where α0 = 0 and α1 = 1, and σt ≥ 0. Typically, we

have σt = αtϵt where ϵt is a non-increasing function of t. For a linear inverse problem,

we have x1 = A⊤y or x1 = A+y.

The value in adopting direct diffusion bridges (DDBs) over a generic diffusion

prior is that the DDB explicitly embeds the degraded observation y (and implicitly

A) into the forward process in (5.2). This design keeps the trajectory near the

measurement-consistent manifold throughout sampling and can accelerate convergence

by lowering the burden on data-consistency projections or guidance. However, this

problem-tailored approach loses generality: a DDB trained for a particular degradation

operator A (or set of similar of A) is not a drop-in solver for arbitrary inverse problems.

So, we are trading off generality for improved posterior sampling performance.

We can derive an “ancestral sampling” strategy for DDB where [18], for any s < t,

we have

xs = (1− αs|t)x0 + αs|txt + σs|tns|t, ns|t ∼ N (0, I) (5.3)

for ns|t that is independent of x0 and xt, with αs|t ≜ αs/αt and σ2
s|t ≜ α2

s(ϵ
2
s − ϵ2t ). In

practice, we cannot actually compute xs because x0 is unknown. Instead, we use an

estimate of x0 computed using an approximation x̂t of xt, yielding

x̂s = (1− αs|t)Gθ(x̂t, t) + αs|tx̂t + σs|tns|t, ns|t ∼ N (0, I), (5.4)
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where Gθ is trained to estimate x0 from xt. The typical training objective for Gθ is

min
θ

Ex0,x1,z,t∼p(t)

{
λt||Gθ(xt, t)− x0||22

}
, (5.5)

where xt is computed according to (5.2), λt is some t-dependent weight, and p(t) is a

user-selected density (e.g., uniform).

Even though Gθ is analogous to the denoiser/score-network used by diffusion

models, it is something else entirely. In particular, it is trained with a specific forward

model (i.e., A) in mind. Consequently, we are free to train Gθ in whatever way we

see fit. To that end, one potential direction is to train Gθ with the rcGAN/pcaGAN

regularization described in Chapters 2 and 3 to improve the generator’s statistics. The

rcGAN regularization yields objective

min
θ

Ex0,x1,z,t∼p(t)

{ λt

Prc

Prc∑
i=1

||Gθ(xt,i, t)− x0||22
}
+ βL1,SD,Prc(θ, βSD) (5.6)

where xt,i = (1 − αt)x0 + αtx1 + σtzt,i, β, λt > 0, Prc ≥ 2, and the regularizer

expressions are defined in (2.7)-(3.5) with x̂i = Gθ(xt,i, t). One must choose β and λt

carefully in order to balance the effects of both terms.

Coupled with improved training of Gθ, one may also improve the reverse process

with a “conditional DDB” (cDDB) approach. In particular, replace x0 in (5.3) with

E{x0|x̂t,y} instead of E{x0|x̂t}. This can be accomplished with a DiffPIR-style [114]

approach, computing E{x0|x̂t,y} by

argmin
x

γw
2
||y −Ax||2 + γt

2
||x− x̂0||2, (5.7)

where γw and γt are the noise precision in y and the precision of the error in x̂0

relative to the true x0, respectively. γt can be estimated as in DDfire. Note that with
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the cGAN approach described above, one could choose to compute x̂0 in a perception-

distortion tradeoff-optimal way at inference time via x̂0 = 1
P

∑P
i=1 Gθ(zi, x̂t, t) for

some appropriate choice of P ≥ 1.

Another option is to consider an unrolled approach where Gθ is trained with a fixed

number of reverse DDB steps in mind, but still leverages our cGAN regularization.

Here, the statistical discrepancy between xt and x̂t can be better accounted for in the

training process.

5.3 Conclusion

We proposed three methods for solving inverse problems via posterior sampling.

In Chapter 2 we developed a new regularization framework for image-recovery

cGANs that combines a supervised ℓ1 loss with a carefully weighted standard-deviation

reward. For Gaussian posteriors, we proved that this approach produces samples

matching the true posterior in both mean and covariance, and we identified the

shortcomings of alternatives based on ℓ2 losses. To make the method practical, we

proposed an automatic procedure for tuning the variance-reward weight. On tasks

such as parallel MRI reconstruction and large-scale face inpainting, our approach

consistently outperformed state-of-the-art cGANs and score-based methods across

CFID, FID, PSNR, SSIM, LPIPS, and DISTS. Importantly, it also enabled sampling

thousands of times faster than Langevin or score-based approaches.

In Chapter 3 we then proposed pcaGAN, an image-recovery cGAN designed to

enforce correctness in key statistical components of the conditional distribution: the

mean, trace covariance, and the leading K principal components of the covariance

matrix Σx̂|y. Synthetic Gaussian experiments showed that pcaGAN achieved lower
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Wasserstein-2 distances than rcGAN and NPPC across a range of dimensions. On

real-world tasks—MNIST denoising, accelerated multicoil MRI, and large-scale in-

painting—pcaGAN surpassed competing cGANs and diffusion models in CFID, FID,

and standard perceptual/quality metrics. Moreover, pcaGAN achieved these results

while sampling 3–4 orders of magnitude faster than diffusion-based competitors, mak-

ing it well suited for uncertainty quantification, fairness in recovery, and balancing

perception-distortion trade-offs.

In Chapter 4 we introduced the Fast Iterative Renoising (FIRE) algorithm, inter-

pretable as a plug-and-play HQS method with a colored renoising step that whitens

denoiser input error. Since FIRE approximates the measurement-conditional denoiser

E{x0|xt,y}—equivalently, the measurement-conditioned score—it can be seamlessly

paired with DDIM to yield the DDfire algorithm for solving linear inverse problems.

Across diverse experiments, including box inpainting, Gaussian/motion deblurring,

and 4× super-resolution on FFHQ and ImageNet, DDfire consistently outperformed

DDRM, ΠGDM, DDS, DiffPIR, DPS, RED-diff, and DAPS in PSNR, LPIPS, and

FID. It also delivered superior LPIPS–runtime trade-offs, establishing itself as both

fast and high-performing for posterior sampling in linear inverse problems.

Finally, in Section 5.1, we compared rcGAN, pcaGAN, and DDfire for accelerated

multicoil MRI reconstruction at accelerations R ∈ {4, 8} using the same data splits

and testing protocol as Chapter 3. Quantitatively, DDfire outperforms both cGANs

at R = 8 across PSNR, SSIM, LPIPS, DISTS, CFID, and FID, albeit with slower

sample generation time, but it remains substantially faster than prior diffusion-based

MRI methods. However, DDfire falls short of pcaGAN in PSNR, SSIM, LPIPS, and

DISTS at R = 4 MRI. Qualitatively, DDfire yields higher-fidelity details at R = 8
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(with some reduction in sample diversity), which align better with the ground truth

than rcGAN/pcaGAN.
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Appendix A: Additional Details for Inverse Problems

A.1 MR Imaging Details

We now give details on magnetic resonance (MR) image recovery. Suppose that

the goal is to recover the N -pixel MR image i ∈ CN from the multicoil measurements

{kc}Cc=1, where [70]

kc = MFSci+ nc. (A.1)

In (A.1), C refers to the number of coils, kc ∈ CM are the measurements from the cth

coil, M ∈ RM×N is a sub-sampling operator containing rows from IN—the N ×N

identity matrix, F ∈ CN×N is the unitary 2D discrete Fourier transform, Sc ∈ CN×N

is a diagonal matrix containing the sensitivity map of the cth coil, and nc ∈ CM is

noise. From (A.1), it can be seen that the MR measurements are collected in the

spatial Fourier domain, otherwise known as the “k-space.” The sensitivity maps

{Sc} are estimated from {kc} using ESPIRiT [94] (in our case via SigPy [67]), which

yields maps with the property
∑C

c=1 S
H
c Sc = IN . The ratio R ≜ N

M
is known as the

acceleration rate.

There are different ways that one could apply the generative posterior sampling

framework to multicoil MR image recovery. One is to configure the generator to

produce posterior samples î of the complex image i. Another is to configure the
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generator to produce posterior samples x̂ of the stack x ≜ [x⊤
1 , . . . ,x

⊤
C ]

⊤ of “coil

images” xc ≜ Sci and later coil-combining them to yield a complex image estimate

î ≜ [SH
1 , . . . ,S

H
C ]x̂. We take the latter approach. Furthermore, rather than feeding

our generator with k-space measurements kc, we choose to feed it with aliased coil

images yc ≜ F HM⊤kc. Writing (A.1) in terms of the coil images, we obtain

yc = F HM⊤MFxc +wc, (A.2)

where wc ≜ F HM⊤nc. Then we can stack {yc} and {wc} column-wise into vectors

y and w, and set A = IC ⊗ F HM⊤MF ∈ CNC×NC , to obtain the formulation

y = Ax+w.

To train our generator, we assume to have access to paired training examples

{(xt,yt)}, where xt is a stack of coil images and yt is the corresponding stack of

kf-space coil measurements. The fastMRI multicoil dataset [102] provides {(xt,kt)},

from which we can easily obtain {(xt,yt)}.

A.2 Data-Consistency for Inverse Problems

In this section, we describe a data-consistency procedure that can be optionally

used when our cGAN is used to solve a linear inverse problem, i.e., to recover x from

y under a model of the form

y = Ax+w, (A.3)

where A is a known linear operator and w is unknown noise. The motivation is

that, in some applications, such as medical imaging or inpainting, the end user may

feel comfortable knowing that the generated samples {x̂i} are consistent with the
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measurements y in that

y = Ax̂i. (A.4)

When (A.4) holds, A+y = A+Ax̂i must also hold, where (·)+ denotes the pseudo-

inverse. The quantity A+A can be recognized as the orthogonal projection matrix

associated with the row space of A. So, (A.4) requires the component of x̂i in the

row space of A to equal A+y, while placing no constraints on the component of x̂i in

the nullspace of A. This suggests the following data-consistency procedure:

x̂i = (I −A+A)x̂raw
i +A+y. (A.5)

where x̂raw
i is the raw generator output. We note that a version of this idea for point

estimation was proposed in [81].

The data-consistency procedure (A.5) ensures that any generative method will

generate only the component of x that lies in the nullspace of A. Consequently, (A.5)

is admissible only when A has a non-trivial nullspace. Also, because no attempt is

made to remove the noise w in y, this approach is recommended only for low-noise

applications. For high-noise applications, an extension based on the dual-decomposition

approach [14] would be more appropriate, but we leave this to future work.

When applying (A.5) to the MRI formulation in App. A.1, we note that A =

IC ⊗ F HM⊤MF is an orthogonal projection matrix, and so I −A+A = I −A =

I ⊗ F H(I −M⊤M)F .
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Appendix B: Additional Diffusion Details

B.1 VP Formulation

In the main text, we describe DDfire for the VE SDE formulation from [87] and

the corresponding SMLD discretization from [84]. Here, we describe it for the VP

SDE from [87] and the corresponding DDPM discretization from [34].

From [87], the general SDE forward process can be written as

dx = f(x, t) dt+ g(t) dw (B.1)

for some choices of f(·, ·) and g(·), where dw is the standard Wiener process (i.e.,

Brownian motion). The reverse process can then be described by

dx =
(
f(x, t)− g2(t)∇x ln pt(x)

)
dt+ g(t) dw, (B.2)

where pt(·) is the distribution of x at time t and dw is the reverse Wiener process. In

the VE-SDE, f(x, t) = 0 and g(t) =
√
d[σ2(t)]/ dt for some variance schedule σ2(t),

but in the VP-SDE, f(x, t) = −1
2
β(t)x and g(t) =

√
β(t) for some variance schedule

β(t). When discretized to t ∈ {0, 1, . . . , T}, the VP forward process becomes

x̃t =
√
1− βtx̃t−1 +

√
βtw̃t−1 (B.3)
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with i.i.d. {w̃t} ∼ N (0, I), so that

x̃t =
√
αtx0 +

√
1− αtϵ̃t (B.4)

with αt ≜ 1 − βt, αt =
∏t

s=1 αs, and ϵ̃t ∼ N (0, I). Throughout, we write the VP

quantities with tildes to distinguish them from the VE quantities. The DDPM reverse

process then takes the form

x̃t−1 =
1
√
αt

(
x̃t + βt∇xt ln p(x̃t)

)
+ Σtñt with Σ2

t ≜
1− αt−1

1− αt

βt (B.5)

and is typically initialized at x̃T ∼ N (0, I). By rewriting (B.4) as

1√
αt

x̃t = x0 +

√
1− αt

αt

ϵ̃t (B.6)

and comparing it to (4.1), we recognize the VP/VE relationships

1√
αt

x̃t = xt and
1− αt

αt

= σ2
t ⇔ αt =

1

1 + σ2
t

. (B.7)

Furthermore, assuming that αT ≪ 1, the VP initialization x̃T ∼ N (0, I) is well

approximated by the VE initialization xT ∼ N (0, σ2
TI).

B.2 DDIM Details for VP

The DDIM reverse process from [82] provides an alternative to the DDPM reverse

process that offers a flexible level of stochasticity. When describing VP DDIM, we

will write the quantities as x̃k, ϵ̃k, ñk, αk to distinguish them from the corresponding

VP DDPM quantities x̃t, ϵ̃t, ñt, αt, and we will write the total number of steps as K.

Like (B.4), DDIM is built around the model

x̃k =
√
αkx0 +

√
1− αkϵ̃k, ϵ̃k ∼ N (0, I). (B.8)
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Adapting the first two equations from [82, App.D.3] to our notation, we have

x̃k−1 =
√

αk−1

(
x̃k −

√
1− αk E{ϵ̃k|x̃k,y}√

αk

)
+
√

1− αk−1 − ς̃2k E{ϵ̃k|x̃k,y}+ ς̃kñk (B.9)

ς̃k ≜ ηddim

√
1− αk−1

1− αk

√
1− αk

αk−1

(B.10)

with ñk ∼ N (0, I) and tunable ηddim ≥ 0. When ηddim = 1 and K = T , DDIM reduces

to DDPM. But when ηddim = 0, the reverse process is deterministic. In fact, it can be

considered a discretization of the probability flow ODE [82], which often works much

better than the SDE when the number of discretization steps K is small. We now

write (B.9) in a simpler form. Applying E{·|x̃k,y} to both sides of (B.8) gives

x̃k =
√
αk E{x0|x̃k,y}+

√
1− αk E{ϵ̃k|x̃k,y} (B.11)

which implies

E{ϵ̃k|x̃k,y} =
x̃k −

√
αk E{x0|x̃k,y}√
1− αk

, (B.12)

and plugging (B.12) into (B.9) gives

x̃k−1 =
√

αk−1 E{x0|x̃k,y}+ ς̃kñk

+
√

1− αk−1 − ς̃2k

(
x̃k −

√
αk E{x0|x̃k,y}√
1− αk

)
(B.13)

=
√

αk−1 E{x0|x̃k,y}+ ς̃kñk

+ h̃k

(
x̃k −

√
αk E{x0|x̃k,y}

)
(B.14)

= h̃kx̃k + g̃k E{x0|x̃k,y}+ ς̃kñk (B.15)

for

h̃k ≜

√
1− αk−1 − ς̃2k

1− αk

and g̃k ≜
√

αk−1 − h̃k

√
αk. (B.16)

93



Thus the VP DDIM reverse process can be described by (B.10), (B.15), and (B.16)

with ñk ∼ N (0, I) ∀k and initialization x̃K ∼ N (0, I).

B.3 DDIM Details for VE

We now provide the details for the VE version of DDIM. Starting with the VP

DDIM reverse process (B.15), we can divide both sides by
√
αk−1 to get

x̃k−1√
αk−1

=
h̃k

√
αk√

αk−1

x̃k√
αk

+
g̃k√
αk−1

E{x0|x̃k,y}+
ς̃k√
αk−1

ñk (B.17)

and leveraging the VP-to-VE relationship (B.7) to write

xk−1 = hkxk + gk E{x0|xk,y}+ ςknk (B.18)

with

hk =
h̃k

√
αk√

αk−1

, gk =
g̃k√
αk−1

, ςk =
ς̃k√
αk−1

(B.19)

with nk ∼ N (0, I) ∀k and initialization xK ∼ N (0, σ2
KI). Plugging g̃k from (B.16)

into (B.18), we find

gk =

√
αk−1 − h̃k

√
αk√

αk−1

= 1− hk. (B.20)

Then plugging (B.10) into (B.18), we find

ςk =
ηddim√
αk−1

√
1− αk−1

1− αk

√
1− αk

αk−1

(B.21)

= ηddim

√
1

αk−1

1− αk−1

1− αk

(
1− αk

αk−1

)
(B.22)

= ηddim

√
1− αk−1

αk−1

αk

1− αk

(
1

αk

− 1

αk−1

)
(B.23)

= ηddim

√
σ2
k−1

σ2
k

(
[1 + σ2

k]− [1 + σ2
k−1]

)
(B.24)

= ηddim

√
σ2
k−1(σ

2
k − σ2

k−1)

σ2
k

. (B.25)
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Finally, noting from (B.7), (B.18), and (B.25) that

ς̃2k
1− αk−1

= ς2k
αk−1

1− αk−1

=
ς2k

σ2
k−1

=
η2ddim
σ2
k−1

σ2
k−1(σ

2
k − σ2

k−1)

σ2
k

(B.26)

= η2ddim

(
1−

σ2
k−1

σ2
k

)
, (B.27)

we plug h̃k from (B.16) into (B.18) to find

hk =

√
αk

αk−1

1− αk−1 − ς̃2k
1− αk

=

√
αk

1− αk

1− αk−1 − ς̃2k
αk−1

(B.28)

=

√
αk

1− αk

1− αk−1

αk−1

(
1− ς̃2k

1− αk−1

)
=

√
σ2
k−1

σ2
k

(
1− η2ddim

(
1−

σ2
k−1

σ2
k

))
(B.29)

=

√
σ2
k−1

σ2
k

(
1− ς2k

σ2
k−1

)
=

√
σ2
k−1

σ2
k

− ς2k
σ2
k

=

√
σ2
k−1 − ς2k
σ2
k

. (B.30)

The VE DDIM reverse process is summarized in (4.22)-(4.23).
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Appendix C: Proofs and Derivations

C.1 Proof of Proposition 1

Here we prove Proposition 1. To begin, for an N -pixel image, we rewrite (2.8)-(2.9)

as

L1,P (θ) =
∑N

j=1 Ey

{
Ex,z1,...,zP|y

{
|xj − 1

P

∑P
i=1 x̂ij|

∣∣y}} (C.1)

LSD,P (θ) =
∑N

j=1 Ey

{
Ez1,...,zP|y

{
γP
P

∑P
i=1 |x̂ij − 1

P

∑P
k=1 x̂kj|

∣∣y}}, (C.2)

where xj ≜ [x]j, x̂ij ≜ [x̂i]j, and

γP ≜
√

πP
2(P−1)

. (C.3)

To simplify the notation in the sequel, we will consider an arbitrary fixed value of j

and use the abbreviations

xj → X, x̂ij → X̂i. (C.4)

Recall that x and {x̂i} are mutually independent when conditioned on y because the

code vectors {zi} are generated independently of both x and y. In the context of

Proposition 1, we also assume that the vector elements xj and x̂ij are independent

Gaussian when conditioned on y. This implies that we can make the notational shift

px|y(xj|y)→ N (X;µ0, σ
2
0), px̂|y(x̂ij|y)→ N (X̂i;µ, σ

2), (C.5)
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where X and {X̂i} are mutually independent. With this simplified notation, we note

that [x̂mmse]j → µ0, and that mode collapse corresponds to σ = 0.

Furthermore, if θ can completely control (µ, σ), then (2.12) can be rewritten as

(µ∗, σ∗) = argmin
µ,σ

{
L1,P (µ, σ)− βSDLSD,P (µ, σ)

}
⇒

{
µ∗ = µ0

σ∗ = σ0

(C.6)

with

L1,P (µ, σ) = EX,X̂1,...X̂P
{|X − 1

P

∑P
i=1 X̂i|} (C.7)

LSD,P (µ, σ) = EX̂1,...X̂P
{γP

P

∑P
i=1 |X̂i − 1

P

∑P
k=1 X̂k|}. (C.8)

Although σ∗ must be positive, it turns out that we do not need to enforce this in the

optimization (C.6) because it will arise naturally.

To further analyze (C.7) and (C.8), we define

µ̂ ≜ 1
P

∑P
i=1 X̂i (C.9)

σ̂ ≜ γP
P

∑P
i=1 |X̂i − µ̂|. (C.10)

The quantity µ̂ can be recognized as the unbiased estimate of the mean µ of X̂i, and

we now show that σ̂ is an unbiased estimate of the SD σ of X̂i in the case that X̂i is

Gaussian. To see this, first observe that the i.i.d. N (µ, σ2) property of {X̂i} implies

that X̂i − µ̂ = (1 − 1
P
)X̂i − 1

P

∑
k ̸=i X̂k is Gaussian with mean zero and variance

(1− 1
P
)2σ2 + P−1

P 2 σ2 = P−1
P

σ2. The variable |X̂i − µ̂| is thus half-normal distributed

with mean
√

2(P−1)
πP

σ2 [54]. Because {X̂i} are i.i.d., the variable 1
P

∑P
i=1 |X̂i − µ̂| has

the same mean as |X̂i − µ̂|. Finally, multiplying 1
P

∑P
i=1 |X̂i − µ̂| by γP yields σ̂ from

(C.10), and multiplying its mean using the expression for γP from (C.3) implies

E{σ̂} = σ, (C.11)
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and so σ̂ is an unbiased estimator of σ, the SD of X̂i.

With the above definitions of µ̂ and σ̂, the optimization cost in (C.6) can be written

as

L1,P (µ, σ)− βSDLSD,P (µ, σ) = EX,X̂1,...X̂P

{
|X − µ̂|

}
− βSD EX̂1,...X̂P

{
σ̂
}

(C.12)

= EX,X̂1,...X̂P

{
|X − µ̂|

}
− βSDσ, (C.13)

where in the last step we exploited the unbiased property of σ̂. To proceed further, we

note that the i.i.d. Gaussian property of {X̂i} implies µ̂ ∼ N (µ, σ2/P ), after which

the mutual independence of {X̂i} and X yields

X − µ̂ ∼ N (µ0 − µ, σ2
0 + σ2/P ). (C.14)

Taking the absolute value of a Gaussian random yields a folded-normal random variable

[54]. Using the mean and variance in (C.14), the expressions in [54] yield

EX,X̂1,...X̂P

{
|X − µ̂|

}
=

√
2(σ2

0 + σ2/P )

π
exp

(
− (µ0 − µ)2

2(σ2
0 + σ2/P )

)
+ (µ0 − µ) erf

( µ0 − µ√
2(σ2

0 + σ2/P )

)
. (C.15)

Thus the optimization cost (C.13) can be written as

J(µ, σ) =

√
2(σ2

0 + σ2/P )

π
exp

(
− (µ− µ0)

2

2(σ2
0 + σ2/P )

)
+ (µ− µ0) erf

( µ− µ0√
2(σ2

0 + σ2/P )

)
− βSDσ. (C.16)

Since J(·, ·) is convex, the minimizer (µ∗, σ∗) = argminµ,σ J(µ, σ) satisfies∇J(µ∗, σ∗) =

(0, 0). To streamline the derivation, we define

c ≜
√

2(σ2
0 + σ2/P )/π, s ≜

√
σ2
0 + σ2/P (C.17)
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so that

J(µ, σ) = c exp
(
− (µ− µ0)

2

2s2

)
+ (µ− µ0) erf

(µ− µ0√
2s2

)
− βSDσ. (C.18)

Because c and s are invariant to µ, we get

∂J(µ, σ)

∂µ
= −c exp

(
− (µ− µ0)

2

2s2

)µ− µ0

s2
+ erf

(µ− µ0√
2s2

)
+ (µ− µ0)

2√
π
exp

(
− (µ− µ0)

2

2s2

)
, (C.19)

which equals zero if and only if µ = µ0. Thus we have determined that µ∗ = µ0.

Plugging µ∗ = µ0 into (C.16), we find

J(µ∗, σ) =
√

2(σ2
0 + σ2/P )/π − βSDσ. (C.20)

Taking the derivative with respect to σ, we get

∂J(µ∗, σ)

∂σ
=

√
2

πP (Pσ2
0/σ

2 + 1)
− βSD (C.21)

=

√
2

πP (Pσ2
0/σ

2 + 1)
−

√
2

πP (P + 1)
, (C.22)

where in the last step we applied the value of βSD from (2.11). It can now be seen

that ∂J(µ∗,σ)
∂σ

= 0 if and only if σ = σ0, which implies that σ∗ = σ0. Thus we have

established (C.6), which completes the proof of Proposition 1.

C.2 Derivation of Proposition 2

Here we prove Proposition 2. To start, we establish some notation and conditional-

mean properties:

x̂mmse ≜ Ex|y{x|y}
emmse ≜ x− x̂mmse, 0 = Ex|y{emmse|y}
x̂i(θ) ≜ Gθ(zi,y), x(θ) ≜ Ezi|y{x̂i(θ)|y}

x̂(P )(θ) ≜ 1
P

∑P
i=1 x̂i(θ), x(θ) = Ez1,...,zP|y{x̂(P )(θ)|y}

di(θ)) ≜ x̂i(θ)− x(θ), 0 = Ezi|y{di(θ)|y} ∀θ
d(P )(θ) ≜ 1

P

∑P
i=1 di(θ), 0 = Ez1,...,zP|y{d(P )(θ)|y} ∀θ

(C.23)
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Our first step is to write (2.14) as

L2,P (θ) = Ey

{
Ex,z1,...,zP|y{∥x− x̂(P )(θ)∥22|y}

}
. (C.24)

Leveraging the fact that x̂mmse and x(θ) are deterministic given y, we write the inner

term in (C.24) as

Ex,z1,...,zP|y{∥x− x̂(P )(θ)∥22|y}

= Ex,z1,...,zP|y{∥x̂mmse + emmse − x(θ)− d(P )(θ)∥22|y} (C.25)

= Ex,z1,...,zP|y{∥x̂mmse − x(θ)∥22|y}

+ 2ReEx,z1,...,zP|y{(x̂mmse − x(θ))H(emmse − d(P )(θ))|y}

+ Ex,z1,...,zP|y{∥emmse − d(P )(θ)∥22|y} (C.26)

= ∥x̂mmse − x(θ)∥22 + 2Re
[
(x̂mmse − x(θ))H Ex,z1,...,zP|y{(emmse − d(P )(θ))|y}︸ ︷︷ ︸

= 0

]
+ Ex,z1,...,zP|y{∥emmse − d(P )(θ)∥22|y} (C.27)

= ∥x̂mmse − Ezi|y{x̂i(θ)|y}∥22 + Ex,z1,...,zP|y{∥emmse − d(P )(θ)∥22|y}. (C.28)

where in (C.27) we used the fact that d(P ) and emmse are both zero-mean when

conditioned on y. We now leverage the fact that {zi} are independent of x and y to

write

Ex,z1,...,zP|y{∥emmse − d(P )(θ)∥22|y}

= Ex,z1,...,zP|y{∥emmse∥22|y}+ 2ReEx,z1,...,zP|y{e
H
mmsed(P )(θ)|y}

+ Ex,z1,...,zP|y{∥d(P )(θ)∥22|y} (C.29)

= Ex|y{∥emmse∥22|y}+ 2Re
[
Ex|y{emmse|y}︸ ︷︷ ︸

= 0

H Ez1,...,zP|y{d(P )(θ)|y}︸ ︷︷ ︸
= 0

]
+ Ez1,...,zP|y{∥d(P )(θ)∥22|y}. (C.30)
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Finally, we can leverage the fact that {zi} are i.i.d. to write

Ez1,...,zP|y{∥d(P )(θ)∥22|y} = Ez1,...,zP|y{∥ 1
P

∑P
i=1 di(θ)∥22|y} (C.31)

= 1
P 2

∑P
i=1 Ezi|y{∥di(θ)∥22|y} (C.32)

= 1
P
Ezi|y{∥di(θ)∥22|y} for any i (C.33)

= 1
P
Ezi|y{tr[di(θ)di(θ)

H]|y} (C.34)

= 1
P
tr
[
Ezi|y{di(θ)di(θ)

H}|y}
]

(C.35)

= 1
P
tr
[
Covzi|y{x̂i(θ)|y}

]
. (C.36)

Combining (C.24), (C.28), (C.30), and (C.36), we get the bias-variance decomposition

L2,P (θ) = Ey

{
∥x̂mmse − Ezi|y{x̂i(θ)|y}∥22 + 1

P
tr
[
Covzi|y{x̂i(θ)|y}

]
+ Ex|y{∥emmse∥22|y}

}
. (C.37)

We now see that if θ has complete control over the y-conditional mean and covariance

of x̂i(θ), then minimizing (C.37) over θ will cause

Ezi|y{x̂i(θ)|y} = x̂mmse (C.38)

Covzi|y{x̂i(θ)|y} = 0, (C.39)

which proves Proposition 2.

C.3 Derivation of (2.19)

To show that the expression for Lvar,P in (2.19) holds, we first rewrite (2.18) as

Lvar,P (θ) =
1

P−1

∑P
i=1 Ey{Ez1,...,zP|y{∥x̂i(θ)− x̂(P )(θ)∥22|y} (C.40)
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where the definitions from (C.23) imply

Ez1,...,zP|y{∥x̂i(θ)− x̂(P )(θ)∥22|y}

= Ez1,...,zP|y{∥x(θ) + di(θ)− d(P )(θ)− x(θ)∥22|y} (C.41)

= Ez1,...,zP|y{∥di(θ)− 1
P

∑P
j=1 dj(θ)∥22|y} (C.42)

= Ez1,...,zP|y{∥(1− 1
P
)di(θ)− 1

P

∑
j ̸=i dj(θ)∥22|y} (C.43)

= (1− 1
P
)2 Ezi|y{∥di(θ)∥22|y}+ P−1

P 2 Ezi|y{∥di(θ)∥22|y} (C.44)

= P−1
P

Ezi|y{∥di(θ)∥22|y} for any i. (C.45)

For (C.44), we leveraged the zero-mean and i.i.d. nature of {di(θ)} conditioned on y.

By plugging (C.45) into (C.40), we get

Lvar,P (θ) =
1
P

∑P
i=1 Ey{Ezi|y{∥di(θ)∥22|y}} (C.46)

= Ey{Ezi|y{∥di(θ)∥22|y}} for any i (C.47)

= Ey{tr[Covzi|y{x̂i(θ)|y}]}, (C.48)

where (C.47) follows because {di(θ)} are i.i.d. when conditioned on y and (C.48)

follows from manipulations similar to those used for (C.36).

C.4 Proof of Proposition 3

Here we prove Proposition 3. Recall from (C.23) that x̂mmse ≜ E{x|y} and

emmse ≜ x− x̂mmse. To reduce clutter, we will abbreviate emmse by e in this appendix.

Also, for true-posterior samples x̂i ∼ px|y(·|y), we define

êi ≜ x̂i − x̂mmse. (C.49)
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Then using x̂(P ) ≜ 1
P

∑P
i=1 x̂i and from EP from (2.20), we have

EP = E{∥x̂(P ) − x∥2|y} (C.50)

= E{∥( 1
P

∑P
i=1 x̂i)− x∥2|y} (C.51)

= E{∥ 1
P

∑P
i=1(x̂i − x)∥2|y} (C.52)

= 1
P 2 E{∥

∑P
i=1(x̂i − x̂mmse + x̂mmse − x)∥2|y} (C.53)

= 1
P 2 E{∥

∑P
i=1(êi − e)∥2|y} (C.54)

= 1
P 2 E{

∑P
i=1(êi − e)H

∑P
j=1(êj − e)|y} (C.55)

= 1
P 2

∑P
i=1

∑P
j=1 E{(êi − e)H(êj − e)|y} (C.56)

= 1
P 2

∑P
i=1 E{(êi − e)H(êi − e)|y}+ 1

P 2

∑P
i=1

∑
j ̸=i E{(êi − e)H(êj − e)|y}

(C.57)

= 1
P 2

∑P
i=1

[
E{∥êi∥2|y} − 2ReE{êH

i e|y}+ E{∥e∥2|y}
]

+ 1
P 2

∑P
i=1

∑
j ̸=i Re

[
E{êH

i êj|y} − E{êH
i e|y} − E{eHêj|y}+ E{∥e∥2|y}

]
(C.58)

= 1
P 2

∑P
i=1 E{∥êi∥2|y}+ 1

P
E{∥e∥2|y}+ P (P−1)

P 2 E{∥e∥2|y}, (C.59)

where certain terms vanished because the i.i.d. and zero-mean properties of {e, ê1, . . . , êP}

imply

E{êH
i êj|y} = E{êi|y}H E{êj|y} = 0 (C.60)

E{êH
i e|y} = E{êi|y}H E{e|y} = 0 (C.61)

E{eHêj|y} = E{e|y}H E{êj|y} = 0. (C.62)

Finally, note that E{∥e∥2|y} = Emmse from (C.23). Furthermore, because {x, x̂1, . . . , x̂P}

are independent samples of px|y(·|y) under the assumptions of Proposition 3, we have

E{∥e∥2|y} = E{∥êi∥2|y} and so (C.59) becomes

EP =
1

P 2

P∑
i=1

Emmse +
1

P
Emmse +

P (P − 1)

P 2
Emmse =

P + 1

P
Emmse. (C.63)
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This result holds for any P ≥ 1, which implies the ratio

E1
EP

=
2P

P + 1
. (C.64)

C.5 Proof of Theorem 4

To prove Theorem 4, we begin by writing the key FIRE steps with explicit iteration

index n ≥ 1:

x[n] = d(r[n], σ[n]) (C.65)

x̂[n] =

(
A⊤A+

σ2
w

ν[n]
I

)−1(
A⊤y +

σ2
w

ν[n]
x[n]

)
(C.66)

σ2[n+1] = max{σ2[n]/ρ, ν[n]} (C.67)

λi[n] = σ2[n+1]− (s2i /σ
2
w + 1/ν[n])−1, i = 1, . . . , d (C.68)

n[n] = V Diag(λ[n])1/2ε[n], ε[n] ∼ N (0, I) (C.69)

r[n+1] = x̂[n] + n[n] (C.70)

Our proof uses induction. By the assumptions of the theorem, we know that there

exists an iteration n (in particular n = 1) for which r[n] = x0 + σ[n]ϵ[n] with

ϵ[n] ∼ N (0, I) and finite σ[n]. Then due to the denoiser assumption, we know that

x[n] = x0 −
√

ν[n]e[n] with e[n] = N (0, I) and known ν[n] < σ2[n]. We assume that

this value of ν[n] is used in lines (C.66)-(C.68). Using these results and (4.4), we can

rewrite (C.66) as

x̂[n] =

(
A⊤A+

σ2
w

ν[n]
I

)−1(
A⊤(Ax0 + σww

)
+

σ2
w

ν[n]

(
x0 −

√
ν[n]e[n]

))
(C.71)

= x0 +

(
A⊤A+

σ2
w

ν[n]
I

)−1(
σwA

⊤w − σ2
w√
ν[n]

e[n]

)
∼ N (x0,C[n]) (C.72)
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for

C[n] ≜

(
A⊤A+

σ2
w

ν[n]
I

)−1(
σ2
wA

⊤A+
σ4
w

ν[n]
I

)(
A⊤A+

σ2
w

ν[n]
I

)−1

=

(
1

σ2
w

A⊤A+
1

ν[n]
I

)−1

(C.73)

by leveraging the independent-Gaussian assumption on e[n]. From this and (C.68)-

(C.69), we can then deduce

n[n] ∼ N (0,Σ[n]) with Σ[n] ≜ V Diag(λ[n])V ⊤ = σ2[n+1]I −C[n] (C.74)

so that, from (C.70),

r[n+1] ∼ N (x0,C[n] +Σ[n]) = N (x0, σ
2[n+1]I) (C.75)

⇔ r[n+1] = x0 + σ[n+1]ϵ[n+1], ϵ[n+1] ∼ N (0, I). (C.76)

Thus, by induction, if r[n] = x0 + σ[n]ϵ[n] with ϵ[n] ∼ N (0, I) holds at n = 1, then

it holds at all n > 1.

Recall that the theorem also assumed that ν[n] < σ2[n] for all n. Thus, there

exists a ρ > 1 for which σ2[n]/ρ > ν[n] for all n, for which we can rewrite (C.67) as

σ2[n+1] = σ2[n]/ρ ∀n. (C.77)

Consequently, for any iteration n ≥ 1 we can write

σ2[n] = σ2[1]/ρn−1 = σ2
init/ρ

n−1. (C.78)

Finally, because the error covariance on x̂[n] obeys

C[n] =

(
1

σ2
w

A⊤A+
1

ν[n]
I

)−1

< ν[n]I < σ2[n]I =
σ2
init

ρn−1
I (C.79)

we see that the error variance in x̂[n] decreases exponentially with n and thus x̂[n]

converges to the true x0.

105



Appendix D: Implementation Details

D.1 Conditional Fréchet Inception Distance

With the Gaussian approximation described in Sec. 2.3.1, where px|y and px̂|y are

approximated by N (µx|y,Σxx|y) and N (µx̂|y,Σx̂x̂|y), respectively, the CWD in (2.24)

reduces to

CFID ≜ Ey

{
∥µx|y − µx̂|y∥22 + tr

[
Σxx|y +Σx̂x̂|y − 2

(
Σ

1/2
xx|yΣx̂x̂|yΣ

1/2
xx|y
)1/2]}

. (D.1)

The values in (D.1) are computed using

µx|y = µx +ΣxyΣ
−1
yy (y − µy) (D.2)

Σxx|y = Σxx −ΣxyΣ
−1
yy Σ

⊤
xy (D.3)

µx̂|y = µx̂ +Σx̂yΣ
−1
yy (y − µy) (D.4)

Σx̂x̂|y = Σx̂x̂ −Σx̂yΣ
−1
yy Σ

⊤
x̂y. (D.5)

Plugging (D.2)-(D.5) into (D.1), the CFID can be written as [80, Lemma 2]:

CFID = ∥µx − µx̂∥22 + tr
[
(Σxy −Σx̂y)Σ

−1
yy (Σxy −Σx̂y)

⊤
]

+ tr
[
Σxx|y +Σx̂x̂|y − 2

(
Σ

1/2
xx|yΣx̂x̂|yΣ

1/2
xx|y
)1/2]

, (D.6)

where Σ−1
yy is typically implemented using a pseudo-inverse.
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We now detail how the means and covariances in (D.6) are computed. We start

with a dataset {(xt,yt)}nt=1 of truth/measurement pairs. For each yt, we generate a

set of P posterior samples {x̂ti}Pi=1. We merge these samples with P repetitions of

xt and yt to obtain {(xti,yti, x̂ti)}Pi=1 for t = 1 . . . n. These terms are processed by a

feature-generating network to yield the feature embeddings {(xti,yti
, x̂ti)}Pi=1, which

are then packed into matrices X, Y , and X̂ with Pn rows. We used the VGG-16

feature-generating network [77] for our MRI experiments, since [46] found that it gave

results that correlated much better with radiologists’ perceptions, while we used the

standard Inception-v3 network [91] for our inpainting experiments. The embeddings

are then used to compute the sample-mean values

µx ≜ 1
Pn

1⊤X, µy ≜ 1
Pn

1⊤Y , µx̂ ≜ 1
Pn

1⊤X̂. (D.7)

We then subtract the sample mean from each row of X, Y , and X̂ to give the zero-

mean embedding matrices Xzm ≜ X − 1µ⊤
x , Y zm ≜ Y − 1µ⊤

y , and X̂zm ≜ X̂ − 1µ⊤
x̂ ,

which are then used to compute the sample covariance matrices

Σxx ≜ 1
Pn

X⊤
zmXzm, Σyy ≜ 1

Pn
Y ⊤

zmY zm, Σx̂x̂ ≜ 1
Pn

X̂
⊤
zmX̂zm (D.8a)

Σxy ≜ 1
Pn

X⊤
zmY zm, Σx̂y ≜ 1

Pn
X̂

⊤
zmY zm. (D.8b)

We plug the sample statistics from (D.7)-(D.8) into (D.2)-(D.5), which yields the

statistics needed to compute the CFID in (D.6). In [80], the authors use P = 1 in all

of their experiments. To be consistent with how we evaluated the other metrics, we

use P = 32 unless otherwise noted.
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D.2 Implementation Details for Chapter 2

The code for our model can be found here: https://github.com/matt-bendel/

rcGAN.

D.2.1 Accelerated MRI

cGAN training. At each training iteration, our cGAN’s generator takes in

nbatch measurement samples yt and Prc code vectors for every yt, and performs an

optimization step on the loss

LG(θ) ≜ βadvLadv(θ,ϕ) + L1,Prc(θ)− βSDLSD,Prc(θ), (D.9)

where by default we use βadv = 1e-5, nbatch = 36, Prc = 2, and update βSD via (2.23)

using Pval = 8. Then, using the Prcnbatch generator outputs, our cGAN’s discriminator

performs an optimization step on the loss

LD(ϕ) = −Ladv(θ,ϕ) + α1Lgp(ϕ) + α2Ldrift(ϕ), (D.10)

with gradient penalty Lgp from [31]. As per [42], Ldrift is a drift penalty, α1 = 10,

α2 = 0.001, and one discriminator update was used per generator update. The models

were trained for 100 epochs using the Adam optimizer [50] with a learning rate of 1e-3,

β1 = 0, and β2 = 0.99, as in [42]. Running PyTorch on a server with 4 Tesla A100

GPUs, each with 82 GB of memory, the training of an MRI cGAN took approximately

1 day.

Adler and Öktem’s cGAN [4] uses generator loss βadvLadler
adv (θ,ϕ), where Ladler

adv (θ,ϕ)

was described in (2.5), and discriminator loss −Ladler
adv (θ,ϕ) + α1Lgp(ϕ) + α2Ldrift(ϕ)

with the values of α1 =10, α2 =0.001, and βadv =1, as in the original paper.
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Ohayon et al.’s pscGAN [64] uses generator loss βadvLadv(θ,ϕ) + L2,Prc(θ), where

L2,Prc(θ) was described in (2.14), and discriminator loss −Ladv(θ,ϕ) + α1Lgp(ϕ) +

α2Ldrift(ϕ) with the values α1 =10, α2 =0.001, and βadv =1e-5. We modify βadv to

re-balance the loss due to an increased magnitude of our discriminator’s outputs.

All three cGANs used the same generator and discriminator architectures (detailed

below), except that Adler and Öktem’s discriminator used extra input channels to

facilitate the 3-input loss Ladler
adv (θ,ϕ) from (2.5).

cGAN Generator Architecture. For our MRI experiments, we take inspiration

from the U-Net architecture from [74], using it as the basis for the cGAN generators.

The primary input y is concatenated with the code vector z and fed through the

U-Net. The network consists of 4 pooling layers with 128 initial channels. However,

instead of pooling, we opt to use convolutions with kernels of size 3 × 3, “same”

padding, and a stride of 2 when downsampling. Likewise, we upsample using transpose

convolutions, again with kernels of size 3× 3, “same” padding, and a stride of 2. All

other convolutions utilize kernels of size 3× 3, “same” padding, and a stride of 1.

Within each encoder and decoder layer we include a residual block, the architecture

of which can be found in [4]. We use instance-norm for all normalization layers and

parametric ReLUs as our activation functions, in which the network learns the optimal

“negative slope.” Finally, we include 5 residual blocks at the base of the U-Net, in

between the encoder and decoder. This is done in an effort to artificially increase the

depth of the network and is inspired by [25]. Our generator has 86 734 334 trainable

parameters.

cGAN Discriminator Architecture. Our discriminator is a standard CNN

with 6 layers and 1 fully-connected layer. In the first 3 layers, we use convolutions
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with kernels of size 3× 3, “same” padding. We reduce spatial resolution with average

pooling, using 2×2 kernels with a stride of 2. We use batch-norm as our normalization

layer and leaky ReLUs with a “negative-slope” of 0.2 as our activation functions. The

network outputs an estimated Wasserstein score for the whole image.

E2E-VarNet. For the Sriram et al.’s E2E-VarNet [89], we use the same training

procedure and hyperparameters outlined in [39] other than replacing the sampling

pattern with the GRO undersampling mask. As in [39], we use the SENSE-based

coil-combined image as the ground truth instead of the RSS image.

Langevin Approach. For Jalal et al.’s MRI approach [39], we do not modify the

original implementation from [38] other than replacing the default sampling pattern

with the GRO undersampling mask. We generated 32 samples for 72 different test

images using a batch-size of 4, which took roughly 6 days. These samples were

generated on a server with 4 NVIDIA V100 GPUs, each with 32 GB of memory. We

used 4 samples per batch (and recorded the time to generate 4 samples in Table 2.1)

because the code from [38] is written to generate one sample per GPU.

D.2.2 CelebA-HQ Inpainting

Our cGAN. For our generator and discriminator, we use the CoModGAN

networks from [111]. Unlike CoModGAN, however, we train our cGAN with L1,SD,Prc

regularization and we do not use MBSD at the discriminator. We use the same

general training and testing procedure described in Sec. 2.3.2, but with βadv = 5e-3,

nbatch = 100, and 110 epochs of cGAN training. Running PyTorch on a server with 4

Tesla A100 GPUs, each with 82 GB of memory, the training takes approximately 2

days.
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CoModGAN. We use the PyTorch implementation of CoModGAN from [103]

and train the model to inpaint a 128× 128 centered square on 256× 256 CelebA-HQ

images. The total training time on a server with 4 NVIDIA A100 GPUs, each with

82 GB of memory, is roughly 2 days.

Score-Based SDE. For the inpainting experiment in Sec. 2.3.3, we compare

against Song et al.’s more recent SDE technique [87], for which we use the publicly

available pretrained weights, the suggested settings for the 256 × 256 CelebA-HQ

dataset, and the code from the official PyTorch implementation [88]. We generate 32

samples for all 1 000 images in our test set, using a batch-size of 20 and generating 32

samples for each batch element concurrently. The total generation time on a server

with 4 NVIDIA A100 GPUs, each with 82 GB of memory, is roughly 9 days.

D.3 Implementation Details for Chapter 3

In each experiment, all cGANs were trained using the Adam optimizer with a

learning rate of 10−3, β1 = 0, and β2 = 0.99 as in [42]. The code for our model can be

found here: https://github.com/matt-bendel/pcaGAN.

D.3.1 Synthetic Gaussian Data

Algorithm 7 captures how we construct the Gaussian priors used in Sec. 3.3.1.

We begin with dimension d = 100, generating random mean µ
(100)
x ∈ R100 and

eigenvalues {λ(100)
k }100k=1. To construct the eigenvectors {v(100)

k }100k=1, we perform a QR

decomposition on a 100×100 matrix with i.i.d. N (0, 1) entries and set v
(100)
k as the kth

column of Q. For each remaining d ∈ {90, 80, . . . , 10}, we construct µ
(d)
x , {λ(d)

k }, and

u
(d)
k by truncating the previous quantities to ensure some level of continuity across d.
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Algorithm 7 Gaussian prior generation

1: µ
(100)
x ∼ N (0, I100)

2: λ̃
(100)
k ∼ N (0, 1) for k = 1, . . . , 100

3: λ
(100)
k = |λ̃(100)

k | for k = 1, . . . , 100

4: u
(100)
k ∼ N (0, I100) for k = 1, . . . , 100

5: [Q,R] = QRdecomp([u
(100)
1 u

(100)
2 . . .u

(100)
100 ])

6: v
(100)
k = [Q]:k for k = 1, . . . , 100

7:

8: for d = 90, 80, . . . , 10 do
9: µ

(d)
x = [µ

(100)
x ]0:d

10: λ
(d)
k = λ

(100)
k for k = 1, . . . , d

11: u
(d)
k = v

(100)
k,0:d for k = 1, . . . , d

12: [Q,R] = QRdecomp([u
(d)
1 u

(d)
2 . . .u

(d)
d ])

13: v
(d)
k = [Q]:k for k = 1, . . . , d

14: end for

D.3.2 Synthetic Gaussian Recovery

cGAN training. We choose βadv = 10−5, nbatch = 64, Prc = 2, and train for

100 epochs for both rcGAN and pcaGAN. Running PyTorch on a server with 4 Tesla

A100 GPUs, each with 82 GB of memory, the cGAN training for d = 100 takes

approximately 8 hours, with training time decreasing with smaller d. For pcaGAN, we

choose K = d for each d in this experiment (unless otherwise noted) and βpca = 10−2.

cGAN architecture. We exploit the Gaussian nature of the problem, construct-

ing Gθ with two dense layers; one which takes in y as input and one which takes in z

as input. The output of each layer is added, yielding x̂. Similarly, Dϕ is comprised of

a single dense layer which takes in the concatenation of x / x̂ and y and outputs a

scalar. We use this architecture for both rcGAN and pcaGAN. Note that there is no

listed license for rcGAN.
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NPPC. For NPPC, we use the suggested hyperparameters from [61] and opt to

train the MMSE network before training NPPC. We use the suggested architectures

from their Gaussian denoising experiment and train for 100 epochs with nbatch = 64.

We leverage the authors’ implementation in [62], modifying it for this Gaussian

problem. There is no listed license for NPPC.

D.3.3 MNIST Denoising

The MNIST dataset is available under the GNU general public license, which we

respect through our use.

cGAN training. We choose βadv = 10−5, nbatch = 64, Prc = 2, and train for

125 epochs for both rcGAN and pcaGAN. Running PyTorch on a server with 4 Tesla

A100 GPUs, each with 82 GB of memory, the cGAN training for d = 100 takes

approximately 8 hours, with training time decreasing with smaller d. For pcaGAN, we

train two models, one with K = 5 and one with K = 10. In both cases, βpca = 10−1,

Eevec = 25, and Eeval = 50.

cGAN architecture. For both cGANs, the generator is the standard U-Net

which takes in the concatenation of y and code z. The network consists of 3 pooling

layers and 32 initial channels. The convolutions use a kernel of size 3× 3, instance

normalization, and leaky ReLU activations with a negative slope of 0.1. For the

encoder portion of the U-Net, we use max pooling with a kernel size of 2× 2 to reduce

spatial resolution by a factor of 2. For the decoder portion of the U-Net, we use

nearest-neighbor interpolation to increase spatial resolution by a factor of 2. The

discriminator is simply the encoder portion of the U-Net with an additional dense
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layer appended to map the U-Net’s latent space to a scalar output. Note that there is

no listed license for rcGAN.

NPPC. For NPPC, we do not modify the authors’ implementation in [62] in

any way. We first train the MMSE reconstruction network and then train the NPPC

network. There is no listed license for NPPC.

D.3.4 Accelerated MRI

For our MRI experiments, we use the fastMRI dataset which is available under

the MIT license, which we respect through our use.

cGAN training. We choose βadv = 10−5, βpca = 10−2, nbatch = 2, Prc = 2,

K = 1, Eevec = 25, and Eeval = 50 for pcaGAN. For rcGAN, pscGAN , and Adler’s

cGAN, we use the hyperparameters and training procedure described in Sec. 2.3.2.

All models were trained for 100 epochs using the Adam optimizer [50] with a learning

rate of 10−3, β1 = 0, and β2 = 0.99, as in [42]. Running PyTorch on a server with

4 Tesla A100 GPUs, each with 82 GB of memory, the training of each MRI cGAN

took approximately 1 day. Note that there is no listed license for rcGAN, pscGAN, or

Adler and Öktem’s cGAN.

cGAN architecture. All four cGANs used the same generator and discriminator

architectures described in Sec. 2.3.2, except that Adler and Öktem’s discriminator

used extra input channels to facilitate the 3-input loss.

E2E-VarNet. For the Sriram et al.’s E2E-VarNet [89], we use the same training

procedure and hyperparameters outlined in [39] with modification to the GRO sampling

pattern. As in [39], we use the SENSE-based coil-combined image as the ground truth
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instead of the RSS image. The E2E-VarNet is available under the MIT license, which

we respect.

Langevin approach. For Jalal et al.’s MRI approach [39], we do not modify the

authors’ implementation from [38] other than replacing the default sampling pattern

with the GRO sampling mask. We borrow both generated samples and results from

Chapter 2. The authors’ code is available under the MIT license, which we respect.

D.3.5 FFHQ Inpainting

For our inpainting experiment, we use the FFHQ dataset which is available under

the Creative Commons BY-NC-SA 4.0 license, which we respect through our use.

cGAN training. We choose βadv = 5 × 10−3, βpca = 10−3, nbatch = 5, Prc = 2,

K = 2, Eevec = 25, and Eeval = 50 for pcaGAN. Running PyTorch on a server with

4 Tesla A100 GPUs, each with 82 GB of memory, the training of our cGAN took

approximately 1.5 days.

cGAN architecture. As in Chapter 2, we use the CoModGAN networks from

[111] which extend the StyleGAN2 [45] network. The StyleGAN2 architecture is

available under the NVIDIA Source Code License, which we respect.

rcGAN. We follow the training procedure outlined in Chapter 2, only modifying

the inpainting mask to be random. The total training time on a server with 4 NVIDIA

A100 GPUs, each with 82 GB of memory, is roughly 1 day. There is no listed license

for rcGAN.

pscGAN. We use the same training procedure outlined in Chapter 2, modifying

the inpainting masks to be random and using the L2,P objective described briefly

in Sec. 4.1 with P = 8. The total training time on a server with 4 NVIDIA A100
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GPUs, each with 82 GB of memory, is roughly 1.5 days. There is no listed license for

pscGAN.

CoModGAN. We use the PyTorch implementation of CoModGAN from [103]

and train the model. The total training time on a server with 4 NVIDIA A100

GPUs, each with 82 GB of memory, is roughly 1 day. There is no listed license for

CoModGAN, beyond the NVIDIA Source Code License.

Diffusion Methods

For all three diffusion methods, we use the pretrained weights from [17].

DPS. We use the suggested settings for the 256 × 256 FFHQ dataset and the

code from the official PyTorch implementation [16]. We found the LPIPS-minimizing

step-size ζ via grid search over a 1000 image validation set. We generate 1 sample for

all 20 000 images in our test set, using a batch-size of 1 and 1000 NFEs. The total

generation time on a server with 4 NVIDIA A100 GPUs, each with 82 GB of memory,

is roughly 9 days. There is no listed license for DPS.

DDNM. We use the code from the official PyTorch implementation [95]. We

generate 1 sample for all 20 000 images in our test set, using a batch-size of 1 and 100

NFEs. The total generation time on a server with 4 NVIDIA A100 GPUs, each with

82 GB of memory, is roughly 1.5 days. There is no listed license for DDNM.

DDRM. We use the code from the official PyTorch implementation [49]. We

generate 1 sample for all 20 000 images in our test set, using a batch-size of 1 and 20

NFEs. The total generation time on a server with 4 NVIDIA A100 GPUs, each with

82 GB of memory, is roughly 5.5 hours. There is no listed license for DDRM.
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D.4 Implementation Details for Chapter 4

D.4.1 Speeding up CG

In this section, we describe a small modification to FIRE that can help to speed

up the CG step. When CG is used to solve (4.10), its convergence speed is determined

by the condition number of A⊤A+ (σ2
w/ν)I [56]. Thus CG can converge slowly when

σ2
w/ν is small, which can happen in early DDfire iterations. To speed up CG, we

propose to solve (4.10) using σ̂w in place of σw, for some σ̂w > σw. Since the condition

number of A⊤A+ (σ̂2
w/ν)I is at most νs2max/σ̂

2
w + 1, we can guarantee a conditional

number of at most 10 001 by setting

σ̂2
w = νs2max max{10−4, σ2

w/(νs
2
max)}. (D.11)

Although using σ̂w > σw in (4.10) will degrade the MSE of x̂, the degradation is

partially offset by the fact that less noise will be added when renoising r. In any case,

the modified (4.10) can be written as

x̂ = (A⊤A/σ̂2
w + I/ν)−1(A⊤y/σ̂2

w + x/ν) (D.12)

= (A⊤A/σ̂2
w + I/ν)−1(A⊤[Ax0 + σww]/σ̂2

w + [x0 −
√
νe]/ν) (D.13)

= x0 + (A⊤A/σ̂2
w + I/ν)−1(A⊤wσw/σ̂

2
w − e/

√
ν), (D.14)

in which case x̂ ∼ N (x0,C) with covariance

C = (A⊤A/σ̂2
w + I/ν)−1

(
A⊤Aσ2

w/σ̂
4
w + I/ν

)
(A⊤A/σ̂2

w + I/ν)−1 (D.15)

=
(
V S⊤SV ⊤/σ̂2

w + I/ν
)−1(

V S⊤SV ⊤σ2
w/σ̂

4
w + I/ν

)(
V S⊤SV ⊤/σ̂2

w + I/ν
)−1

(D.16)

= V Diag(γ)V ⊤ for γi =
s2iσ

2
w/σ̂

4
w + 1/ν

[s2i /σ̂
2
w + 1/ν]2

. (D.17)

117



Figure D.1: For FFHQ Gaussian deblurring, the left plot shows the eigenspectrum
of the error covariance Cov{x−x0} with either σ̂2

w from (D.11) (if CG speedup) or
σ̂2
w = σ2

w (if no CG speedup), as well as the eigenspectrum of the target error covariance
σ2I to aim for when renoising. The right plot shows the eigenvalues of the renoised
error covariance Cov{r−x0} for the ideal case when Σ is used (possible with SVD)

and the case when Σ̂ from (4.16) is used (if no SVD), with either σ̂2
w or σ2

w. Here we
used σ2

w = 10−6, ν = 0.16 (corresponding to the first FIRE iteration of the first DDIM
step), and ρ = 35.7 (corresponding to the example in Fig. 4.2).

The desired renoising variance then becomes

Σ = σ2I −C = V Diag(λ)V ⊤ for λi = σ2 − s2iσ
2
w/σ̂

4
w + 1/ν

[s2i /σ̂
2
w + 1/ν]2

(D.18)

and we can generate the colored noise c via (4.15) if the SVD is practical. If not, we

approximate Σ by

Σ̂ = (σ2 − ν)I + ξA⊤A with ξ =
1

s2max

(
ν − s2maxσ

2
w/σ̂

4
w + 1/ν

[s2max/σ̂
2
w + 1/ν]2

)
(D.19)

and generate the colored noise c via (4.18). It is straightforward to show that ξ ≥ 0

whenever σ̂w ≥ σw, in which case σ2 ≥ ν guarantees that Σ̂ is a valid covariance

matrix. Figure D.1 shows the close agreement between the ideal and approximate

Σ̂-renoised error spectra both when σ̂w = σw and when σ̂w > σw.
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D.4.2 Inverse Problems

For the linear inverse problems, the measurements were generated as

y = Ax0 + σww, w ∼ N (0, I) (D.20)

with appropriate A. For box inpainting, Gaussian deblurring, and super-resolution

we used the A and A⊤ implementations from [49]. For motion deblurring, we

implemented our own A and A⊤ with reflect padding. All methods used these

operators implementations except DiffPIR, which used the authors’ implementations.

Motion-blur kernels were generated using [12].

D.4.3 Evaluation Protocol

For the linear inverse problems, we run each method once for each measurement

y in the 1000-sample test set and compute average PSNR, average LPIPS, and FID

from the resulting recoveries.

D.4.4 Unconditional Diffusion Models

For the FFHQ experiments, all methods used the pretrained model from [17]. For

the ImageNet experiments, all methods used the pretrained model from [26]. In both

cases, T = 1000.

D.4.5 Recovery Methods

DDfire. Our Python/Pytorch codebase is a modification of the DPS codebase from

[16] and is available at https://github.com/matt-bendel/DDfire. For all but one

row of the ablation study in Table 4.1 and the dashed line in Fig. 4.4, we ran DDfire

without an SVD and thus with the approximate renoising in (4.18).
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Table D.1: Hyperparameter values used for DDfire.

Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4× Super-resolution

Dataset σw K δ K δ K δ K δ

FFHQ 0.05 100 0.50 650 0.60 500 0.20 650 0.60
ImageNet 0.05 100 0.50 500 0.20 500 0.20 650 0.60

For the linear inverse problems, unless noted otherwise, we ran DDfire for 1000

NFEs using ηddim = 1.5, and we did not use stochastic denoising (i.e., ν̂ϕ(σ) = 0 ∀σ in

Alg. 2), as suggested by our ablation study. We tuned the (K, δ) hyperparameters to

minimize LPIPS on a 100-sample validation set, yielding the parameters in Table D.1.

For the runtime results in Fig. 4.4, we used ηddim = 1.0 for Ntot ∈ {50, 100, 200, 500}

and ηddim = 0 for Ntot = 20, and we used K = NFE/2 and δ = 0.2 for all cases. For the

ν-estimation step in Alg. 2, we used ∥A∥2F ≈ 1
L

∑L
l=1 ∥Awl∥2 with i.i.d. wl ∼ N (0, I)

and L = 25.

DDRM. We ran DDRM for 20 NFEs using the authors’ implementation from [49]

with minor changes to work with our codebase.

DiffPIR. We ran DiffPIR for 20 NFEs using the authors’ implementation from [113]

without modification. Hyperparameters were set according to the reported values in

[114].

ΠGDM. We ran ΠGDM for 100 NFEs. Since the authors do not provide a ΠGDM

implementation for noisy inverse problems in [63], we coded ΠGDM ourselves in

Python/PyTorch. With problems for which an SVD is available, we computed
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(AA⊤+ζkI)
−1 using the efficient SVD implementation of A from the DDRM codebase

[49], and otherwise we used CG.

DDS. We ran DDS for 100 NFEs. We leveraged the authors’ implementation in [19]

to reimplement DDS in our codebase. We tuned the DDS regularization parameter

γdds via grid search and used ηddim = 0.8 and 50 CG iterations.

DPS. For the linear inverse problems, we ran DPS for 1000 NFEs using the authors’

implementation from [16] without modification, using the suggested tuning from [17,

Sec. D.1].

RED-diff. We ran RED-diff for 1000 NFEs using the authors’ implementation from

[63], with minor changes to work with our codebase. We tuned the RED-diff learning

rate, λ, and data fidelity weight vt to minimize LPIPS with a 100-image validation set.

DAPS. We ran DAPS for 1000 NFEs using the authors’ implementation from [104],

with minor changes to work in our codebase. The tuning parameters were set as in

[105].

D.4.6 Compute

All experiments were run on a single NVIDIA A100 GPU with 80GB of memory.

The runtime for each method on the GPU varies, as shown in Figure 4.4.
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D.4.7 DDfire Hyperparameter Tuning Curves

Figures D.2–D.5 show PSNR and LPIPS over the parameter gridsK ∈ {10, 20, 50, 100,

200, 500, 1000} and δ ∈ {0.05, 0.1, 0.2, 0.5, 0.75} for box inpainting, Gaussian deblur-

ring, motion deblurring, and 4x super resolution, respectively, using 50 ImageNet

validation images. While there are some noticeable trends, DDfire is relatively sensitive

to hyperparemeter selection, particularly in cases where the degradation is not global

(e.g., in inpainting).
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Figure D.2: PSNR and LPIPS tuning results for box inpainting with 50 ImageNet
validation images.

Figure D.3: PSNR and LPIPS tuning results for gaussian deblurring with 50 ImageNet
validation images.
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Figure D.4: PSNR and LPIPS tuning results for motion deblurring with 50 ImageNet
validation images.

Figure D.5: PSNR and LPIPS tuning results for 4x super resolution with 50 ImageNet
validation images.
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Appendix E: Additional Reconstruction Plots

Here, we present some additional reconstruction plots for experiments in Chapters

2 and 3.
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E.1 Additional Reconstructions for Chapter 2

E.1.1 MRI at Acceleration R = 4
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Figure E.1: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P ) with P = 2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.
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Figure E.2: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P ) with P = 2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.
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E.1.2 MRI at Acceleration R = 8
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Figure E.3: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P ) with P = 2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.
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Figure E.4: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P ) with P = 2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.
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E.1.3 Inpainting
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Figure E.5: Example of inpainting a 128×128 square on a 256×256 resolution CelebA-
HQ image.
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Figure E.6: Example of inpainting a 128×128 square on a 256×256 resolution CelebA-
HQ image.
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Figure E.7: Example of inpainting a 128×128 square on a 256×256 resolution CelebA-
HQ image.
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Figure E.8: Example of inpainting a 128×128 square on a 256×256 resolution CelebA-
HQ image.
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E.2 Additional Reconstructions for Chapter 3

E.2.1 MNIST Denoising

(a) pcaGAN (K = 10)

v̂1 v̂2 v̂3 v̂4 v̂5

y

α=−3 α=−2 α=0 α=2 α=3

x
µ̂

x|
y

µ̂
x|
y
+
α
v̂
4

µ̂
x|
y
+
α
v̂
1

(b) NPPC

v̂1 v̂2 v̂3 v̂4 v̂5

y

α=−3 α=−2 α=0 α=2 α=3

x
µ̂

x|
y

µ̂
x|
y
+
α
v̂
4

µ̂
x|
y
+
α
v̂
1

Figure E.9: For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors {v̂k}, and
two perturbations of µ̂x|y.
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(a) pcaGAN (K = 10)
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Figure E.10: For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors {v̂k}, and
two perturbations of µ̂x|y.
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(a) pcaGAN (K = 10)
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(b) NPPC
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Figure E.11: For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean µ̂x|y, principal eigenvectors {v̂k}, and
two perturbations of µ̂x|y.
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E.2.2 MRI at Acceleration R = 4
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Figure E.12: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P )

with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.
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Figure E.13: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P )

with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.
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E.2.3 MRI at Acceleration R = 8
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Figure E.14: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P )

with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.
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Figure E.15: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: x̂(P ) with P = 32, Row three: x̂(P ) with P = 4, Row four: x̂(P )

with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.
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E.2.4 Inpainting
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Figure E.16: Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image.
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Figure E.17: Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image.
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Figure E.18: Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image.
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Figure E.19: Example of inpainting a randomly generated mask on a 256×256 FFHQ
face image.
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