Posterior Sampling Methods for Imaging Inverse Problems

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State
University

By

Matthew Bendel, B.S.

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2025

Dissertation Committee:

Prof. Philip Schniter, Advisor
Prof. Rizwan Ahmad, Advisor

Prof. Emre Ertin

© Copyright by
Matthew Bendel

2025

Abstract

In image recovery, one seeks to reconstruct an image from degraded measurements
that are distorted, incomplete, and/or noise-corrupted. Often times, image recovery is
posed as finding a single “best” reconstruction, which is known as point estimation.
Due to the ill-posed nature of the problem, however, there can exist many images that
are consistent with the measurements and the prior knowledge of the true image. In
the Bayesian framework, posterior sampling can be used to explore this vast solution
space by generating many probable reconstructions. This allows for uncertainty
quantification and/or navigation of the perception-distortion tradeoff.

In the first two chapters of the dissertation, we focus on posterior sampling with
conditional generative adversarial networks (cGANs). Typically, cGANs are regarded
as producing high quality samples that have low diversity. Therefore, in the first
chapter of the dissertation, we propose rcGAN which solves the lack-of-diversity issue
via a novel regularization that is comprised of a supervised-L1 loss plus an adaptively
weighted standard-deviation (SD) reward. We apply rcGAN to box inpainting and
magnetic resonance (MR) image recovery, demonstrating its advantages over existing
c¢GANs and contemporary diffusion methods.

In the second chapter of the dissertation we propose pcaGAN, an improvement
over rcGAN with a novel regularization that aims for correctness in the K principal
components of the posterior covariance matrix in addition to the posterior mean

i

and trace-covariance. We demonstrate pcaGAN’s effectiveness on MNIST denoising,
large-scale random inpainting, and MRI recovery, and show its advantages over other
c¢GANs (including rcGAN), as well as contemporary diffusion methods.

For the third chapter of the dissertation, we shift our focus to diffusion models due
to their unmatched versatility. Doing so requires approximating the gradient of the
measurement-conditional score function in the diffusion reverse process. We show that
the approximations produced by existing methods are relatively poor, especially early
in the reverse process, and so we propose a new approach that iteratively reestimates
and “renoises” the estimate several times per diffusion step. This iterative approach,
which we call Fast Iterative REnoising (FIRE), injects colored noise that is shaped
to ensure that the pre-trained diffusion model always sees white noise, in accordance
with how it was trained. We then embed FIRE into the DDIM reverse process and
show that the resulting “DDfire” offers state-of-the-art accuracy and runtime on box
inpainting, Gaussian and motion deblurring, and 4x super-resolution.

Finally, we will propose some future research directions and share concluding

thoughts.

1l

To the love of my life, Allison.

v

Acknowledgments

This work was supported in part by the National Institutes of Health under grant
R0O1-EB029957. T am deeply grateful for this support, which made much of this
research possible.

Earning a Ph.D. has been one of the most challenging yet rewarding experiences
of my life. Along the way, I have been surrounded by people who supported me
through difficulties and celebrated with me in moments of triumph. I want to take
this opportunity to recognize those who shared this journey with me and to express
my heartfelt gratitude.

First and foremost, I thank my advisors, Professors Philip Schniter and Rizwan
Ahmad, for their outstanding mentorship, guidance, and encouragement. 1 feel
incredibly fortunate to have learned from two brilliant researchers who consistently
pushed me to grow, while showing patience when I stumbled. Your lessons will stay
with me long after this dissertation.

I am also grateful to Professor Emre Ertin for serving on both my candidacy
and dissertation committees, and to Professor Kiryung Lee for his service on my
candidacy committee as well as the excellent instruction he provided in two of my
courses. I extend thanks to all the professors I studied under at OSU over the past

9.5 years—your teaching has shaped both my research and who I am today.

To my labmates—Jeff, Saurav, and Xuan—thank you for your generosity, candor,
and collaboration. I am especially indebted to Saurav for his contributions to our
“DDfire” paper, including work completed even after graduation, and for his guidance
through candidacy and defense.

I was fortunate to spend an internship at Descript, where I had an extraordinary
experience. Thank you to my manager, Jose, and the entire generative models
team—Xingzhe, Stephen, Mithilesh, Sumukh, and Alejandro. I learned so much in
a short time (including the essential truth that all bugs are sampling bugs) and am
proud of the work we accomplished together.

Beyond academia, I owe immense gratitude to my friends and family. To all of
you: your encouragement carried me through difficult times and made this journey
far richer.

Josh, my brother—you have been with me at every step, from Club Penguin to
college roommates to standing beside me as my best man. I am grateful every day for
our bond and proud to be your brother.

Kyle, my best friend—your presence made the Ph.D. years bearable and often
joyful. From Warzone shifts to Elden Ring marathons to iceberg movie lists, you've
filled these years with memories I will always treasure.

Alex and Anthony, my friends for nearly two decades—you’ve been constants
through every phase of life. Alex, your loyalty and kindness inspire me. Anthony,
your focus and drive continue to amaze me. I cannot imagine this journey without
either of you.

To Devin, Jay, and Nate—it has been a joy growing our friendships in recent years.

Each of you has left a lasting mark on this chapter of my life.

vi

I have also been blessed with the support of extended family. Aunt Tiff, Justin,
Natalie, Aunt Lisa, and Connor — thank you. Aunt Tiff, I especially cherish our
growing closeness during my Ph.D., from movie nights to many research conversations
you patiently endured.

To my immediate family — Nana, Papa, Rick, and Adam—your love and encour-
agement have been foundational. Nana and Papa, you have always been more than
grandparents—you are additional parents, and I am profoundly lucky to have you.
Rick, you are the father I always wanted; your presence and guidance mean the world
to me. And Adam, I am proud of the man you are becoming and grateful to have you
as my brother.

I also thank my wonderful mother, Stephanie. You have always believed in me,
always pushed me to do my best, and always been there when I needed you most.
This accomplishment is as much yours as it is mine.

In more recent years, I have been grateful to see my family grow. To my in-
laws, Kelly, Jeremy, and Abby, thank you for welcoming me so warmly and for your
unwavering support.

Finally, to my wife, Allison—you are the love of my life and my greatest source
of strength. Through every challenge of this Ph.D., you stood by me, and every
joy was brighter because you were there. Earning this degree is one of my proudest
achievements, but marrying you will always be the greatest. I love you more than

words can say, and I look forward to a lifetime together.

vil

Vita

August 2017 - May 2021 B.S. Electrical and Computer Engineering,
The Ohio State University, Columbus, USA
August 2021 - present Graduate Research Associate,

Dept. of Electrical and Computer Engineering,
The Ohio State University, Columbus, USA

May 2025 - August 2025 Applied Research Scientist Intern,
Descript, San Francisco, USA

August 2025 - present Graduate Teaching Associate,
Dept. of Electrical and Computer Engineering,
The Ohio State University, Columbus, USA

Publications

Research Publications

M. Bendel, S. K. Shastri, R. Ahmad, and P. Schniter “Solving Inverse Problems
using Diffusion with Iterative Colored Renoising,” Transactions on Machine Learning
Research, August 2025.

M. Bendel, R. Ahmad, and P. Schniter, “pcaGAN: Improving Posterior-Sampling
c¢GANSs via Principal Component Regularization,” in Proc. Neural Info. Process. Syst.
Conf., December 2024.

M. Bendel, R. Ahmad, and P. Schniter, “Mask-agnostic posterior sampling MRI via
conditional GANs with guided reconstruction,” in Proc. NeurIPS Workshop on Deep
Inverse Problems, December 2023.

M. Bendel, R. Ahmad, and P. Schniter, “A regularized conditional GAN for posterior
sampling in inverse problems,” in Proc. Neural Info. Process. Syst. Conf., December
2023.

viil

Fields of Study

Major Field: Electrical and Computer Engineering

1X

2.

Table of Contents

A Regularized Conditional GAN for Posterior Sampling in Image Recovery
Problems

2.1 Background
2.2 Approach
2.2.1 Proposed Regularization: Supervised-¢; Plus SD Reward . .
2.2.2 Auto-tuning of SD Reward Weight fsp
2.3 Numerical Experiments
2.3.1 Conditional Fréchet Inception Distance
2.3.2 MRI Experiments
2.3.3 Inpainting Experiments
2.3.4 CFID Decomposition
24 Conclusion

Page
i

v

viil
X1v

Xvi

3. Improving Posterior-Sampling cGANs via Principal Component Regular-

ization e 26
3.1 Backgroundo 26
3.2 Approach 27
3.3 Numerical Experiments 32
3.3.1 Recovering Synthetic Gaussian Data 32
3.3.2 MNIST Denoising 33
3.3.3 Accelerated MRI 36
3.3.4 Large-Scale Inpainting 41
3.4 Discussion 42
3.5 Conclusion 43

4. Solving Inverse Problems using Diffusion with Iterative Colored Renoising 45

4.1 Background oo 45

4.2 Approach 48

4.2.1 Fast Iterative REnoising (FIRE) 48

4.2.2 Putting FIRE into Diffusion 54

4.2.3 Relation to Other Methods 58

4.3 Numerical Experiments 0L 59

4.3.1 Ablation Studyo 59

432 Accuracyof o?andv. 60

4.3.3 PSNR, LPIPS, and FID Results 60

4.3.4 Runtime Results, 62

4.4 Discussion 63

4.5 Conclusion 65

5. Final Thoughts 68
5.1 Final Experiment 68

5.2 Potential Future Work o000 71

5.3 Conclusion 74
Bibliography 7
Appendices 88
A. Additional Details for Inverse Problems 88
A.1 MR Imaging Details, 88

x1

A.2 Data-Consistency for Inverse Problems 89

B. Additional Diffusion Details L. 91
B.1 VP Formulation 91

B.2 DDIM Details for VP 92

B.3 DDIM Details for VE o0 94

C. Proofs and Derivations 96
C.1 Proof of Proposition 1, 96

C.2 Derivation of Proposition 2 99

C.3 Derivation of (2.19). 101

C.4 Proof of Proposition 3 102

C.5 Proof of Theorem 4., 104

D. Implementation Details L. 106
D.1 Conditional Fréchet Inception Distance 106

D.2 Implementation Details for Chapter 2 108
D.2.1 Accelerated MRI 108

D.2.2 CelebA-HQ Inpainting 110

D.3 Implementation Details for Chapter 3 111
D.3.1 Synthetic Gaussian Data 111

D.3.2 Synthetic Gaussian Recovery 112

D.3.3 MNIST Denoising 113

D.3.4 Accelerated MRI 114

D.3.5 FFHQ Inpainting 115

D.4 Implementation Details for Chapter4 117
D.4.1 Speedingup CGo 117

D.4.2 Inverse Problems 119

D.4.3 Evaluation Protocol 119

D.4.4 Unconditional Diffusion Models 119

D.4.5 Recovery Methods 119

D.4.6 Compute 121

D.4.7 DDfire Hyperparameter Tuning Curves 122

E. Additional Reconstruction Plots 125
E.1 Additional Reconstructions for Chapter 2 126
E.1.1 MRI at Acceleration R=4 126

E.1.2 MRI at Acceleration R=8 128

E.1.3 Inpaintingo o 130

xii

E.2 Additional Reconstructions for Chapter 3

BE.2.1
E.2.2
E.2.3
BE2.4

.............. 132
MNIST Denoising 132
MRI at Acceleration R =4 135
MRI at Acceleration R=8 137
Inpainting Lo L 139

xiil

List of Tables

Table

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

Average MRI results at R € {4,8}. Tested with VGG-16 features.

CFID!, FID, and APSD used 72 test samples and P =32, CFID? used
2376 test samples and P=38, and CFID? used all 14 576 samples and
P=1 . .

Average PSNR, SSIM, LPIPS, and DISTS of &, versus P for R = 4
MRI . . .

Average PSNR, SSIM, LPIPS, and DISTS of &, versus P for R = 8
MRI . . .

Average results for inpainting: FID was computed from 1000 test
images with P=32, while CFID was computed from all 30000 images
with P=1

The mean and covariance components of CFID, along with the total

CFID, for the generative models in the MRI and inpainting experiments.

For the MRI experiment, CFID! used 72 test samples and P = 32,
CFID? used 2376 test samples and P = 8, and CFID? used all 14576
samples and P = 1. For the inpainting experiment, CFID! used 1000
test images and P = 32, CFID? used 3000 test and validation images
and P = 8, and CFID? used all 30000 images and P =1.

Average MNIST denoising results.
Average MRI results at acceleration R € {4,8}

Average PSNR, SSIM, LPIPS, and DISTS of &, versus P for MRI at
R=8 . .

Xiv

Page

16

17

18

21

23

36

39

3.4 Average PSNR, SSIM, LPIPS, and DISTS of &, versus P for R =4

MRI . . o 40
3.5 Average FFHQ inpainting results. 41
4.1 DDfire ablation results for noisy FFHQ box inpainting with ¢,, = 0.05

at 1000 NFEs. 59
4.2 Noisy FFHQ results with measurement noise standard deviation o, =

0.05. . . 62
4.3 Noisy ImageNet results with measurement noise standard deviation

ow="0.05. . 62
5.1 Average MRI results at acceleration R=4. 69
5.2 Average MRI results at acceleration R=8. 69
5.3 Optimal averaging constant P for each method/metric. 70
D.1 Hyperparameter values used for DDfire. 120

XV

List of Figures

Figure

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

The contours show the regularizer value versus 6 = [u,0]" for four
different regularizers: (a) supervised-¢; plus SD reward with 5SD:5§Y3
at P.=2, (b) supervised-¢; plus SD reward with 5SD:BQ/D at B=8,
(c) supervised-¢; at P,.=8, and (d) supervised-¢; plus variance reward
at B,.=8. The red star shows the true posterior parameters [jg, oo

Example PSNR of &5, versus P, the number of averaged outputs, for
several training fSsp and MRI recovery at R = 4. Also shown is the
theoretical behavior for true-posterior samples.

Example R = 8 MRI reconstructions. Arrows show meaningful varia-
tions across samples.

Example R = 8 MRI reconstructions with P = 32. Row one: P-sample
average & p. Row two: pixel-wise absolute error |y — x|. Row three:
pixel-wise SD (530 (& — &)2) 2 . .

Example of inpainting a 128 x 128 square on a 256 x 256 resolution
CelebA-HQ image.

Gaussian experiment. Wasserstein-2 distance versus (a) lazy update pe-
riod M for pcaGAN with d = 100 = K, (b) estimated eigen-components
K for pcaGAN with d = 100 and M = 100, and (¢) problem dimension
d for all methods under test with K =d and M =100.

For (a) pcaGAN and (b) NPPC, this figure shows the true image «,
noisy measurements y, the conditional mean f,,, principal eigenvectors
{vi}, and two perturbations of fugy.

Page

10

12

19

20

22

33

Example MRI recoveries at R = 8. Arrows highlight meaningful variations. 37

Xvi

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

5.1

Example MRI recoveries at R = 4. Arrows highlight meaningful variations. 38

Example of inpainting a randomly generated mask on a 256x256 FFHQ
face image. 42

Left column: True &g, noisy box inpainting y, and 50-iteration FIRE ap-
proximation of E{x|y}. Other columns: Approximations of E{x¢|x:, y}
at different ¢ (as measured by % NFEs). Note the over-smoothing with
DDRM and DPS. Additionally, note the cut-and-paste artifacts of
DiffPIR and DAPS.o 49

For an FFHQ denoiser: the geometric DDIM variances {07} | versus
DDIM step k for K = 10, the o2 ., corresponding to a §=0.4 fraction
of single-FIRE-iteration DDIM steps, and the denoiser input variance
o? at each FIRE iteration of each DDIM step, for Niot =25 total NFEs. 57

DDfire ¢, true denoiser input variance ||r — x;||3/d, DDfire v, and true
denoiser output variance ||Zy — xo||3/d vs. DDfire iteration for noisy
4x super-resolution at t[k] = 1000 for a single validation sample . 61
LPIPS vs. single image sampling time for noisy Gaussian deblurring on

an A100 GPU. The evaluation used 1000 ImageNet images. Solid line:
DDfire with CG for various numbers of NFEs. Dashed line: DDfire

Example recoveries from noisy linear inverse problems with ImageNet
IMages. L 66

Example recoveries from noisy linear inverse problems with FFHQ images. 67

Example MRI recoveries at R = 8. Arrows highlight meaningful variations. 70

XVvil

D.1

D.2

D.3

D4

D.5

E.1

E.2

E.3

For FFHQ Gaussian deblurring, the left plot shows the eigenspectrum
of the error covariance Cov{Z —x,} with either 52 from (D.11) (if CG
speedup) or 52 = o2 (if no CG speedup), as well as the eigenspectrum
of the target error covariance o2I to aim for when renoising. The right
plot shows the eigenvalues of the renoised error covariance Cov{r—x}
for the ideal case when X is used (possible with SVD) and the case
when 3 from (4.16) is used (if no SVD), with either 52 or o2. Here we
used 02 = 107% v = 0.16 (corresponding to the first FIRE iteration of
the first DDIM step), and p = 35.7 (corresponding to the example in
Fig. 4.2). . oo 118

PSNR and LPIPS tuning results for box inpainting with 50 ImageNet
validation images. 123

PSNR and LPIPS tuning results for gaussian deblurring with 50 Ima-
geNet validation images. oL 123

PSNR and LPIPS tuning results for motion deblurring with 50 ImageNet
validation images. 124

PSNR and LPIPS tuning results for 4x super resolution with 50 Ima-
geNet validation images. oo 124

Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: Z, with P = 32, Row three: Z, with P = 4,
Row four: &, with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.126

Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: Z with P = 32, Row three: Z, with P = 4,
Row four: &, with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.127

Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: &, with P = 4,
Row four: & with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.128

xXviil

E.4 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: & with P = 32, Row three: Z, with P = 4,
Row four: &, with P = 2, Rows five and six: posterior samples. The

arrows indicate regions of meaningful variation across posterior samples.129

E.5 Example of inpainting a 128 x 128 square on a 256 x 256 resolution
CelebA-HQ image.

E.6 Example of inpainting a 128 x 128 square on a 256 x 256 resolution
CelebA-HQ image.

E.7 Example of inpainting a 128 x 128 square on a 256 x 256 resolution
CelebA-HQ image.

E.8 Example of inpainting a 128 x 128 square on a 256 x 256 resolution
CelebA-HQ image.

E.9 For (a) pcaGAN and (b) NPPC, this figure shows the true image «,
noisy measurements y, the conditional mean f,,, principal eigenvectors
{vi}, and two perturbations of fugy.o

E.10 For (a) pcaGAN and (b) NPPC, this figure shows the true image @,
noisy measurements y, the conditional mean f1,),, principal eigenvectors
{vi}, and two perturbations of fugy.

E.11 For (a) pcaGAN and (b) NPPC, this figure shows the true image @,
noisy measurements y, the conditional mean f1,),, principal eigenvectors
{vi}, and two perturbations of fugy.

E.12 Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: &, with P = 4,
Row four: &) with P = 2, Rows five and six: posterior samples. The

130

131

131

132

133

134

arrows indicate regions of meaningful variation across posterior samples.135

E.13 Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: & with P = 32, Row three: Z, with P = 4,
Row four: &, with P = 2, Rows five and six: posterior samples. The

arrows indicate regions of meaningful variation across posterior samples.136

Xix

E.14 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: & with P = 32, Row three: Z, with P = 4,
Row four: &, with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.137

E.15 Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: Z,, with P = 4,
Row four: &, with P = 2, Rows five and six: posterior samples. The
arrows indicate regions of meaningful variation across posterior samples.138

E.16 Example of inpainting a randomly generated mask on a 256x256 FFHQ
face image. 139

E.17 Example of inpainting a randomly generated mask on a 256x256 FFHQ
face image. L 140

E.18 Example of inpainting a randomly generated mask on a 256x256 FFHQ
face image. Lo 141

E.19 Example of inpainting a randomly generated mask on a 256x256 FFHQ
face image. 142

Chapter 1: Introduction

In image recovery, the goal is to recover the true image @ from noisy/distorted/
incomplete measurements y = M(x). This arises in, e.g., linear inverse problems
such as denoising, deblurring, inpainting, and magnetic resonance imaging (MRI)
where y = Az + w for w ~ N(0, O'ZI), as well as in non-linear inverse problems like
phase-retrieval and image-to-image translation.

In much of the literature, image recovery is posed as point estimation, where the
goal is to return a single best estimate . However, there are several shortcomings of
this approach. First, it’s not clear how to define “best,” since L2- or L1-minimizing &
are often regarded as too blurry, while efforts to make & perceptually pleasing can
sacrifice agreement with the true image @ and cause hallucinations [8, 35, 59, 10, 30].

Another major limitation with point estimation is that it’s unclear how certain
one can be about the recovered . Quantifying the uncertainty in Z is especially
important in medical applications such as MRI, where a diagnosis must be made based
on the measurements y. Rather than simply reporting our best guess of whether a
pathology is present or absent based on Z, we might want to report the probability
that the pathology is present (given all available data).

To address the limitations of point estimation, posterior-sampling-based image
recovery [7, 99, 90, 98, 28, 93, 79, 37, 4, 111, 110, 9, 97, 85, 39, 87, 86, 48, 17, 96] aims

1

to generate P > 1 samples {Z;}; from the posterior distribution py,(-|y). Posterior
sampling facilitates numerous strategies to quantify the uncertainty in estimating «,
or any function of @, from y [2, 52]. It also can help with visualizing uncertainty and
increasing robustness to adversarial attacks [66]. That said, the design of accurate
and computationally-efficient posterior samplers remains an open problem. The recent
literature has focused on conditional variational autoencoders (cVAEs) [28, 93, 79],
conditional normalizing flows (cNFs) [7, 99, 90, 98], conditional generative adversarial
networks (¢cGANs) [37, 4, 111, 110, 9], and Langevin/score/diffusion-based generative
models [97, 85, 39, 87, 86, 48, 17, 96.

In the first two chapters of the dissertation, we focus on posterior sampling cGANs.
We first propose rcGAN in Chapter 2, a novel cGAN regularization framework that
enforces correctness in the generated y-conditional mean and trace-covariance using
L1 regularization plus a correctly weighted standard-deviation (SD) reward. We
prove the correctness of the proposed regularization for the simple Gaussian case, and
empirically demonstrate rcGAN’s performance on accelerated MR image reconstrution
and box inpainting, outperforming both ¢cGAN and diffusion competitors.

We then propose pcaGAN in Chapter 3, an extension of rcGAN that encourages
correctness in the K principal components of the y-conditional covariance matrix,
as well as the y-conditional mean and trace covariance when sampling from the
posterior. pcaGAN is inspired, in part, by a separate line of work where Nehme et al.
[61] trained a Neural Posterior Principal Components (NPPC) network to directly
estimate the eigenvectors and eigenvalues of the y-conditional covariance matrix, which
allows powerful insights into the nature of uncertainty in an inverse problem. We

demonstrate the effectiveness of pcaGAN on denoising, random large-scale inpainting,

and accelerated MR image recovery. There, we show that pcaGAN outperforms
many contemporary diffusion and ¢cGAN competitors, including rcGAN. We also
demonstrate that pcaGAN recovers the principal components more accurately than
NPPC using approximately the same runtime.

In Chapter 4, we shift our focus to diffusion-based methods. Diffusion modeling
has emerged as a powerful approach to generate samples from a complex distribution
po [78, 84, 34, 87, 82]. Recently, diffusion has also been used to solve inverse problems
[22], where the goal is to recover g ~ py from measurements ¢ in an unsupervised
manner. There, a diffusion model is trained to generate samples from py and, at test
time, the reverse process is modified to incorporate knowledge of the measurements v,
with the goal of sampling from the posterior distribution p(xg|y).

When implementing the reverse process, the main challenge is approximating the
conditional score function V Inp,(x;|y) at each step ¢, where x; is an additive-white-
Gaussian-noise (AWGN) corrupted version of ¢y € R? and y € R™ is treated as a
draw from a likelihood function p(y|xg). (See Sec. 4.1 for more details). A common

approach uses Tweedie’s formula [29] to write

E{xy|x;, y} — x
Ve Inpy(@|y) = {2 fjgy} ' (1.1)
t

and then approximates the conditional denoiser E{x,|x:, y} (e.g., [48, 96, 114, 20]).

In Chapter 4, we aim to improve the approximation of E{x|x;, y} at each step
t. In particular, we propose an iterative approach to approximating E{xq|x;, y}
that we call Fast Iterative REnoising (FIRE). FIRE is like a plug-and-play (PnP)
algorithm (see the PnP survey [5]) in that it iterates unconditional denoising with
linear estimation from x; and y. We then embed FIRE into the DDIM diffusion
reverse process [82], yielding the “DDfire” posterior sampler. Here, we show that

3

DDfire outperforms SOTA diffusion competitors in most metrics for a variety of linear
inverse problems.

Finally, we conclude the dissertation by proposing some future research directions
based on applying our cGAN regularization ideas from Chapters 2 and 3 in the context

of training direct diffusion bridge (DDB) models [55, 23].

Chapter 2: A Regularized Conditional GAN for Posterior

Sampling in Image Recovery Problems

In this chapter, we discuss rcGAN, a regularized conditional GAN for posterior
sampling in inverse problems. Our proposed cGAN tackles the lack-of-diversity issue
that often plagues continuous-conditioned GANs using a novel regularization that
consists of supervised-¢; loss plus an adaptively weighted standard-deviation (SD)
reward. The content of this chapter appears in “A regularized Conditional GAN for
Posterior Sampling in Image Recovery Problems,” which was published at the 37th

annual conference on Neural Information Processing Systems (NeurIPS).

2.1 Background

In this chapter, we build on the Wasserstein cGAN framework from [4]. The goal
is to design a generator network Gy : Z x Y — X such that, for fixed y, the random
variable = Gg(z,y) induced by z ~ p, has a distribution that best matches the
posterior pyy(-|y) in Wasserstein-1 distance. Here, X,), and Z denote the sets of x,
y, and z, respectively, and z is drawn independently of y.

The Wasserstein-1 distance can be expressed as

Wipay (+ y), pry (-, y)) = sup Eq{D(z,y)} — Exy{D(Z,9)}, (2.1)

where L; denotes functions that are 1-Lipschitz with respect to their first argument
and D : X x)Y — R is a “critic” or “discriminator” that tries to distinguish between
true & and generated Z given y. Since we want the method to work for typical
values of y, we define a loss by taking an expectation of (2.1) over y ~ p,. Since the

expectation commutes with the supremum in (2.1), we have [4]

E W (s (9 iy (0D = sup BoAD(@ w)} - By D@)} (22)
= sup Bz {D(,y) = D(Go(z). 9)}. (23)

In practice, D is implemented by a neural network Dy with parameters ¢, and (0, @)

are trained by alternately minimizing

[’adv(07 d)) =]EX»ZJ{D(ﬁ(w? y) - D¢(G9(Z, y)? y)} (24>

with respect to @ and minimizing —L,4,(0, @) + L4 (@) with respect to ¢, where
Lgp (@) is a gradient penalty that is used to encourage Dy € Ly [31]. Furthemore, the
expectation over & and y in (2.4) is replaced in practice by a sample average over the
training examples {(x;, y;) ;.

One of the main challenges with the cGAN framework in image recovery problems
is that, for each measurement example y;, there is only a single image example x;.
Thus, with the previously described training methodology, there is no incentive for
the generator to produce diverse samples G(z,y)|.~p, for a fixed y. This can lead
to the generator learning to ignore the code vector z, which causes a form of “mode
collapse.”

Although issues with stability and mode collapse are also present in unconditional
GANs (uGANs) or discretely conditioned cGANs [58], the causes are fundamentally
different than in continuously conditioned cGANs like ours. With continuously

6

conditioned cGANSs, there is only one example of a valid x; for each given y;, whereas
with uGANSs there are many x; and with discretely conditioned ¢cGANs there are many
x; for each conditioning class. As a result, most strategies that are used to combat
mode-collapse in uGANs [76, 43, 112] are not well suited to cGANs. For example,
mini-batch discrimination strategies like MBSD [42], where the discriminator aims to
distinguish a mini-batch of true samples {x;} from a mini-batch of generated samples
{x;}, don’t work with cGANs because the posterior statistics are very different than
the prior statistics.

To combat mode collapse in ¢cGANs, Adler & Oktem [4] proposed to use a three-
input discriminator Dg)d'er : X X X x)Y — R and replace L,q, from (2.4) with the

loss

Eggl/er(ev ¢) =]EX7ZI7221y {%D;dler(m7 Ge(zla y)? y) + %D?pdler<G9(z27 y)> T, y)

— Dg(Go(21,), Go(22,9),y) }, (2.5)

which rewards variation between the first and second inputs to bed'er. They then proved
that minimizing £29*" in place of L.q4, does not compromise the Wasserstein cGAN
objective, i.e., arg ming £29°(0, ¢) = argming L.4v(0, @). As we show in Sec. 2.3,

this approach does prevent complete mode collapse, but it leaves much room for

improvement.

2.2 Approach

2.2.1 Proposed Regularization: Supervised-/; Plus SD Re-
ward

We now propose a novel cGAN regularization framework, which we dub “rcGAN.”

To train the generator, we propose to solve
arg ming{ Badv Laav (0,) + L1,5p.,.(0, Bsp) } (2.6)
with appropriately chosen B4y, Bsp > 0 and P, > 2, where the regularizer
L1sp.r.(0,850) = L1,5.(0) — BspLsp.p.(6) (2.7)

is constructed from the P-sample supervised-¢; loss and standard-deviation (SD)

reward terms

ELPrc (0) é EX7217~~~:ZP7Y {Hw - ;%\(Prc)

1} (2.8)
1} (2.9)

P ~ ~
Lsp,r.(0) = |/ 3ppry 2oic Barvzoy {125 — Zr

and where {Z;} denote the generated samples and Z,, their P-sample average:
—~ ~ P~
x; = Ge(zz‘, y)a Z(p) £ % Zz‘:1 Z;. (2'10)

The use of supervised-¢; loss and SD reward in (2.7) is not heuristic. As shown in
Proposition 1, it encourages the samples {Z;} to match the true posterior in both

mean and covariance.

Proposition 1. Suppose P, > 2 and @ has complete control over the y-conditional

mean and covariance of T;. Then the parameters 0, = arg ming L1 sp p, (0, ﬂé\lf)) with

N & 2
5o = £/ 7PetherD) (2.11)

yield generated statistics

Ezu‘y{al(e*)’y} = Ex\y{m|y} - :/immse (212&)

Covyy{Z:(0.)|y} = Covyy{x|y} (2.12b)

when the elements of x; and x are independent Gaussian conditioned on y. Thus,
minimizing L1 sp p. encourages the y-conditional mean and covariance of ; to match

those of the true x.

See App. C.1 for a proof. In imaging applications, Z; and x may not be independent
Gaussian conditioned on y, and so the value of Ssp in (2.11) may not be appropriate.
Thus we propose a method to automatically tune fBsp in Sec. 2.2.2.

Figure 2.1 shows a toy example with parameters @ = [u, o], generator Gg(z,y) =
p+ oz, and z ~ N(0,1), giving generated posterior pgy, (z|y) = N (x; 1, 0?). Assuming
the true pyy(zly) = N(x;p0,03), Figs. 2.1(a)-(b) show that, by minimizing the
proposed L1 sp.p. (8, BY) regularization over @ = [y, 0]" for any P,. > 2, we recover
the true 8y = 110, 09]". They also show that the cost function steepens as P, decreases,
which agrees with our empirical finding that P, = 2 tends to work best in practice.

We note that regularizing a cGAN with supervised-¢; loss alone is not new; see, e.g.,
[37]. In fact, the use of supervised-£; loss is often preferred over ¢; in image recovery
because it results in sharper, more visually pleasing results [109]. But regularizing a
c¢GAN using supervised-£; loss alone can push the generator towards mode collapse,
for reasons described below. For example, in [37], ¢;-induced mode collapse led the

authors to use dropout to induce generator variation, instead of random z;.

Why not supervised-/; regularization? One may wonder: Why regularize using

supervised-£; loss plus an SD reward in (2.7) and not a more conventional choice like

9

16
1.4
1.2
m T HHH\ TTTT 6
7 ‘ @ Cost
257 2.5 -~ Correct| | |55
| T
2+ 6 2 5
‘ 5 ‘ 45
b 15 b 15 *
* ‘
" ¢ ! \ 35
05 i ‘ I 3 0.5 3
Tf “ “‘U”‘ ‘\‘\M (\ ‘\“““H“‘\HH i “ I | ‘ ‘
L A 0 | 25
-1 0 1 2 -1 0 1 2

Figure 2.1: The contours show the regularizer value versus @ =[u, o] for four different
regularizers: (a) supervised-¢; plus SD reward with Bsp = 32, at P, =2, (b) supervised-
¢y plus SD reward with Ssp = 5£/D at P =8, (c) supervised-f» at P =38, and (d)
supervised-/, plus variance reward at P,.=8. The red star shows the true posterior
parameters [, og] "

supervised-/5 loss plus a variance reward, or even supervised-f5 loss alone? We start
by discussing the latter.

The use of supervised-/, regularization in a cGAN can be found in [37]. In this
case, to train the generator, one would aim to solve arg ming{ L4, (0, ¢) + AL2(0)}

with some A > 0 and

L5(0) 2 E,, {|lx — E.{Go(z,y)}3}- (2.13)

10

Ohayon et al. [64] revived this idea for the explicit purpose of fighting mode collapse.
In practice, however, the E, term in (2.13) must be implemented by a finite-sample

average, giving

o5 (0) 2 By oy { || — 2= 37 Go(21,9)|2) (2.14)

for some P > 2. For example, Ohayon’s implementation [65] used P = 8. As we

show in Proposition 2, £y p. induces mode collapse rather than prevents it.

Proposition 2. Say P is finite and @ has complete control over the y-conditional
mean and covariance of ;. Then the parameters 0, = arg ming Lo p (0) yield gener-

ated statistics
E,y{Z:(60.)|y} = Exy{T|y} = Zrmse (2.15a)
Covyy{Z:(0.)|y} = 0. (2.15b)
Thus, mintmizing Lo p,. encourages mode collapse.

The proof (see App. C.2) follows from the bias-variance decomposition of (2.14),

ie.,

Ly p(0)
=E, {”immse - EZin{i\i(eﬂy}H% + p%c tr[COVZin{{ﬁi(eﬂy}]

+EX|y{”emmseHg’y}}» (2.16)

where €mmse = T — Tmmse i the MMSE error. Figure 2.1(c) shows that Ly p. regular-
ization causes mode collapse in the toy example, and Sec. 2.3.2 shows that it causes

mode collapse in MRI.

11

Bsp =0 Bsp =B Bsp =128 Bsp =148 Bsp =168 Bsp = 1.8

40 = i
-~ -~ -
” ” - d
38 7 4 7 4
v v v v

% == == Theory
Actual

34

10° 10’ 10° 10’ 10° 10’ 10° 10’ 10° 10’

Number of averaged outputs, P, on a log scale

Figure 2.2: Example PSNR of &, versus P, the number of averaged outputs, for
several training Ssp and MRI recovery at R = 4. Also shown is the theoretical behavior
for true-posterior samples.

Why not supervised /¢, plus a variance reward? To mitigate Lo p ’s incentive

for mode-collapse, the second term in (2.16) could be canceled using a variance reward,

giving
‘C2avar7prc(9) é £27Prc(0) - PchﬁvaﬁPrc(e) (217>
with £var,Prc(0> = prcl_l zP:rcl EZl,--~7ZP,y{H£i(0) - :/B\(P)(eﬂg} (218)

since App. C.3 shows that L, p (€) is an unbiased estimator of the posterior trace-

covariance:
Lyar,p(0) = E {tr[Cov, {Z:(0)|y}]} for any P > 2. (2.19)

However, the resulting Ly .r p. regularizer in (2.17) does not encourage the generated
covariance to match the true posterior covariance, unlike the proposed £ sp p, regu-
larizer in (2.7) (recall Proposition 1). For the toy example, this behavior is visible in

Fig. 2.1(d).
2.2.2 Auto-tuning of SD Reward Weight [sp

We now propose a method to auto-tune Ssp in (2.7) for a given training dataset.
Our approach is based on the observation that larger values of fsp tend to yield

12

samples Z; with more variation. But more variation is not necessarily better; we
want samples with the correct amount of variation. To assess the correct amount of
variation, we compare the expected ¢, error of the P-sample average & p, to that of Z .
When {Z;} are true-posterior samples, these errors follow a particular relationship, as

established by Proposition 3 below (see App. C.4 for a proof).

Proposition 3. Say &; ~ pyy,(-|y) are independent samples of the true posterior and,

for any P > 1, their P-sample average is T p) = %Zfil z;. Then

Ep EE{||Z) — |3y} = B Enmse, which implies g—; = 192_51' (2.20)

Experimentally we find that & /Ep grows with the SD reward weight fsp. (See
Fig. 2.2.) Thus, we propose to adjust fsp so that the observed SNR-gain ratio £, /Ep,,
matches the correct ratio (2P,,)/(Pa + 1) from (2.20), for some P, > 2 that does
not need to match P.. (We use P, = 8 in Sec. 2.3.) In particular, at each training

epoch 7, we approximate £p,, and &; as follows:

& 1% P.,
Epur = ¥ Lot 17y 22020 Go, (2i0 y0) — 23 (2.21)
Slﬂ' = % Zq‘;/zl HGGT (zl,m yv) - ZDUH%, (2'22)
with validation set {(a,,y,)}'_, and ii.d. codes {z;,}4. We update fsp using

gradient descent:

Bspri1 = Bopr — pisp - ([E1+/Eprlan — 2P/ (Poal + Dag) 5 for 7=0,1,2,...
(2.23)

with Bspo = Bé\,g, some usp > 0, and [z]q4p £ 10logyy(z).

13

2.3 Numerical Experiments

2.3.1 Conditional Fréchet Inception Distance

As previously stated, our goal is to train a generator Gy so that, for typical fixed
values of y, the generated distribution pg,(-|y) matches the true posterior pyy(-|y). It
is essential to have a quantitative metric for evaluating performance with respect to
this goal. For example, it is not enough that the generated samples are “accurate” in
the sense of being close to the ground truth, nor is it enough that they are “diverse”
according to some heuristically chosen metric.

We quantify posterior-approximation quality using the Conditional Fréchet Incep-

tion Distance (CFID) [80], a computationally efficient approximation to the conditional

Wasserstein distance

CWD = Ey{WQ(px|y(',y),pﬂy(',y))}- (2.24)

In (2.24), W5(pa, pp) denotes the Wasserstein-2 distance between distributions p, and

Db, defined as

Wa(pa,pp) £ min)Ea,b{Ha’ — b2}, (2.25)

Pa,bEIL(pa,pp

where I1(pa, pb) = {pap : P2 = [Papdb and p, = [papda} denotes the set of joint
distributions p,p with prescribed marginals p, and pp. Similar to how FID [33]—a
popular uGAN metric—is computed, CFID approximates CWD (2.24) as follows: 1)
the random vectors x, , and y are replaced by low-dimensional embeddings x, Z,
and y, generated by the convolutional layers of a deep network, and ii) the embedding
distributions pyy and pg, are approximated by multivariate Gaussians. More details

on CFID are given in App. D.1.

14

2.3.2 MRI Experiments

We consider parallel MRI recovery, where the goal is to recover a complex-valued
multicoil image @ from zero-filled measurements y (see App. A.1 for details).

Data. For training data {x;}, we used the first 8 slices of all fastMRI [102]
T2 brain training volumes with at least 8 coils, cropping to 384 x 384 pixels and
compressing to 8 virtual coils [108], yielding 12200 training images. Using the same
procedure, 2376 testing and 784 validation images were obtained from the fastMRI
T2 brain testing volumes. From the 2376 testing images, 72 were randomly selected
to evaluate the Langevin technique [39] in order to limit its sample generation to
6 days. To create the measurement y,;, we transformed x,; to the Fourier domain,
sampled using pseudo-random GRO patterns [41] at acceleration R = 4 and R = 8,
and Fourier-transformed the zero-filled k-space measurements back to the (complex,
multicoil) image domain.

Architecture. We use a U-Net [74] for our generator and a standard CNN
for our discriminator, along with data-consistency as in App. A.2. Architecture and
training details are given in App. D.2.

Competitors. We compare our cGAN to the Adler and Oktem’s cGAN [4],
Ohayon et al.’s pscGAN [64], Jalal et al.’s fastMRI Langevin approach [39], and Sriram
et al.’s E2E-VarNet [89]. The cGAN from [4] uses generator loss (.4, £29% (0, ¢) and

adv

discriminator loss —L£29¢(6, @)+ a1 Lgp () + 2 Lanie (@), while the cGAN from [64] uses
generator 1oss BagyLagy (0, @)+ L2, p(0) and discriminator loss —Lagy (0, @)+ Lgp(P) +
as Lyt (). Each used the value of [,4, specified in the original paper. All cGANs

used the same generator and discriminator architectures, except that [4] used extra

discriminator input channels to facilitate the 3-input loss (2.5). For the fastMRI

15

Langevin approach [39], we did not modify the authors’ implementation in [38] except
to use the GRO sampling mask. For the E2E-VarNet [89], we use the same training
procedure and hyperparameters outlined in [39] except that we use the GRO sampling
mask.

Testing. To evaluate performance, we converted the multicoil outputs ;
to complex-valued images using SENSE-based coil combining [70] with ESPIRiT-
estimated [94] coil sensitivity maps, as described in App. A.1. Magnitude images were

used to compute performance metrics.

Table 2.1: Average MRI results at R € {4,8}. Tested with VGG-16 features. CFID!,
FID, and APSD used 72 test samples and P=32, CFID? used 2376 test samples and
P=8, and CFID? used all 14576 samples and P=1

R=4 R=28
Model CFID'| CFID?, CFID?, FID| APSD Time (4), CFID'} CFID?, CFID?, FID| APSD Time (4))
E2E-VarNet (Sriram et al. [89]) 7.47 6.99 6.61 8.84 0.0 310ms 7.82 6.81 6.31 840 0.0 316ms
Langevin (Jalal et al. [39]) 5.29 - 6.12 5.9¢-6 14 min 7.34 - - 14.32 7.6e-6 14 min
c¢GAN (Adler & Oktem [4]) 6.39 4.27 3.82 525 3.9e-6 217 ms 10.10 6.30 5.72 10.77 7.7e-6 217 ms
pscGAN (Ohayon et al. [64]) 4.06 3.27 2.95 6.45 7.2e-8 217 ms 6.04 4.59 4.27 11.05 7.7e-7 217 ms
rcGAN 3.10 1.54 1.29 3.75 3.8¢-6 217 ms 4.87 2.23 1.79 7.72 T7.6e-6 217 ms

Results. Table 2.1 shows CFID, FID, APSD 2 (530 |12, — &%)2,
and 4-sample generation time at R € {4,8}. (C)FID was computed using VGG-16
(not Inception-v3) to better align with radiologists’ perceptions [46]. As previously
described, the Langevin method was evaluated using only 72 test images. Because
CFID is biased at small sample sizes [80], we re-evaluated the other methods using all
2376 test images, and again using all 14 576 training and test images. Table 2.1 shows

that our approach gave significantly better CFID and FID than the competitors. Also,

the APSD of Ohayon et al.’s pscGAN was an order-of-magnitude smaller than the

16

Table 2.2: Average PSNR, SSIM, LPIPS, and DISTS of Z,, versus P for R = 4 MRI

PSNRT SSTMT
Model P=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 39.93 - - - - - 0.9641 - - - - -
Langevin (Jalal et al. [39]) 36.04 37.02 37.65 37.99 3817 3827 0.8989 0.9138 0.9218 0.9260 0.9281 0.9292
¢GAN (Adler & Oktem [4]) 35.63 36.64 3724 3756 37.73 37.82 0.9330 0.9445 0.9478 0.9480 0.9477 0.9473
pscGAN (Ohayon et al. [64]) 39.44 39.46 39.46 39.47 3947 3947 0.9558 0.9546 0.9539 0.9535 0.9533 0.9532
rcGAN 36.96 38.14 3884 39.24 3944 39.55 0.9440 0.9526 0.9544 0.9542 0.9537 0.9533
LPIPS]) DISTS|
Model P=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 0.0316 - - - - - 0.0859 - - - - -
Langevin (Jalal et al. [39]) 0.0545 0.0394 0.0336 0.0320 0.0317 0.0316 0.1116 0.0921 0.0828 0.0793 0.0781 0.0777
¢GAN (Adler & Oktem [4]) 0.0285 0.0255 0.0273 0.0298 0.0316 0.0327 0.0972 0.0857 0.0878 0.0930 0.0967 0.0990
pscGAN (Ohayon et al. [64]) 0.0245 0.0247 0.0248 0.0249 0.0249 0.0249 0.0767 0.0790 0.0801 0.0807 0.0810 0.0811
rcGAN 0.0175 0.0164 0.0188 0.0216 0.0235 0.0245 0.0546 0.0563 0.0667 0.0755 0.0809 0.0837

others, indicating mode collapse. The cGANs generated samples 3800 times faster
than the Langevin approach from [39].

Tables 2.2 and 2.3 show PSNR, SSIM, LPIPS [107], and DISTS [27] for the P-
sample average T, at P € {1,2,4,8,16,32} and R € {4, 8}, respectively. While the
E2E-VarNet achieves the best PSNR at R € {4,8} and the best SSIM at R = 4, the
proposed rcGAN achieves the best LPIPS and DISTS performances at R € {4,8}
when P = 2 and the best SSIM at R = 8 when P = 8. The P dependence can be
explained by the perception-distortion tradeoff [11]: as P increases, &, transitions
from better perceptual quality to lower /5 distortion. PSNR favors P — oo (e.g., {3
optimality) while the other metrics favor particular combinations of perceptual quality
and distortion. The plots in Appendices E.1.1 and E.1.2 show zoomed-in versions of
Zp) that visually demonstrate the perception-distortion tradeoff at P € {1,2,4,32}:
smaller P yield sharper images with more variability from the ground truth, while

larger P yield smoother reconstructions.

17

Table 2.3: Average PSNR, SSIM, LPIPS, and DISTS of Z,, versus P for R = 8 MRI

PSNRt SSIM$
Model P=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 36.49 - - - - - 0.9220 - - - - -
Langevin (Jalal et al. [39]) 3217 32.83 33.45 33.74 33.83 3390 0.8725 0.8919 0.9031 0.9091 0.9120 0.9137
¢GAN (Adler & Oktem [4]) 31.31 32.31 3292 3326 3342 3351 0.8865 0.9045 0.9103 0.9111 0.9102 0.9095
pscGAN (Ohayon et al. [64]) 34.89 34.90 3490 3490 3491 3492 09222 09217 09213 0.9211 0.9211 0.9210
rcGAN 32.32 33.67 34.53 35.01 3527 3542 0.9030 0.9199 0.9252 0.9257 0.9251 0.9246

LPIPS] DISTS,
Model P=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 0.0575 - - - - - 0.1253 - - - - -
Langevin (Jalal et al. [39]) 0.0769 0.0619 0.0579 0.0589 0.0611 0.0611 0.1341 0.1136 0.1086 0.1119 0.1175 0.1212
c¢GAN (Adler & Oktem [4]) 0.0698 0.0614 0.0623 0.0667 0.0704 0.0727 0.1407 0.1262 0.1252 0.1291 0.1334 0.1361
pscGAN (Ohayon et al. [64]) 0.0532 0.0536 0.0539 0.0540 0.0534 0.0540 0.1128 0.1143 0.1151 0.1155 0.1157 0.1158
rcGAN 0.0418 0.0379 0.0421 0.0476 0.0516 0.0539 0.0906 0.0877 0.0965 0.1063 0.1135 0.1177

Figure 2.3 shows zoomed versions of two posterior samples Z;, as well as &z, at
P =32 and R = 8. The posterior samples show meaningful variations for the proposed
method, essentially no variation for pscGAN, and vertical or horizontal reconstruction
artifacts for Adler & Oktem’s cGAN and the Langevin method, respectively. The Zp)
plots show that these artifacts are mostly suppressed by sample averaging with large
P.

Figure 2.4 shows examples of Z,, along with the corresponding pixel-wise absolute
errors |Zp, — x| and pixel-wise SD images (L S0 (2 — #)?)"/?, for P = 32 and
R = 8. The absolute-error image for the Langevin technique looks more diffuse than
those of the other methods in the brain region. The fact that it is brighter in the air
region (i.e., near the edges) is a consequence of minor differences in sensitivity-map
estimation. The pixel-wise SD images show a lack of variability for the E2E-VarNet,
which does not generate posterior samples, as well as pscGAN, due to mode collapse.

The Langevin pixel-wise SD images show localized hot-spots that appear to be

reconstruction artifacts.

18

rcGAN pscGAN (Ohayon) cGAN (Adler) Langevin (Jalal)

Truth
=32)

Average (P

Truth
Sample

E2E-VarNet
Sample

Figure 2.3: Example R = 8 MRI reconstructions. Arrows show meaningful variations
across samples.

Appendices E.1.1 and E.1.2 show other example MRI recoveries with zoomed

pixel-wise SD images at R = 4 and R = 8, respectively.
2.3.3 Inpainting Experiments

In this section, our goal is to complete a large missing square in a face image.

Data. We used 256 x 256 CelebA-HQ face images [42] and a centered 128 x
128 missing square. We randomly split the dataset, yielding 27000 training, 2000
validation, and 1000 testing images.

Architecture. For our cGAN, we use the CoModGAN generator and discrimina-
tor from [111] with our proposed L, sp p. regularization. Unlike [111], we do not use

MBSD [42] at the discriminator.

19

Truth E2E-VarNet rcGAN pscGAN cGAN Langevin

Figure 2.4: Example R = 8 MRI reconstructions with P = 32. Row one: P-sample
average & p. Row two: pixel-wise absolute error |Z) — x|. Row three: pixel-wise SD

P o~ ~
(1% zz‘:1(wi - w(P))z)uz'

Training/validation/testing. We use the same general training and testing
procedure described in Sec. 2.3.2, but with S,q, = 5e-3, npaten = 100, and 110 epochs
of cGAN training. Running PyTorch on a server with 4 Tesla A100 GPUs, each with
82 GB of memory, the cGAN training takes approximately 2 days. FID was evaluated
on 1000 test images using P =32 samples per measurement. To avoid the bias that
would result from evaluating CFID on only 1000 images (see Sec. 2.3.4), CFID was
evaluated on all 30 000 images with P = 1.

Competitors. We compare with the state-of-the-art CoModGAN [111] and Score-
based SDE [87] approaches. For CoModGAN, we use the PyTorch implementation
from [103]. CoModGAN differs from our cGAN only in its use of MBSD and lack of

L4 sp.p. regularization. For Song et al.’s SDE, we use the authors’ implementation

20

Table 2.4: Average results for inpainting: FID was computed from 1000 test images
with P=32, while CFID was computed from all 30 000 images with P=1

Model CFID, FID| Time (128))

Score-SDE (Song et al. [87]) 5.11 7.92 48 min
CoModGAN (Zhao et al. [111]) 5.29 8.50 217 ms
rcGAN 4.69 7.45 217 ms

from [88] with their pretrained weights and the settings they suggested for the 256 x 256
CelebA-HQ dataset.

Results. Table 2.4 shows test CFID, FID, and 128-sample generation time. The
table shows that our approach gave the best CFID and FID, and that the cGANs
generated samples 13000 times faster than the score-based method. Figure 2.5 shows
an example of five generated samples for the three methods under test. The samples are
all quite good, although a few generated by CoModGAN and the score-based technique
have minor artifacts. Some samples generated by our technique show almond-shaped

eyes, demonstrating fairness. Additional examples are given in App. E.1.3.
2.3.4 CFID Decomposition

In this section, we investigate the small-sample bias effects of CFID, which have
been previously noted in [80]. To do this, we write the CFID from (D.1) as a sum

of two terms: a term that quantifies the conditional-mean error and a term that

21

Original
rcGAN

Masked
CoModGAN

Score-SDE

Figure 2.5: Example of inpainting a 128 x 128 square on a 256 x 256 resolution CelebA-
HQ image.

quantifies the conditional-covariance error:

CFID = CFIDpean + CFIDc, (2.26)

CFIDean = Ey{”ﬂxlz - NXIz”%} (2:27)
A 1/2 1/2\1/2

CFIDcoy £ tr [Seqy + Brzy — 2(Zp, Dy Ei,) | |- (2.28)

To verify that (2.28) quantifies the error in gy, notice that (2.28) equals zero when
Yy = Yy and is otherwise positive (by Cauchy Schwarz).

In Table 2.5, we report CFIDpean and CFID,,, for the MRI and inpainting experi-
ments, in addition to the total CFID (also shown in Tables 3.2 and 3.5). As before, we
computed CFID on three test sets for each experiment, which contained 72, 2 376, and
14576 samples respectively for MRI, and 1000, 3000, and 30000 samples respectively
for inpainting. Due to the slow sample-generation time of the Langevin/score-based
methods [39, 87], we did not have the computational resources to evaluate them on
all datasets, and that’s why certain table entries are blank.

22

Table 2.5: The mean and covariance components of CFID, along with the total
CFID, for the generative models in the MRI and inpainting experiments. For the
MRI experiment, CFID! used 72 test samples and P = 32, CFID? used 2376 test
samples and P = 8, and CFID? used all 14 576 samples and P = 1. For the inpainting
experiment, CFID! used 1000 test images and P = 32, CFID? used 3000 test and
validation images and P = 8, and CFID? used all 30000 images and P = 1.

Model CFIDL..| CFIDL | CFID'| CFID?_ | CFID,| CFID*| CFID}_ | CFID%,| CFID®|
R =4 MRI

Langevin (Jalal [39]) 1.89 3.40 5.29 - - - - - -

c¢GAN (Adler [4]) 3.12 3.27 6.39 2.79 1.48 4.27 2.71 1.10 3.82

pscGAN (Ohayon [64]) 1.94 2.12 4.06 2.27 1.00 3.27 2.29 0.66 2.95

rcGAN 0.98 2.12 3.10 0.86 0.68 1.54 0.86 0.43 1.29
R =8 MRI

Langevin (Jalal [39]) 2.61 4.73 7.34 - - - - - -

cGAN (Adler [4]) 5.00 5.10 1010 416 2.14 630 4.09 1.63 5.72

pscGAN (Ohayon [64]) 2.73 3.31 6.04 3.07 1.52 4.59 3.30 0.97 4.27

rcGAN 1.55 3.32 4.87 1.24 0.99 2.23 1.17 0.62 1.79
Inpainting

Score SDE (Song [87]) 0.97 38.69 39.66 - - 0.90 4.21 5.11

CoModGAN (Zhao [111]) 0.42 41.21 41.63 0.35 25.39 25.74 0.32 4.98 5.29

rcGAN 0.32 39.41 39.73 0.25 22.32 22.58 0.24 4.45 4.69

For both MRI experiments, Table 2.5 shows our method outperforming the com-
peting methods in both the mean and covariance components of CFID (and thus the
total CFID) for all sample sizes. And, in the inpainting experiment, Table 2.5 shows
our method outperforming CoModGAN in both the mean and covariance components
(and thus the total CFID) for all sample sizes.

For the inpainting experiment, Table 2.5 shows our method outperforming the
score-based approach in total CFID on the 3000- and 30 000-sample test sets but not
on the 1000-sample test set. However, we now argue that the 1000-sample inpainting
experiment is heavily affected by small-sample bias, and therefore untrustworthy.

Looking at the mean component of CFID (i.e., CFID} CFID?

mean?

mean? and CFID?’nean)

across the inpainting experiments, we see that the values are relatively small and

stable with sample size. But looking at the covariance component of CFID (i.e.,

23

CFID? . and CFID?

cov) cov

CFID!

cov)

) across the inpainting experiments, we see that the
values are large and heavily dependent on sample size. For the 1000-sample inpainting
experiment, the total CFID is dominated by the covariance component and thus
strongly affected by small-sample bias. Consequently, for the 1000-sample inpainting

experiment, the total CFID is not trustworthy.

2.4 Conclusion

In this chapter, we proposed a novel regularization framework for image-recovery
c¢GANs that consists of supervised-¢; loss plus an appropriately weighted standard-
deviation reward. For the case of an independent Gaussian posterior, we proved that
our regularization yields generated samples that agree with the true-posterior samples
in both mean and covariance. We also established limitations for alternatives based on
supervised-/, regularization with or without a variance reward. For practical datasets,
we proposed a method to auto-tune our standard-deviation reward weight.

Experiments on parallel MRI and large-scale face inpainting showed our proposed
method outperforming all cGAN and score-based competitors in CFID, which measures
posterior-approximation quality, as well as other metrics like FID, PSNR, SSIM,
LPIPS, and DISTS. Furthermore, it generates samples thousands of times faster than
Langevin /score-based approaches.

Limitations. We acknowledge several limitations of our work in this chapter.
First, while we focused on how to build a fast and accurate posterior sampler, it’s not
yet clear how to best exploit the resulting posterior samples in each given application.
For example, in MRI, where the posterior distribution has the potential to help

assess uncertainty in image recovery, it’s still not quite clear how to best convey

24

uncertainty information to radiologists (e.g., they may not gain much from pixel-wise
SD images). More work is needed on this front. Second, we acknowledge that, because
radiologists are risk-averse, more studies are needed before they will feel comfortable
incorporating generative deep-learning-based methods into the clinical workflow. Third,
we acknowledge that the visual quality of our R = 8 MRI reconstructions falls below
clinical standards. Fourth, some caution is needed when interpreting our CFID, FID,
and DISTS perceptual metrics because the VGG-16 backbone used to compute them
was trained on ImageNet data. Although there is some evidence that the resulting
DISTS metric correlates well with radiologists” perceptions [46], there is also evidence
that ImageNet-trained features may discard information that is diagnostically relevant
in medical imaging [51]. Thus our results need to be validated with a pathology-centric

radiologist study before they can be considered relevant to clinical practice.

25

Chapter 3: Improving Posterior-Sampling cGANs via

Principal Component Regularization

In this chapter, we discuss pcaGAN, an extension to the rcGAN method described
in Chapter 2. In addition to encouraging correctness in the posterior mean and trace-
covariance, pcaGAN also encourages correctness in the K principal components of the
y-conditional covariance matrix. The content of this chapter appears in “Improving
Posterior-Sampling ¢GANs via Principal Component Regularization,” which was
published at the 38th annual conference on Neural Information Processing Systems

(NeurIPS).

3.1 Background

In this chapter, we build on the rcGAN regularization framework from Chapter
2, which itself builds on the cGAN framework from [4], as detailed in Section 2.1.
Furthermore, in Chapter 2, we proposed to regularize the generator Gy in a way that

encourages correct posterior means and trace-covariances, i.e.,

Hsly = Hxly for psy, = E{Z|y} and py = E{x|y} (3.1)

tr(Sgy) = tr(Syy) for Bgy £ Cov{@ly} and B,y £ Cov{z|y}. (3.2)

26

To do this, we replaced L,q4,(0, ¢) in Section 2.2 with the regularized adversarial loss

‘CrcGAN (07 ¢) S 5adv£adv<97 ¢) + ‘Cl,Prc(g) - BSD'CSD,PrC (0)7 (33)

which involves the P,.-sample supervised-¢; loss and standard-deviation (SD) reward

terms

L1,p(0) = Exay,..zpy {12 = Zir) 11 } (3.4)
Lsp,p(0) £ 3 Bayyapy {18 — By [11}, (3.5)

where typically P = 2. Recall, {Z;} are the generated samples and Z, is their

P-sample average:
T 2 Go(zy) fori=1,....,Pc and ZTp 2130 3, (3.6)
The reward weight Ssp in (3.3) is then automatically adjusted to accomplish (3.2)
during training.
3.2 Approach
Whereas rcGAN aimed for correctness in the posterior mean and posterior trace-
covariance statistics, our proposed pcaGAN also aims for correctness in the K principal

components of the posterior covariance matrix g, where K is user-selectable. To do

this, pcaGAN adds two additional regularization terms to the rcGAN objective:

EpcaGAN (07 ¢) é ﬁrcGAN (07 ¢) + 5pca£evec(6) + ﬁpcaﬁeval(e) (37)
£eveC<9) £— IE’y {Exm zply { 25:1[6; (33 - Nx\y)my}} (3‘8)
‘Ceval(e) = IEy {]Ex,zl zply { Z[i(zl (1 -)\k/:\\k‘)Qly}} (39>

Here, {(vy, Xk)}szl denote the principal eigenvectors and eigenvalues of the 8-dependent
generated covariance matrix g, and {(vg, Ax)}; denote the principal eigenvectors

27

and eigenvalues of the true covariance matrix X,j,. Because (3.8) is the classical PCA
objective [40], minimizing Levec(@) over 6 will drive the generated principal eigen-
vector vy, towards the true principal eigenvector vy, for each k = 1,..., K. Likewise,
minimizing Le, (@) over @ will drive the generated principal eigenvalue Xk towards
the true principal eigenvalue A\, for each £k = 1,..., K. Based on our experiments,
putting Xk in the denominator works better than the numerator and the squared error

in (3.9) works better than an absolute value.

28

Algorithm 1 pcaGAN generator-training iteration

Require: number of estimated eigen-components K, number of samples used for
eigenvector and eigenvalue regularization P,c,, number of samples used for rcGAN
regularization P,., epoch at which to involve eigenvector regularization Feyec,
epoch at which to involve eigenvalue regularization FE,,, lazy update period
M, adversarial loss weight S,qv, std regularization weight (Bsp, eigenvector and
eigenvalue regularization weight Sy, training batch {(zy, yp)}£,, current model
parameters @, current training epoch e, the current training step s

1: ,C(G) +—0
2:
3: forb=1,...,Bdo

4: zi~N(0,I) for i=1,..., P

5: x; < Go(zi,yp) for i =1,..., P,

6 L(8) — L(8) — faau 251 Do(@)

T {c\(Prc) = PL,,c Zz:ml Ec\l

8: £(0) — ’C(o) + ||mb - 53\(Prc) |1 - /BSD ZZP:rcl Ezl ----- Zp,y {Héz\'b - {B\(Prc) |1}
9:

10: if e > Eoec and s mod M = 0 then

11: zj ~N(0,I) for j=1,..., Py

12: x; Go(z;,yp) for j=1,..., Py

13: fi + StopGrad(z= 3;% @)

14; USVT « SVD([& — fi,..., Zp, — A)T)

15: ’l/;k(—[V],k for k=1,... K

16: L(8) < L(6) — Bea >opy [0F (w1 — 1))

17: end if

18:

19: if e> Ee\,al\and s mod M =0 then
20: Ne < [ST3), for k=1,....K
21: X<—[azb—ﬁ,,fil—ﬁ,:ﬁg—ﬁ,,...,fc\ppca—ﬁ]T

K AN o 2

22: L(6) < L(O) + Bpca p oy (1 — iStopGrad(Pp;rl o) X))
23: end if
24: end for
25:

26: 6 < Adam(0,VL(9))

In practice, the expectations in (3.8)-(3.9) are replaced by sample averages over the

training data. In the typical case that the training data includes only a single image

29

x; for each measurement vector y;, the quantities pu,, and {\;} in (3.8)-(3.9) are
unknown and non-trivial to estimate for each y;. Hence, when training the pcaGAN,
we approximate them with learned quantities. This must be done carefully, however.
For example, if p,, in (3.8) was simply replaced by the #-dependent quantity pgy,
then minimizing Levec(@) over € would encourage pig), to become overly large in order
to drive Levwec(0) to a large negative value.

Algorithm 1 details our proposed approach to training the pcaGAN. In particular,
it describes the steps used to perform a single update of the generator parameters 6
based on the training batch {(xs, ys)}£.,. Before diving into the details, we offer a
brief summary of Algorithm 1. For the initial epochs, the rcGAN objective L,.gan
alone is optimized, which allows the generated posterior mean pg, to converge to the
vicinity of payjy. Starting at Fejec epochs, the Leyec(0) regularization from (3.8) is added,
but with pu, approximated as StopGrad(pgy). The use of StopGrad forces Levec(8)
to be minimized by manipulating the eigenvectors {v;}% ; and not the generated
posterior mean pg),. These eigenvectors are computed using an SVD of centered
approximate-posterior samples. To reduce the computational burden imposed by this
SVD, a “lazy regularization” [45] approach is adopted, which computes Leyec(6) only
once every M training steps. Training proceeds in this manner until the eigenvectors
{vr} converge. Starting at Fe,, epochs, the Le,.(6) regularization from (3.9) is added,

but with Ay approximated as

A, & StopGrad (rp—||B¢ [Ts — Hzy: B1 — Hzlys - -, Ty, — pzyl) (3.10)

where StopGrad is used so that the optimization focuses on {\z}. The rationale
behind (3.10) is that, when o), = v), and pg, = pyy, the terms [0 (zy — pg)y)]? and
[0 (Z; — pzy)]? Vj all equal Ay in yy-conditional expectation. This expectation is

30

approximated using a (1 + P,c,)-term sample average in (3.10) via the squared norm.
The eigenvalues {\;} in (3.9) are computed using the previously described SVD and
the regularization schedule is again M-lazy.

We now provide additional details on Algorithm 1. After the loss is initialized in
line 1, the following steps are executed for each measurement vector y, in the batch.
First, approximate posterior samples {&;}7 are generated in line 5, where P, = 2 as
done in Chapter 2. Using these samples, the adversarial component of the loss is added
in line 6 and the rcGAN regularization is added in line 8. Starting at epoch FEeyec,
lines 11-16 are executed whenever the training iteration is a multiple of M. Nominally,

Fevec is set where the validation PSNR of i (an empirical approximation of pg),)

Ppca
j=1

stabilizes and M = 100. Within those lines, samples {Z; are generated in line 12
(where nominally P,., = 10K), their sample mean is computed in line 13, and the
SVD of the centered samples is computed in line 14. The top K right singular vectors
are then extracted in line 15 in order to construct the Leec(6) regularization, which
is added to the overall generator loss £(8) in line 16. Starting at epoch FEe,,j, where
nominally Feyal = Fevec + 25, lines 20-22 are executed whenever the training iteration
is a multiple of M. In line 20, the top K eigenvalues {Xk} are constructed from the
previously computed singular values and, in line 22, the L. (0) regularization is
constructed and added to the overall training loss. The construction of L (0) was
previously described around (3.10). Finally, once the losses for all batch elements

have been incorporated, the gradient V.£(8) is computed using back-propagation and

a gradient-descent step of 6 is performed using the Adam optimizer [50] in line 26.

31

3.3 Numerical Experiments

We now present experiments with Gaussian data, MNIST denoising, MRI, and
FFHQ face inpainting. Additional implementation and training details for each

experiment are provided in Appendix D.3.
3.3.1 Recovering Synthetic Gaussian Data

Here our goal is to recover ~ Ny, Xy) € R? from y = Mx + w € RY, where
M masks x at even indices and noise w ~ N(0,0°I) is independent of & with
0? = 0.001. Since x and y are jointly Gaussian, the posterior is Gaussian with
Py = My + Ty 3 (y — py) and By, = 3, — X 315, where iy, pry, By, 3y are
marginal and X, 3, are joint statistics.

We generate random g, ~ N(0,I) and ¥, with half-normal eigenvalues A
(see additional details in App. D.3.1), and consider a sequence of problem sizes
d = 10,20, 30, ...,100. For each d, we generate 70000 training, 20 000 validation, and
10000 test samples. The generator and discriminator are simple multilayer perceptrons
(see App. D.3.2) trained for 100 epochs with K = d, Feyec = 10, Baqy = 107, and
Boca = 1072

Competitors. We compare the proposed pcaGAN to rcGAN and NPPC [61].
rcGAN uses the same generator and discriminator architectures as pcaGAN and is
trained according to (3.3) with B,q, = 107> and P, = 2. For NPPC, we use the
authors’ implementation [62] with K = d and some minor modifications to work
with vector data. To evaluate performance, we use the Wasserstein-2 (W2) distance

between py), and pyy, which in the Gaussian case reduces to

—

Whauty: By) = [ty — By 3 + 1 Sy + Sy — 205, 370) 7). (3.11)

x|y

32

0.5 0.5

(a) WQ(px|y7p?|y) vs. M (b) WQ(pxlyapily) vs. K (c) Wg(pxb,,pﬂy)/d vs. d

o

0.4 0.4
0.3 —_/——/ 0.3
0.2 0.2

0.1 0.1

0.0 0.0
0 25 50 75 100 125 150 175 200

Figure 3.1: Gaussian experiment. Wasserstein-2 distance versus (a) lazy update period
M for pcaGAN with d = 100 = K, (b) estimated eigen-components K for pcaGAN
with d = 100 and M = 100, and (c) problem dimension d for all methods under test
with K = d and M = 100.

For the cGANs, we compute fi,), and i& empirically from 10d samples, while for
NPPC we use the conditional mean, eigenvalues, and eigenvectors returned by the
approach.

Results. Figure 3.1a examines the impact of the lazy update period M on
pcaGAN’s W2 distance at d = 100 with K = d. Based on this figure, to balance
performance with training overhead, we set M = 100 for all future experiments.
Figure 3.1b examines the impact of K on W2 distance for the pcaGAN with d = 100.
It shows that using K < d causes a relatively mild increase in W2 distance, as expected
due to the half-normal distribution on the true eigenvalues \;. Figure 3.1c shows that
the proposed pcaGAN outperforms rcGAN and NPPC in W2 distance for all problem

sizes d.
3.3.2 MNIST Denoising

Now our goal is to recover an MNIST digit « € [0, 1]***?® from noisy measurements
y = x +w with w ~ N(0,I). We randomly split the MNIST training fold into
50000 training and 10000 validation images, and we use the entire MNIST test set

33

for testing. For pcaGAN and rcGAN, we use a U-Net [74] generator and the encoder
portion of the same U-Net followed by one dense layer as the discriminator. pcaGAN
was trained for 125 epochs with Eeyec = 25, Baav = 107°, Spca = 1071, and K € {5, 10}.

Competitors. We again compare the proposed pcaGAN to rcGAN and NPPC.
For rcGAN we used the same generator and discriminator architectures as pcaGAN
and trained according to (3.3) with B4, = 10~® and P.. = 2. For NPPC, we used the
authors” MNIST implementation from [62].

Following the NPPC paper [61], we evaluate performance using root MSE (rMSE)
Exy{llx — iy ll2} and Residual Error Magnitude (REM;) Ey, {||(I — ‘A/},‘A/},T)eHQ},
where e = & — iy and ‘75 is an 282 x 5 matrix whose kth column equals the kth
principal eigenvector v. For the cGANSs, we use fi,, = &, and compute {v;} from
the SVD of a matrix of centered samples {Z;}Z |, both with P = 100. For NPPC, we
use the conditional means and eigenvectors returned by the approach. For performance
evaluation, we also consider Conditional Fréchet Inception Distance (CFID) [80] with
InceptionV3 features. CFID is analogous to Fréchet Inception Distance (FID) [33]

but applies to conditional distributions (see Appendix D.1 for more details).

34

xr

Figure 3.2: For (a) pcaGAN and (b) NPPC, this figure shows the true image @, noisy
measurements y, the conditional mean fuy, principal eigenvectors {v;}, and two

perturbations of fi,.

Results. Table 3.1 shows rMSE, REM;, CFID, and the reconstruction time for a

batch of 128 images on the test fold. (NPPC does not generate image samples and

35

Table 3.1: Average MNIST denoising results.

Model IMSE| REM;| CFID| Time(128)]
NPPC (Nehme et al. [61]) 3.94 3.63 - 112 ms
rcGAN 4.04 3.41 63.44 118 ms
pcaGAN (K =5) 4.02 3.31 61.48 118 ms
pcaGAN (K = 10) 4.02 3.25 60.16 118 ms

so CFID does not apply.) The table shows that the proposed pcaGAN wins in all
metrics, except for rMSE where NPPC wins.

This is not surprising because NPPC computes fi,), using a dedicated network
trained to minimize MSE loss. NPPC also generates its eigenvectors slightly quicker
than pcaGAN generates samples. Table 3.1 also shows that pcaGAN performance
improves as K increases from 5 to 10, despite the fact that REMj5 uses only the
top 5 eigenvectors. Figure 3.2 shows examples of the 5 principal eigenvectors and
posterior mean learned by pcaGAN and NPPC. The eigenvectors of pcaGAN are more
structured and less noisy than those of NPPC. Figure 3.2 also shows fiy +awvy, for

a € [—3,3] and k € {1,4}. Additional figures can be found in App. E.2.1.
3.3.3 Accelerated MRI

We now consider accelerated MRI, where the goal is to recover a complex-valued
multicoil image @ from masked frequency-domain (i.e., “k-space”) measurements y.
To build the image data {x,}, we follow the approach in Chapter 2, which uses the
first 8 slices of all fastMRI [102] T2 brain volumes with at least 8 coils, crops to
384 x 384 pixels, and compresses to 8 virtual coils [108]. This yields 12200 training,

2376 testing, and 784 validation images. To create each y;, we transform x; to the

36

pcaGAN rcGAN pscGAN cGAN Langevin
(Ohayon) (Adler) (Jalal)

Truth
Average
32)

Truth

Sample

E2E-VarNet
Sample

Figure 3.3: Example MRI recoveries at R = 8. Arrows highlight meaningful variations.

k-space, subsample using the Cartesian GRO mask [41] at accelerations R = 4 and
R = 8, and transform the zero-filled k-space measurements back to the image domain.

We train pcaGAN for 100 epochs with K = 1, Eeec = 25, Bagqv = 1075, and
Boca = 1072 and select the final model using validation CFID computed with VGG-16
features.

Competitors. We compare the proposed pcaGAN to rcGAN, pscGAN [64],
Adler & Oktem’s ¢cGAN [4], the Langevin approach [39], and the E2E-VarNet [89).
All cGANs use the generator and discriminator architectures as rcGAN and enforce
data-consistency [81]. For rcGAN and the Langevin approach, we did not modify
the authors’ implementation from [38] except to use the GRO sampling mask. For
E2E-VarNet, we use the GRO mask, hyperparameters, and training procedure from

39).

37

pcaGAN rcGAN pscGAN cGAN Langevin
(Ohayon) (Adler) (Jalal)

Truth
Average
32)

Truth

Sample

E2E-VarNet
Sample

Figure 3.4: Example MRI recoveries at R = 4. Arrows highlight meaningful variations.

Following Chapter 2, we convert the multicoil outputs &; to complex-valued images
using SENSE-based coil combining [70] with ESPIRiT-estimated [94] coil sensitivity
maps, and compute performance on magnitude images. All feature-based metrics
(CFID, FID, LPIPS, DISTS) were computed with AlexNet features to show that
pcaGAN does not overfit to the VGG-16 features used for validation. It was shown in
[3] that image-quality metrics computed using ImageNet-trained feature generators
like AlexNet and VGG-16 perform comparably to metrics computed using MRI-trained
feature generators in terms of correlation with radiologists’ scores.

Results. Table 3.2 shows CFID, FID, APSD £ (L 3°0 L)1z, — ,[|?)!/2, and 4-
sample generation time for the methods under test. Due to its slow sample-generation
time, we evaluate the CFID, FID, and APSD of the Langevin technique [39] using
the 72-image test from Chapter 2. But due to the bias of CFID at small sample sizes

[80], we evaluate the other methods using all 2376 test images (CFID?) and again

38

Table 3.2: Average MRI results at acceleration R € {4,8}

R=4 R=8

Model CFID', CFID?, CFID?, FID| APSD Time (4} CFID', CFID?, CFID® FID, APSD Time (4))
E2E-VarNet (Sriram et al. [89]) 16.08 13.07 10.26 38.88 0.0 310ms 36.86 29.90 23.82 44.04 0.0 316ms
Langevin (Jalal et al. [39]) 33.05 - - 3143 5.9e-6 14 min 48.59 - - 52.62 7.6e-6 14 min
c¢GAN (Adler & Oktem [4]) 19.00 12.05 7.00 29.77 3.9e-6 217 ms 59.94 40.24 26.10 31.81 7.7e-6 217 ms
pscGAN (Ohayon et al. [64]) 13.74 10.56 7.53 3728 7.2e-8 217 ms 39.67 31.81 24.06 4339 7.7¢-7 217 ms
rcGAN 9.71 5.27 1.69 25.62 3.8e-6 217 ms 24.04 13.20 3.83 28.43 7.6e-6 217 ms
pcaGAN 8.78 4.48 1.29 25.02 4.4e-6 217 ms 21.65 11.47 3.21 28.35 6.5e-6 217 ms

Table 3.3: Average PSNR, SSIM, LPIPS, and DISTS of &, versus P for MRI at
R=238

PSNRT SSIM1
Model P=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 36.49 - - - - - 0.9220 - - - - -
Langevin (Jalal et al. [39]) 32.17 32.83 33.45 33.74 33.83 33.90 0.8725 0.8919 0.9031 0.9091 0.9120 0.9137
c¢GAN (Adler & Oktem [4]) 31.31 32.31 32,92 3326 3342 33,51 0.8865 0.9045 0.9103 0.9111 0.9102 0.9095
pscGAN (Ohayon et al. [64]) 34.89 34.90 3490 3490 3491 3492 0.9222 0.9217 09213 0.9211 0.9211 0.9210
rcGAN 32.32 33.67 3453 35.01 3527 3542 0.9030 0.9199 0.9252 0.9257 0.9251 0.9246
pcaGAN 33.28 3447 3520 35.61 3582 3594 09136 0.9257 0.9283 0.9275 0.9262 0.9253

LPIPS| DISTS|
Model P=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 0.0575 - - - - - 0.1253 - - - - -
Langevin (Jalal et al. [39]) 0.0769 0.0619 0.0579 0.0589 0.0611 0.0611 0.1341 0.1136 0.1086 0.1119 0.1175 0.1212
c¢GAN (Adler & Oktem [4]) 0.0698 0.0614 0.0623 0.0667 0.0704 0.0727 0.1407 0.1262 0.1252 0.1291 0.1334 0.1361
pscGAN (Ohayon et al. [64]) 0.0532 0.0536 0.0539 0.0540 0.0534 0.0540 0.1128 0.1143 0.1151 0.1155 0.1157 0.1158
rcGAN 0.0418 0.0379 0.0421 0.0476 0.0516 0.0539 0.0906 0.0877 0.0965 0.1063 0.1135 0.1177
pcaGAN 0.0358 0.0344 0.0391 0.0442 0.0479 0.0499 0.0804 0.0799 0.0920 0.1026 0.1099 0.1144

using all 14576 training and test images (CFID?®). Table 3.2 shows that pcaGAN
yields better CFID and FID than the competitors. All cGANs generated samples 3-4
orders-of-magnitude faster than the Langevin approach [39].

Table 3.3 shows PSNR, SSIM, LPIPS [107], and DISTS [27] for the P-sample
average Ty at P € {1,2,4,8,16,32} and R = 8. It has been shown that DISTS
correlates particularly well with radiologist scores [47]. The E2E-VarNet achieves the

best PSNR, but the proposed ¢cGAN achieves the best LPIPS and DISTS when P = 2

39

Table 3.4: Average PSNR, SSIM, LPIPS, and DISTS of Z,, versus P for R = 4 MRI

PSNR?T SSIMt
Model prP=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 39.93 - - - - - 0.9641 - - - - -
Langevin (Jalal et al. [39]) 36.04 37.02 37.65 37.99 3817 3827 0.8989 0.9138 0.9218 0.9260 0.9281 0.9292
¢GAN (Adler & Oktem [4]) 35.63 36.64 3724 3756 37.73 37.82 0.9330 0.9445 0.9478 0.9480 0.9477 0.9473
pscGAN (Ohayon et al. [64]) 39.44 39.46 39.46 39.47 3947 3947 0.9558 0.9546 0.9539 0.9535 0.9533 0.9532
rcGAN 36.96 3814 3884 39.24 3944 3955 0.9440 0.9526 0.9544 0.9542 0.9537 0.9533
pcaGAN 37.32 3843 39.11 3947 39.67 39.77 0.9463 0.9541 0.9557 0.9553 0.9546 0.9542

LPIPS] DISTS|
Model pP=1 P=2 P=4 P=8 P=16 P=32 P=1 P=2 P=4 P=8 P=16 P=32
E2E-VarNet (Sriram et al. [89]) 0.0316 - - - - - 0.0859 - - - - _
Langevin (Jalal et al. [39]) 0.0545 0.0394 0.0336 0.0320 0.0317 0.0316 0.1116 0.0921 0.0828 0.0793 0.0781 0.0777
¢GAN (Adler & Oktem [4]) 0.0285 0.0255 0.0273 0.0298 0.0316 0.0327 0.0972 0.0857 0.0878 0.0930 0.0967 0.0990
pscGAN (Ohayon et al. [64]) 0.0245 0.0247 0.0248 0.0249 0.0249 0.0249 0.0767 0.0790 0.0801 0.0807 0.0810 0.0811
rcGAN 0.0175 0.0164 0.0188 0.0216 0.0235 0.0245 0.0546 0.0563 0.0667 0.0755 0.0809 0.0837
pcaGAN 0.0164 0.0159 0.0188 0.0214 0.0231 0.0242 0.0542 0.0548 0.0662 0.0754 0.0811 0.0843

and the best SSIM when P = 8. This P-dependence is related to the perception-
distortion trade-off [11] and consistent with that reported in Chapter 2.

Table 3.4 shows PSNR, SSIM, LPIPS [107], and DISTS [27] for the P-sample
average & p at P € {1,2,4,8,16,32} for R = 4. In this case, the E2E-VarNet attains
the best PSNR and SSIM, while pcaGAN performs best in LPIPS and DISTS when
P =2 and P =1, respectively. These results, in conjunction with the R = 8 results
discussed in Sec. 3.3.3, show that pcaGAN yields a notable improvement over rcGAN
in all metrics.

Figure 3.3 shows zoomed versions of two recoveries Z; and the sample average &,
with P = 32 at R = 8. Similarly, Figure 3.4 shows zoomed versions of two recoveries &;
and the sample average T, with P =32 at R = 4. Appendices E.2.2 and E.2.3 show

additional plots of Z,, that visually demonstrate the perception-distortion trade-off.

40

Table 3.5: Average FFHQ inpainting results.

Model CFID) FID| LPIPS] Time (40 samples)]
DPS (Chung et al. [17]) 7.26 2.00 0.1245 14 min

DDNM (Wang et al. [96]) 1130 3.63 0.1409 30

DDRM (Kawar et al. [48]) 1317 536 01587 5

pscGAN (Ohayon et al. [64]) 18.44 840 0.1716 325 ms
CoModGAN (Zhao et al. [111]) 7.85 223 01290 325 ms

rcGAN 7.51 212 0.1262 325 ms

pcaGAN 7.08 1.98 0.1230 325 ms

3.3.4 Large-Scale Inpainting

Our final goal is to inpaint a face image with a large randomly generated masked
region. For this task, we use 256 x 256 FFHQ face images [44] and the mask generation
procedure from [111]. We randomly split the FFH(Q training fold into 45000 training
and 5000 validation images, and we use the remaining 20 000 images for testing.

For pcaGAN, we use CoModGAN'’s [111] generator and discriminator architecture
and train for 100 epochs using K = 2, Feyec = 25, Bagv = 5 x 1072, and By = 1077,

Competitors. We compare with CoModGAN [111], pscGAN [64], rcGAN, and
state-of-the-art diffusion methods DDRM (20 NFEs) [48], DDNM (100 NFEs) [96],
and DPS (1000 NFEs) [17]. CoModGAN, pscGAN, and rcGAN differ from pcaGAN
only in generator regularization and CoModGAN’s use of discriminator MBSD [42].
For DDNM, DDRM, and DPS, we use the authors’ implementations from [95], [49],
and [16] with mask generation from [111]. FID and CFID were evaluated on our
20000 image test set with P=1.

Results. Table 3.5 shows test CFID, FID, LPIPS, and 40-sample generation time.
The table shows that the proposed pcaGAN wins in CFID, FID and LPIPS, and that

the four cGANs generate samples 3—4 orders-of-magnitude faster than DPS. Figure 3.5

41

Original
pcaGAN

Masked
rcGAN

DDNM DPS CoModGAN

DDRM

- ' -
¥ N ¥ iN ¥ N
il o il o

Figure 3.5: Example of inpainting a randomly generated mask on a 256 x 256 FFHQ
face image.

shows five generated samples for each method under test, along with the true and
masked image. pcaGAN shows better subjective quality than the competitors, as well

as good diversity. Additional figures can be found in App. E.2.4.

3.4 Discussion

When training a cGAN;, the overall goal is that the samples {Z;} generated from a
particular y accurately represent the true posterior py,(-|y). Achieving this goal is

42

challenging when training from paired data {(x;, y;)}, because such datasets provide
only one example of & for each given y. Early methods like [37, 4, 111] focused on
providing some variation among {Z;}, but did not aim for the correct variation. rcGAN
focused on providing the correct amount of variation by enforcing tr(Xgy) = tr(3yy),
and the proposed pcaGAN goes farther by encouraging g, and X,), to agree along
K principal directions. Our experiments demonstrate that pcaGAN yields a notable
improvement over rcGAN and outperforms contemporary diffusion approaches like
DPS [17].

PCA principles have also been used in unconditional GANs, where the goal is to
train a generator G that turns codes z ~ N (0, I) into outputs & = Gg(2z) that match
the true marginal distribution py from which the training samples {x;} are drawn.
For example, the eigenGAN from [32] aims to train in such a way that semantic
attributes are learned (without supervision) and can be independently controlled by

manipulating individual entries of z. But their goal is clearly different from ours.

3.5 Conclusion

In this chapter, we proposed pcaGAN, a novel image-recovery cGAN that enforces
correctness in the K principal components of the conditional covariance matrix g,
as well as in the conditional mean pg, and trace-covariance tr(Xg,). Experiments
with synthetic Gaussian data showed pcaGAN outperforming both rcGAN and NPPC
[61] in Wasserstein-2 distance across a range of problem sizes. Experiments on
MNIST denoising, accelerated multicoil MRI, and large-scale image inpainting showed

pcaGAN outperforming several other cGANs and diffusion models in CFID, FID,

43

PSNR, SSIM, LPIPS, and DISTS metrics. Furthermore, pcaGAN generates samples 3—
4 orders-of-magnitude faster than the tested diffusion models. The proposed pcaGAN
thus provides fast and accurate posterior sampling for image recovery problems,
enabling uncertainty quantification, fairness in recovery, and easy navigation of the
perception/distortion trade-off.

Limitations. We acknowledge several limitations of our work in this chapter.
First, generating F,., = 10K samples during training can impose a burden on memory
when @ is high dimensional. In the multicoil MRI experiment, € R? for d = 2.4¢6,
which limited us to K = 1 at batch size 2. Second, although our focus is on designing
a fast and accurate posterior sampler, more work is needed on how to best use
the generated samples across different applications. Using them to compute rigorous
uncertainty intervals seems like a promising direction [6, 92, 60]. Third, the application
to MRI is preliminary; additional tuning and validation is needed before it can be

considered for clinical practice.

44

Chapter 4: Solving Inverse Problems using Diffusion with

Iterative Colored Renoising

In this chapter, we discuss DDfire, a novel diffusion inverse solver. We show that
the approximations produced by existing methods for the posterior score Vg, p;(2:|y)
are relatively poor, especially early in the reverse process. We propose a new approach
that iteratively “renoises” the estimate several times per diffusion step. This iterative
approach, which we call Fast Iterative REnoising (FIRE), injects colored noise such
that the pre-trained diffusion model always sees white noise, in accordance with how
it was trained. We leverage FIRE in the DDIM reverse process and show that the
resulting “DDfire” offers state-of-the-art accuracy and runtime on several linear inverse
problems. The content of this chapter appears in “Solving Inverse Problems using
Diffusion with Iterative Colored Renoising,” which was published in Transactions on

Machine Learning Research (TMLR) in 2025.

4.1 Background

Given training data drawn from distribution pg, diffusion models corrupt the
data with ever-increasing amounts of noise and then learn to reverse that process
in a way that can generate new samples from py. In this chapter, we assume the

variance-exploding (VE) diffusion formulation [87], whereas Appendix B.1 provides

45

details on the variance-preserving (VP) formulation, including DDPM [34] and DDIM
82].

The VE diffusion forward process can be written as a stochastic differential equation
(SDE) dx = /d[¢2(t)]/ dt dw over ¢ from 0 to T, where o%(t) is a variance schedule
and dw is the standard Wiener process (SWP) [87]. The corresponding reverse process
runs the SDE dx = —0?(t)V, Inp,(z) dt + /d[o%(t)]/ dt dw backwards over ¢ from
T to 0, where p;(-) is the marginal distribution of @ at ¢ and dw is the SWP run
backwards. The “score function” V In p;(x) can be approximated using a deep neural
network (DNN) sg(x,t) trained via denoising score matching [36].

In practice, time is discretized to t € {0,1,...,T}, yielding the SMLD from [84],
whose forward process, ;1 = x; + mwt, with i.i.d {w,;} ~ N(0,I) and

o2 = 0, implies that
T, = xy + o€, € ~N(0,I) (4.1)

for all t € {0,1,...,T}. The SMLD reverse process then uses i.i.d {n;} ~ N (0,I) in

0'2 02 — 0'2
Ty = Tiyq + (Ut2+1 - O'?)vw lnptH (thrl) + %ntﬂ. (42)
t+1

To exploit side information about x(, such as the measurements y in an inverse
problem, one can simply replace p;(-) with p,(-|y) in the above equations [87]. However,
most works aim to avoid training a y-dependent approximation of the conditional
score function Vg Inp,(x;|y). Rather, they take an “unsupervised” approach, where
So(xy, 1) = Vg Inpy(a,;) is learned during training but y is presented only at inference

[22]. In this case, approximating V In p;(x:|y) is the key technical challenge.

46

There are two major approaches to approximate Vg Inp,(x;|y). The first uses
the Bayes’ rule to write Vg Inp(xi|y) = Ve Inpi(a;) + Ve Inp(y|x;) and then re-
places Vg Inp;(a;) with the score approximation sg(x;,t). But the remaining term,
V. Inpi(y|a;), is intractable because pi(y|x:) = [p(y|xo)p(xo|z:) deg with unknown
p(xo|x;), and so several approximations have been proposed. For example, DPS [17]
uses p(xo|lx:) ~ 0(xy — o), where Zop; is the approximation of E{ag|x;} computed

from sg(x,t) using Tweedie’s formula:
Top = + 0?59(33,5, t). (4.3)

Similarly, TIGDM [83] uses p(xo|x:) ~ N (xo; Zo, ¢I) with some ;. However, a
drawback to both approaches is that they require backpropagation through sq(-, %),
which increases the cost of generating a single sample. In Fig. 4.4, we show that
DDfire offers a 1.5x speedup over DPS at an equal number of NFEs.

The second major approach to approximating Vg Inp:(x:|y) uses (1.1) with
E{zo|z:,y} approximated by a quantity that we’ll refer to as Zo,. For example,

with AWGN-corrupted linear measurements
y=Axs+o,w R, w~N(0,1I), (4.4)

DDNM [96] approximates E{xo|xz;, y} by first computing Zo; from (4.3) and then
performing the hard data-consistency step Zoiy = Aty + (I — AT A)Zg);, where (-)*
is the pseudo-inverse. DDS [20] and DiffPIR [114] instead use the soft data-consistency
step Zojy = argming |y — Ax||* + ||z — Zo||* with some > 0. DDRM [48] is
a related technique that requires a singular value decomposition (SVD), which is

prohibitive in many applications.

47

There are other ways to design posterior samplers. For example, [53] and [39]
use Langevin dynamics. RED-diff [57] and SNORE [72] inject white noise into
the RED algorithm [73], whose regularizer’s gradient equals the score function [71].
(13, 21, 100, 101, 105] use Markov-chain Monte Carlo (MCMC) in the diffusion reverse
process.

A key shortcoming of the aforementioned approaches is that their conditional-score
approximations are not very accurate, especially early in the reverse process. For
the methods that approximate E{xg|x;, y}, we can assess the approximation quality
both visually and via mean-square error (MSE) or PSNR, since the exact E{xo|z;, y}
minimizes MSE given @; and y. For the methods that approximate Vg In p,(x;|y),

we can compute their equivalent conditional-denoiser approximations using
E{ao|x:, y} = @ + 07 Vo Inpi(a4]y), (4.5)

which follows from (1.1). Figure 4.1 shows E{x|x;, y}-approximations from the
DDRM [48], DiffPIR [114], DPS [17], and DAPS [105] solvers at times 25%, 50%, and
75% through their reverse processes for noisy box inpainting with o,, = 0.05. The

approximations show unwanted artifacts, especially early in the reverse process.

4.2 Approach

In this chapter, we aim to accurately approximate the conditional denoiser

E{xo|z:, y} at each step of the diffusion reverse process.
4.2.1 Fast Iterative REnoising (FIRE)

In this section, we describe the FIRE algorithm, which approximates E{axq|7init, y }

assuming y from (4.4) and 7,y = ®o + oinie with € ~ N(0,I) and some iy > 0.

48

DDRM DiffPIR DPS DAPS DDfire

I PSNRTI6II7 " PSNRPRL16 " PSNR*? ‘ PSNR@.BS R4.73
L e N e\ 2 N
o L ‘ ¥ ET 3 E
8 = ‘ & &k
S ™ J m d.)
9 N B N\
" PSNR™R0.14 " PSNR”R2.13 PSNR?'\%.39 R2. PSNR
% a & i = £
B 7N N
PSNR722.90 " PSNR™23.60
b h }
L == S S
D_: =2 - y 2 -
T - i A)
R 2

Figure 4.1: Left column: True x(, noisy box inpainting y, and 50-iteration FIRE
approximation of E{xo|y}. Other columns: Approximations of E{xy|x;,y} at differ-
ent t (as measured by % NFEs). Note the over-smoothing with DDRM and DPS.
Additionally, note the cut-and-paste artifacts of DiffPIR and DAPS.

FIRE performs half-quadratic splitting (HQS) PnP with a scheduled denoising variance
o2, similar to DPIR from [106], but injects colored noise ¢ to ensure that the error in
the denoiser input r remains white. It is beneficial for the denoiser to see white input
error during inference, because it is trained to remove white input error. The basic
FIRE algorithm iterates the following steps N > 1 times, after initializing r < 7j,;:
and o < Oinie:

S1) Denoise r assuming AWGN of variance o2, giving .

S2) MMSE estimate @ given y from (4.4) and the prior &y ~ N (Z,vI) with some

v >0, giving .

S3) Update the denoising variance o2 via 0% <— ¢%/p with some p > 1,

49

S4) Update r < Z+c using colored Gaussian noise ¢ created to ensure Cov{r—xy} =
o’I.
S1)-S3) are essentially DPIR with regularization strength controlled by v and a
geometric denoising schedule with rate controlled by p, while S4) injects colored
noise. In contrast, other renoising PnP approaches like SNORE [72] inject white noise.
Section 4.3.1 examines the effect of removing ¢ or replacing it with white noise. Next
we provide details and enhancements of the basic FIRE algorithm.
In the sequel, we use “d(x,0)” to denote a neural-net approximation of the
conditional-mean denoiser E{xo|x} of x = xy + o€ with € ~ N (0,I). Given a score
function approximation sg(x,t) ~ V, Inp,(x) as discussed in Sec. 4.1, the denoiser

can be constructed via (4.3) as
d(x,0) = x + 0°se(x,t) with ¢ such that oy = 0. (4.6)

When FIRE estimates x, from the measurements y and the denoiser output =,
it employs a Gaussian approximation of the form xy ~ N (@, vI), similar to DDS,
DiffPIR, and prox-based PnP algorithms. But it differs in that v is explicitly estimated.

The Gaussian approximation xy ~ N (@, vI) is equivalent to
xo =T+ \ve, e~N(01I). (4.7)

Suppose &y = T + /e with e ~ N (0,I), where 1 denotes the true error variance.
Then (4.4) and (4.7) imply
E{||ly — AZ|*} = E{||Azo + o,w — Az + /1pAe|*}
= E{|loww + nAe|*}
= mo,, + wll A%, (4.8)

20

assuming independence between e and w. Consequently, an unbiased estimate of 1

can be constructed as
(ly — AZ|* — moy) /|| All7 = v. (4.9)

Figure 4.3 shows that, in practice, the estimate (4.9) accurately tracks the true error
variance ||z — Z||*/d.

Under (4.4) and (4.7), the MMSE estimate of @, from y and @ can be written as

[69]
% 2 argmind — |y — Az|?+ — & — 7|
x 202 2u
o2 -1 o2
= (ATA + —WI> (ATy + —W@). (4.10)
1% 1%

Equation (4.10) can be computed using conjugate gradients (CQG) or, if practical, the
SVD A=USV' via
o2 \ 7! o2
z=V <STS + —WI) (STUTy + —WVTz) (4.11)
v
In any case, from (4.7) and (4.10), the error in & can be written as
o2 \ 7! o2
T —x0= (ATA—i——WI) (AT[ACBO + oww| + —W[wo—\/;e]) —xg
v v

ATAL T (o ATw T (4.12)
== - Ow - T = 5 .
v N

and so the covariance of the error in Z can be written as
o2 -1 ok o -1
Cov{Z — xy} = (ATA + —WI> (U@ATA + —WI) (ATA + —WI>
v v v

1 . 1.\ "',
=(zATAa+-1) 2C. (4.13)

w

From (4.13) we see that the error in & can be strongly colored. For example, in
the case of inpainting, where A is formed from rows of the identity matrix, the error

o1

variance in the masked pixels equals v, while the error variance in the unmasked
pixels equals (1/02 + 1/v)~! < 02. These two values may differ by many orders of
magnitude. Since most denoisers are trained to remove white noise with a specified
variance of o2, direct denoising of Z performs poorly, as we show in Sec. 4.3.1.

To circumvent the issues that arise from colored denoiser-input error, we propose to
add “complementary” colored Gaussian noise ¢ ~ N (0, X) to Z so that the resulting

r = Z + ¢ has an error covariance of 021, i.e., white error. This requires that

S=¢I-C
2 1 T T, 1 -
=0l —-|—=VS'SV'+-1
o2 v
1

2
_ : T 2
= VDlag(}\)V for /\z =0 — W

(4.14)

for s2 £ [STS);;. By setting 02 > v, we ensure that \; > 0 Vi, needed for X to be a
valid covariance matrix. In the case that the SVD is practical to implement, we can

generate ¢ using
c = V Diag(A\)?e, e~ N(0,1). (4.15)
In the absence of an SVD, we propose to approximate 3 by
SL (- I+E¢ATA (4.16)

with some & > 0. Note that 3 agrees with 3 in the nullspace of A (i.e., when s, = 0)

for any £. By choosing

1 1
- _ 4.1
‘= (saax/oa+1/u>’ (4.17)

S will also agree with 3 in the strongest measured subspace (i.e., when s, = Spax)-
Without an SVD, spnax can be computed using the power iteration [68]. Finally,

52

c~ N(0, f]) can be generated via
c=[Vol-—vI JEAT]e, e~N(0,I)eR"™. (4.18)

Figure D.1 shows a close agreement between the ideal and approximate renoised error

spectra in practice. Next, we provide the main theoretical result on FIRE.

Theorem 4. Suppose that, for any input r = xy + o€ with € ~ N (0, I), the denoiser
output d(r, o) has white Gaussian error with known variance v < o? and independent
of the noise w in (4.4). Then if initialized using Tinx = To + Tinir€ with arbitrarily large
but finite oy and € ~ N (0, 1), there exists a p > 1 under which the FIRE iteration

S1)-54) converges to the true xg.

Appendix C.5 provides a proof. Note that a key assumption of Theorem 4 is
that the denoiser output error is white and Gaussian. Because this may not hold in
practice, we propose to replace S1) with a “stochastic denoising” step (4.20), in which
AWGN is explicitly added to the denoiser output. As the AWGN variance increases,
the denoiser output becomes closer to white and Gaussian but its signal-to-noise
ratio (SNR) degrades. To balance these competing objectives, we propose to add
AWGN with variance approximately equal to that of the raw-denoiser output error.
We estimate the latter quantity from the denoiser input variance o? by training a

predictor of the form
Ug(0) ~ E{||d(xo + o€, 0) — zo|*/d}, (4.19)

where the expectation is over € ~ N(0, I) and validation images @y ~ po. Recall that

d is the dimension of xy. In our experiments, Uy(-) is implemented using a lookup

93

Algorithm 2 FIRE: = FIREs u(y, A, 0w, Tinit, Tinit, N, p)

Require: d(-,-), ¥y, A, Smax; 0w, N, p > 1, Pinit, Oinit. Also A = U Diag(s)V'" if using
SVD.

I: * = i and 0 = gjnit > Initialize
2: forn=1,...,N do

3 T<d(r,o)+\/Ve(o)v, v~N(0,I) > Stochastic denoising
4 v+ (|ly— AzZ|? —o2m)/||A|% > Error variance of =
5 i(—argrr%cinny—AwHQ/afv—k |z —%||*/v > Estimate o ~ N(Z, vI) from

Yy ~ N(Awo, O'\?VI)

6: o<+ max{c?/p,v} > Decrease target variance
7: if have SVD then

8: N+ ot —(s?/o2+1/v)7t, i=1,....d

9: c + V Diag(\)/%e, &~ N(0,1) > Colored Gaussian noise
10: else

11: € (V= (Shax/ 00 +1/v) ") [550a

12: ¢+ [Vo2—vI JEAT]e, e~N(0,I) > Colored Gaussian noise
13: end if

14: r<—IT+c > Renoise so that Cov{r —xz} = oI
15: end for

16: return =

table. The stochastic denoising step is then

T =d(z,0)+/Up(0)v, v~N(0,I). (4.20)

Algorithm 2 summarizes the FIRE algorithm for (4.4). In App. D.4.1, we describe
a minor enhancement to Alg. 2 that speeds up the MMSE estimation step when CG

is used.

4.2.2 Putting FIRE into Diffusion

Sections 4.2.1 detailed the FIRE algorithm for (4.4). There, the FIRE algorithm
approximates E{xg|r, y} given the measurements y and the side-information r =

xo + o€, where € ~ N(0,I). Thus, recalling the discussion in Sec. 4.1, FIRE can

o4

be used in the SMLD reverse process as an approximation of E{xq|x;, y} by setting
r=x, and ¢ = oy.

Instead of using SMLD for the diffusion reverse process, however, we use DDIM
from [82], which can be considered as a generalization of SMLD. In the sequel, we
distinguish the DDIM quantities by writing them with subscript k. As detailed in

App. B.3, DDIM is based on the model

T = Tg + o€, €L ~ N(O, I), (421)
for k = 1,..., K, where {07}, is a specified sequence of variances. The DDIM
reverse process iterates
xp_1 = hpxr + gr E{xo|xy, y} + n (4.22)
o (o2 —02_) oF_, — St
§k—77ddim\/k1 B b= =1y (4.23)
Ok Tk

over k = K,...,2,1, starting from xx ~ N(0,0%1I), using i.i.d {n,}X, ~ N(0,1I)
and some 7Nggim > 0. When nggim = 1 and K =T, DDIM reduces to SMLD. But when
Nadim = 0, the DDIM reverse process (4.22) is deterministic and can be considered as
a discretization of the probability-flow ODE [82], which can outperform SMLD when
the number of discretization steps K is small [15].

For a specified number K of DDIM steps (which we treat as a tuning parameter),

we set the DDIM variances {07} | as the geometric sequence

9 k—1
o =
aﬁ:afmin(';’*X)Kl, k=1,... K (4.24)
O min
for some o2, and o2 that are typically chosen to match the minimum and maximum

variances used to train the denoiser d(-,-) or score approximation sg(-,-). So for
example, if sg(-,-) was trained over the DDPM steps t € {1,...,T} for T = 1000,

95

then we would set 02, = (1 —@y)/a@; and o2, = (1 — @1000) /1000 With @; see (B.7)
for additional details.

Next we discuss how we set the FIRE iteration schedule { N, }/ , and variance-
decrease-factor p > 1. In doing so, we have two main goals:
G1) Ensure that, at every DDIM step k, the denoiser’s output-error variance is

at most Vresp at the final FIRE iteration, where vihesh is some value to be

determined.

G2) Meet a fixed budget of Ny 2 Zszl N, total NFEs.
Note that, because the denoiser’s output-error variance increases monotonically with
its input-error variance, we can rephrase G1) as
G1*) Ensure that, at every DDIM step k, the denoiser’s input-error variance is at most
O vesn ab the final FIRE iteration, where o3, ., is some value to be determined.

Although o2 . could be tuned directly, it’s not the most convenient option because a
good search range can be difficult to construct. Instead, we tune the fraction 6 € [0, 1)
of DDIM steps k that use a single FIRE iteration (i.e., that use Ny = 1) and we set
02 op at the DDIM variance o7 of the first reverse-process step k that uses a single
FIRE iteration, i.e., 1 + [(K — 1)0] = kthresh. (Note that kinresh = 1 when 6 = 0
and kipresh = K — 1 for § = 1.) All subsequent! DDIM steps k < kipresh Will then
automatically satisfy G1*) because o} decreases with k.

To ensure that the earlier DDIM steps k > Eipesh also satisfy G1*), we need that
o2 /pM—1 < g2 | since oF is the denoiser input-error variance at the first FIRE

Ny —1

iteration and o /p is the denoiser input-error variance at the last FIRE iteration.

'Recall that the reverse process counts backwards, i.e., k = K, K—1,...,2,1.

o6

104 é O otznresn
] P -8 FIRE 02
100§ DDIM o?
] I
] i P
10% 3 s i
3 I [
®] ;
o 10! 1 o
I+] 3 1 ! J
c] [] [7 [N
e ’ A
g ElN T [/! 7 .
]] ’-' L / il R
107t + ‘ ra —
11 & 7N
2] ® ! i - N
107¢ 3 ® 7 LN
] \\
1073 5 LN
] s
1074 4 L
4 T T T T T
10 8 6 4 2
DDIM step k

Figure 4.2: For an FFHQ denoiser: the geometric DDIM variances {07 }X_ | versus
DDIM step k for K = 10, the 03, ., corresponding to a =0.4 fraction of single-FIRE-
iteration DDIM steps, and the denoiser input variance o2 at each FIRE iteration of

each DDIM step, for Ny: =25 total NFEs.

For a fixed p > 1, we can rewrite this inequality as

Ino? — Ino?
Nk > noy 1 Othresh 41 éﬂk (425)
Inp
Because Ny is a positive integer, it suffices to choose
(4.26)

Nj = [max{1, N, }| Vk.

Finally, p is chosen as the smallest value that meets the NFE budget G2) under (4.26).
We find this value using bisection search. For a given kipresh, & lower bound on the
total NFES is kipresh - 1 + (K — kthresh) - 2. The definition of Kipesh then implies that
Niot > K(2—06) +6 — 1 and thus K < (Niot +1—0)/(2 — 6) £ Knin.
In summary, for a budget of Ny, total NFEs, we treat the number of DDIM steps
K e {1,..., Kmin} and the fraction of single-FIRE-iteration steps ¢ € [0,1) as tuning
parameters and, from them, compute {07 }2) {Ny}= |, and p. Figure 4.2 shows an

o7

Algorithm 3 DDfire

ReqUire: Yy, Aa Ow Or py|z7 P, {Jk}é(:h {Nk}szlu Tlddim Z 0
1.z ~N(0,0%1)
2: for k=K K—-1,...,1do

3: Zor = FIRE(y, A, *, @k, 0%, Ni, p) > FIRE via Alg. 2
o2 (62— g2
4: Ck:Uddim\/ ol kz =)
Ok

2

2 2 2

o — QG g — QG

k—1 k k-1 k|

5: Lp_1 = ka + (1 — T) Lo|k + SEMg, Mg ~ N(O, I) >
k k

DDIM update
6: end for
7: return T

example. The pair (K, J) can be tuned using cross-validation. Algorithm 3 details

DDIM with the FIRE approximation of E{xy|x, y}, which we refer to as “DDfire.”
4.2.3 Relation to Other Methods

To solve inverse problems, a number of algorithms have been proposed that iterate
denoising (possibly score-based), data-consistency (hard or soft), and renoising. Such
approaches are referred to as either plug-and-play, Langevin, or diffusion methods.
(Recall the discussion in Section 4.1). While existing approaches use white renoising,
the proposed DDfire uses colored renoising that whitens the denoiser input error.

When estimating @, from the measurements y of (4.4), methods such as DDS,
DiffPIR, DAPS, and SNORE use a Gaussian prior approximation of the form axq ~
N (z,vI). But while they control v with tuning parameters, DDfire explicitly estimates
v via (4.9). See Sec. 4.4 for a detailed comparison of DDfire to DDS, DiffPIR, and

SNORE.

o8

Table 4.1: DDfire ablation results for noisy FFHQ box inpainting with o,, = 0.05 at
1000 NFEs.

Method PSNRtT LPIPS| Runtime
DDfire 24.31 0.1127 34.37s
DDfire w/o renoising 18.48 0.2349 34.37s

DDfire w/o colored renoising 23.64 0.1553 34.37s
DDfire w/ stochastic denoising 24.30 0.1143 34.37s

DDfire w/o estimating v 23.02 0.1755 34.37s
DDfire w/o CG early stopping 24.31 0.1127 52.12s
DDfire w/ SVD 2431 0.1124 30.97s

4.3 Numerical Experiments

We use 256 x 256 FFHQ [44] and ImageNet [24] datasets with pretrained diffusion
models from [17] and [26], respectively. As linear inverse problems, we consider box
inpainting with a 128 x 128 mask, Gaussian deblurring using a 61 x 61 blur kernel with
3-pixel standard deviation, motion deblurring using a 61 x 61 blur kernel generated
using [12] with intensity 0.5, and 4x bicubic super-resolution. We compare to DDRM
(48], DiffPIR [114], IIGDM [83], DDS [20], DPS [17], RED-diff [57], and DAPS [105].

Unless specified otherwise, DDfire was configured as follows. For the linear inverse
problems, CG is used (no SVD), 1000 NFEs are used without stochastic denoising,
and the (K, 0) hyperparameters are tuned to minimize LPIPS [107] on a 100-sample
validation set (see Table D.1). Appendix D.4 contains additional details on the

implementation of DDfire and the competing methods.
4.3.1 Ablation Study

We first perform an ablation study on the DDfire design choices in Sec. 4.2 using
noisy FFHQ box inpainting and a 100-image validation set. The results are summarized

29

in Table 4.1. We first see that both PSNR and LPIPS suffer significantly when FIRE
is run without renoising (i.e., ¢ = 0 in line 14 in Alg. 2). Similarly, renoising using
white noise (i.e., ¢ ~ N(0,0%I) in line 14 of Alg. 2) gives noticeably worse PSNR
and LPIPS than the proposed colored noise. Using stochastic denoising gives nearly
identical performance to plain denoising (i.e., Uy(c) = 0 in line 3 of Alg. 2), and so
we use plain denoising by default with linear inverse problems. A more significant
degradation results when the denoiser output-error variance v is not adapted to @ in
line 4 of Alg. 2 but set at the data-average value U4(c). On the other hand, when CG
doesn’t use early stopping (as described in App. D.4.1) the runtime increases without
improving PSNR or LPIPS. Thus, we use early stopping by default. Finally, using
an SVD instead of CG, which also avoids the noise approximation in (4.16), gives
essentially identical PSNR and LPIPS but with a slightly faster runtime. Figure 4.4

shows another LPIPS/runtime comparison of the SVD and CG versions of DDfire.
4.3.2 Accuracy of ¢ and v

Figure 4.3 shows DDfire’s o versus iteration 4, for comparison to the true denoiser
input variance ||r — x||3/d, and DDfire’s v, for comparison to the true denoiser
output variance ||Zo — xo||3/d, for 25 FIRE iterations with p = 1.5 for noisy 4x
super-resolution at t[k] = 1000. We see that the DDfire estimates o and v track the

true error variances quite closely.

4.3.3 PSNR, LPIPS, and FID Results

For noisy linear inverse problems, Tables 4.2—4.3 show PSNR, LPIPS, and FID

[33] on a 1000-sample test set for FFHQ and ImageNet data, respectively. DDRM

60

—=— [[r-xo|l3d
-¥-- FIRE 0?

- ||io—xo||§/d
-¥-- FIREv

104 4

103 4

102 4

10! 4

Variance

100 4

101 4

1072 4

o :'Ia lIO fS 2b 2|5
SLM-FIRE iteration

Figure 4.3: DDfire o2, true denoiser input variance ||r — xy||3/d, DDfire v, and true
denoiser output variance ||y —x||3/d vs. DDfire iteration for noisy 4x super-resolution
at t[k] = 1000 for a single validation sample .

0.45
o 1GDM
0.40
o DiffPIR
0.35 49 DDRM DPSq
wn
% DDfire-20 o RED-diff

DDfire-50
DDfires

re-200 o DAPS
DDfire-500

DDfire-1000

0 20 40 60 80 100 120
Single image sampling time on one A100 GPU (s)

Figure 4.4: LPIPS vs. single image sampling time for noisy Gaussian deblurring on an
A100 GPU. The evaluation used 1000 ImageNet images. Solid line: DDfire with CG
for various numbers of NFEs. Dashed line: DDfire with SVD.

was not applied to motion deblurring due to the lack of an SVD. Tables 4.2-4.3 show

that DDfire wins in most cases and otherwise performs well.

61

Table 4.2: Noisy FFHQ results with measurement noise standard deviation o,, = 0.05.

Inpaint (box)

Deblur (Gaussian)

Deblur (Motion)

4x Super-resolution

Model ~ PSNRt LPIPS| FID, PSNRt LPIPS| FID| PSNRt LPIPS| FID| PSNRt LPIPS, FID|
DDRM 2171 01551 4061 2535 02223 5170 - - - 27.32 01864 4582
DiffPIR 2243 0.1883 3198 2456 02394 3482 2691 01952 26.67 2480 0.2486 32.33
IGDM 2141 02009 4441 2366 02525 4534 2514 02082 4195 2440 02520 5141
DDS 2028 0.1481 3023 2674 01648 2547 27.52 01503 27.59 26.71 01852 27.09
DPS 22.54 0.1368 3569 2570 01774 2518 26,74 0.1655 27.17 2630 01850 27.38
RED-diff 23.58 0.1883 48.86 2699 0.2081 3882 1647 0.5074 128.68 25.61 0.3569 70.86
DAPS 2361 01415 3151 2697 01827 3110 27.13 01718 30.74 2691 0.1885 30.83
DDfire 24.75 0.1101 25.26 27.10 0.1533 24.97 28.14 0.1374 26.12 27.13 0.1650 25.73
Table 4.3: Noisy ImageNet results with measurement noise standard deviation o,, =
0.05.
Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4x Super-resolution

Model ~ PSNRt LPIPS| FIDJ PSNRt LPIPS| FID, PSNRf LPIPS| FID| PSNRf LPIPS, FID|
DDRM 1824 0.2423 6747 2256 03454 6878 - - - 2449 02777 64.68
DiffPIR 18.03 02860 6555 21.31 03683 56.35 2436 0.2888 5411 2331 0.3383 6348
IGDM 17.69 03303 86.36 20.87 04191 7543 2215 03591 7091 21.25 04149 7857
DDS 1668 0.2222 63.07 2314 02684 5084 2334 02674 5008 23.03 03011 52.13
DPS 1823 02314 5910 2130 03393 5046 2177 0.3307 80.27 23.38 02004 49.86
RED-diff 18.95 0.2909 108.88 2345 03190 6565 1521 0.5647 198.74 2299 0.3858 83.06
DAPS 19.99 02199 6153 23.91 02863 56.87 2458 02722 5483 24.04 02720 5554
DDfire 20.39 0.1915 55.54 23.71 0.2353 50.05 24.59 0.2314 49.25 2358 0.2629 49.67

Fig. 4.5 shows image examples for inpainting, motion deblurring, Gaussian deblur-

ring, and 4x super-resolution on ImageNet. Similarly, Fig. 4.6 shows image examples

for inpainting, motion deblurring, Gaussian deblurring, and 4x super-resolution on

FFHQ. In both cases, the zoomed regions show that DDfire did a better job recovering

fine details.

4.3.4 Runtime Results

Figure 4.4 shows LPIPS vs. average runtime (in seconds on an A100 GPU) to

generate a single image for noisy Gaussian deblurring on the 1000-sample ImageNet

62

Algorithm 4 DDS [20]
Require: d(7 ')7 Y, Aa “Vdds Mcg7 {Jk}lev Nddim = 0
T ~ N(O, O'%(I)
cfor k=K, K-1,...,1do
T, = d(xg, og) > Denoising
éz\o‘k = CG(ATA + ’YddsIa ATy + 'VddsfkafkaMcg) ~ argminx {Hy — A£B||2 +
Vds|| T —ka2}

2 2 _ 2
. _ oi1(0} — 0%4)
ot Sk = Tlddim 5
Ok

i1~ Sk i1 — Sk
6: 1= Tick +{1- 2 Lok + kM, M ~ N(0,1) >
3 ki

DDIM update
7: end for
8: return T

W

test set. The figure shows that DDfire gives a better performance/complexity tradeoff
than the competitors. It also shows that DDfire is approximately 1.5 times faster than

DPS when both are run at 1000 NFEs, due to DPS’s use of backpropagation.

4.4 Discussion

In this section, we compare DDfire to other renoising PnP schemes for the SLM
that involve a proximal data-fidelity step or, equivalently, MMSE estimation of x
under the Gaussian prior assumption (4.7): DDS, DiffPIR, and SNORE, which are
detailed in Alg. 4, Alg. 5, and Alg. 6, respectively.

Comparing DDfire (see Alg. 2 and Alg. 3) to DDS, we see that both approaches
use CG for approximate MMSE estimation under a Gaussian prior approximation
and both use a DDIM diffusion update. But DDS uses the hyperparameters 7445 and
M, (the number CG iterations, which is usually small, such as four) to adjust the

noise variance v in the Gaussian prior approximation (4.7), while DDfire estimates v

63

Algorithm 5 DiffPIR [114]

Require: d(7 ')7 Yy, Aa Ow,)\diﬂ’pir) {Uk}£<:17 ndiffpir
T NN(O,O’%(I)

2: fork=K,K—1,...,1do

—_

3: T, = d(xg, og) > Denoising
~ . 1 Adiffpi .
4: Zoy, = argmin§ — ||y — Az||* + Lﬁ;rﬂaz — x> ¢ > Approximate MMSE
z | 207 20},
estimation

Of—
5: ok = /11— Udiffpir%
k
6: Tp_1 = 0T + (1 — Qk)wmk -+ v NdiffpirOk—1Mk, T ™~ N(O, I) > DDIM-like
update

7: end for
8: return T

at each iteration. Also, DDfire injects colored Gaussian noise to whiten the denoiser
input error while DDS injects no noise outside of DDIM.

Comparing DDfire to DiffPIR, we see that both perform MMSE estimation under
a Gaussian prior approximation and both use a DDIM-like diffusion update. But
DiffPIR uses the hyperparameter Agispir to adjust the noise variance v in the Gaussian
prior approximation (4.7), while DDfire estimates v at each iteration. Also, DDfire
injects colored Gaussian noise to whiten the denoiser input error while DiffPIR injects
no noise outside of its DDIM-like step.

Comparing DDfire to SNORE, we see that both perform MMSE estimation under
a Gaussian prior approximation and both use renoising. But SNORE uses white
renoising while DDfire uses colored renoising to whiten the denoiser input error. Also,
SNORE uses the hyperparameter dgnore to adjust the noise variance v in the Gaussian
prior approximation (4.7), while DDfire estimates it at each iteration. Furthermore,
since SNORE is based on the RED algorithm [73], its denoiser output is scaled and

shifted. Finally, SNORE has many more tuning parameters than DDfire.

64

Algorithm 6 Annealed Proximal SNORE [72]

Require: d(7 ')7 Y, A, Ow, 5snore7 Msnorey {Ui}i]\isiwrey {Oéi}i]\isiwre; {Ki}i]\isforey fc\init
11 ok, = Tinit
2: for i = Mnores Mspore — 1...,1 do
3: fOI‘]{f:Ki,Ki—l,...,ldO

4: Ty = Zok + 0Nk, M~ N(0,I) > Renoising
0. nore®; \ ~ 0, nore¥;
5: Ek = (1 E—— 02e 330|k + > o; d(’l"k,O'i) > RED update
03 03
1
6: Zor_1 = argmin{ — |ly — Az||? + x — T|? > Approximate
s = angmin { o ly - AalP + e -l > A
MMSE estimation
7: end for
8: end for

9: return o,

4.5 Conclusion

In this chapter, we proposed the Fast Iterative Renoising (FIRE) algorithm, which
can be interpreted as the HQS plug-and-play algorithm with a colored renoising step
that aims to whiten the denoiser input error. Since the FIRE algorithm approximates
the measurement-conditional denoiser E{xo|x;, y}, or equivalently the measurement-
conditional score Vg Inp;(a;|y), it can be readily combined with DDIM for diffusion
posterior sampling, giving the “DDfire” algorithm. Experiments on box inpainting,
Gaussian and motion deblurring, and 4x super-resolution with FFHQ and ImageNet
images show DDfire outperforming DDRM, IIGDM, DDS, DiffPIR, DPS, RED-diff,
and DAPS in PSNR, LPIPS, and FID metrics in nearly all cases. Finally, DDfire

offers fast inference, with better LPIPS-versus-runtime curves than the competitors.

65

Yy Lo DDRM DiffPIR IIGDM DPS RED-diff DAPS DDfire

2
E
3
£
8
Q0
Yy Lo DDRM DiffPIR ~ IIGDM DPS RED-diff DAPS DDfire
2
E
el
[}
el
<
.©
]
5
(3]
&
Y Lo DiffPIR IIGDM DPS RED-diff DAPS DDfire
2
E
Qo
[}
el
<
.2
)
1S
Yy Lo DDRM DiffPIR ~ IIGDM DPS RED-diff DAPS DDfire
o
.2
5
°
¢
A
2
X
<

Figure 4.5: Example recoveries from noisy linear inverse problems with ImageNet
images.

66

Yy Lo DDRM DiffPIR IIGDM DPS RED-diff DAPS DDfire

box inpainting

Lo DDRM DiffPIR IIGDM RED-diff DAPS DDfire

3888000888
FF

Gaussian deblurring

Y DiffPIR IIGDM DPS RED-diff DAPS DDfire

@@@@@@@

motion deblurring

Yy Lo DDRM DiffPIR IIGDM RED-diff DAPS DDfire

4x super-resolution

Figure 4.6: Example recoveries from noisy linear inverse problems with FFHQ images.

67

Chapter 5: Final Thoughts

5.1 Final Experiment

As a final exercise, we compare rcGAN (Chapter 2), pcaGAN (Chapter 3), and
DDfire (Chapter 4) on accelerated multicoil MRI reconstruction at R € {4, 8}, using
the same training/validation/test splits and testing procedure described in Chapter 3.
For DDfire, we trained a new EDM-style denoiser using the fastMRI-EDM [1] training

code from [75]. At inference, the A matrix used by DDfire is of the form
A=MFS, (5.1)

where M € REM*CEN g a subsampling operator, FEV*EN is a block-diagonal ma-
trix where each N x N block contains the unitary 2D discrete Fourier transform,
S € COYNXN ig a block-diagonal matrix containing the sensitivity maps of the C
measurement coils, and M, N are our single-coil measurement and image dimensions,
respectively. However, our denoiser operates on the coil-combined image, not the
multicoil measurements (or individual coil images, like our cGANs). We do not add
any noise to the k-space, but the fastMRI data is inherently noisy, and so we set
0,=0.01 and tune DDfire via a grid search, finding the LPIPS-minimizing choices of

(K, 6) which were found to be (50,0.2) for both R =4 and R = 8.

68

Table 5.1: Average MRI results at acceleration R = 4.

Model PSNR{ SSIM{ LPIPS| DISTS| CFID| FID| APSD Time (4)}
E2E-VarNet (Sriram et al. [89]) 39.93 0.9641 0.0316 0.0859 16.08 38.88 0.0 310 ms
rcGAN 39.55 0.9544 00164 0.0546 9.71 2562 3.8¢-6 217 ms
pcaGAN 39.77 0.9557 0.0159 0.0542 878 25.02 4.4e5 217 ms
DDfire (K = 500) 38.87 0.9489 0.0288 0.0746 10.46 27.49 4.0e-6 1.5 min
DDfire (K = 200) 39.31 09531 0.0198 0.0710 876 24.90 2.3e-6 1.5 min
DDfire (K = 100) 39.44 09542 00191 0.0699 832 2221 126 1.5min
DDfire (K = 50) 39.61 0.9562 0.0178 0.0672 7.63 20.07 927 1.5min

Table 5.2: Average MRI results at acceleration R = 8.

Model PSNRT SSIMt LPIPS| DISTS, CFID| FID) APSD Time (4))
E2E-VarNet (Sriram et al. [89]) 36.49 0.9220 0.0575 0.1253 36.86 44.04 0.0 316 ms
rcGAN 3542 0.9257 0.0379 0.0877 24.04 2843 7.6e-6 217 ms
pcaGAN 3594 0.9283 00344 0.0799 21.65 28.35 6.5¢5 217 ms
DDfire (K = 500) 33.99 0.9194 0.0480 0.0954 2646 3021 7.7e-6 1.5 min
DDfire (K = 200) 3572 0.9384 0.0311 0.0823 16.62 25.66 T7.4e-6 1.5 min
DDfire (K = 100) 36.27 0.9428 0.0277 0.0810 14.74 2454 7.le-6 1.5 min
DDfire (K = 50) 37.18 0.9486 0.0251 0.0748 14.89 23.29 7.0e-6 1.5 min

Table 5.1 shows test results for PSNR, SSIM, LPIPS, and DISTS for each method
under test with optimal averaging constant P. For each method, we draw P &
{1,2,4,8,16,32} independent samples for each y, average those P outputs to form a
single estimate, compute the metric on that estimate, and repeat for every P. We then
select the “optimal” P per method and metric, i.e., the P that maximizes PSNR/SSIM
or minimizes LPIPS/DISTS, and report that best score in the table. The specific P
values for each method/metric are listed in Table 5.3. We also list CFID, FID, APSD,
and the reconstruction time of 4 samples. The E2E-VarNet still wins in PSNR and
SSIM, while pcaGAN still wins in LPIPS and DISTS. However, DDfire performs best

in CFID and FID.

69

Table 5.3: Optimal averaging constant P for each method/metric.

R=14 R=38
Model PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS
rcGAN 32 4 2 1 32 8 2 2
pcaGAN 32 4 2 1 32 4 2 2
DDfire (K = 500) 32 8 2 1 32 8 4 2
DDfire (K =200) 32 16 8 1 32 16 8 2
DDfire (K =100) 32 32 8 1 32 32 16 2
DDfire (K =50) 32 32 8 1 32 32 16 2

DDfire

rcGAN pcaGAN

Truth
32)

Average
(P

Truth

Sample

E2E-VarNet
Sample

Figure 5.1: Example MRI recoveries at R = 8. Arrows highlight meaningful variations.

Table 5.2 similarly shows test results for PSNR, SSIM, LPIPS, and DISTS for each
method under test with optimal averaging constant P, as well as CFID, FID, APSD,
and the reconstruction time of 4 samples. There, we see that DDfire outperforms
both rcGAN and pcaGAN in all metrics, however the cGANs are notably faster with
respect to sample generation time. Even so, DDfire nets a significant speedup over

the previously evaluated MRI diffusion method from Jalal et al. (see Chapters 2 and

70

3). DDfire also outperforms the E2E-VarNet from Sriram et al. in PSNR, unlike
the ¢cGANs. Figure 5.1 shows zoomed versions of two recoveries &; and the sample
average Zp, with P = 32 at R = 8, as well as the estimate from the E2E-VarNet.
As shown in the figure, DDfire trades some sample diversity for higher fidelity—the
arrowed structure appears in the ground truth and DDfire, but is missing or faint in
rcGAN /pcaGAN.

In these experiments, DDfire’s sample diversity is chiefly governed by the number
of DDIM steps K. Our LPIPS-driven grid search yields a relatively small K = 50 (for
both accelerations), which steers the sampler toward mode-seeking behavior: distortion
is reduced, but between-sample variability (measured by APSD) is suppressed. The
“optimal P” still shifts by metric, tending lower for perceptual scores (LPIPS/DISTS)
and higher for distortion-style metrics (PSNR/SSIM). However, when computing SSIM
and LPIPS, one may note that the optimal P values of DDfire are notably higher
than those of rcGAN/pcaGAN at K = 50 (see Table 5.3). This is a consequence of
lower sample diversity relative to the cGANs, which can be improved by increasing K.
However, this comes at the expense of worse fidelity. Our experimental results, shown
in Tables 5.1 and 5.2, verify this empirically and we also see P values in Table 5.3 that
are more inline with what we may expect. In short, the LPIPS-based tuning explicitly
prioritizes fidelity over diversity in DDfire, whereas the cGAN baselines balance these

aims via their training objectives.

5.2 Potential Future Work

Similar to how diffusion models transition from noise realizations to clean images,

direct diffusion bridges (DDBs) [55, 23] transition from corrupted images to clean

71

images (or, more generally, from one distribution of images to another). Using xy to
denote a clean image and x; to denote a corrupted image, the DDB process generates

intermediate samples x; via
;= (1 —ay)xo + yxy + 02, 2 ~N(0,I), (5.2)

for some increasing «; € [0, 1] where oy = 0 and oy = 1, and oy > 0. Typically, we
have o, = ay€6; where ¢; is a non-increasing function of ¢. For a linear inverse problem,
we have £, = ATy or &, = Aty.

The value in adopting direct diffusion bridges (DDBs) over a generic diffusion
prior is that the DDB explicitly embeds the degraded observation y (and implicitly
A) into the forward process in (5.2). This design keeps the trajectory near the
measurement-consistent manifold throughout sampling and can accelerate convergence
by lowering the burden on data-consistency projections or guidance. However, this
problem-tailored approach loses generality: a DDB trained for a particular degradation
operator A (or set of similar of A) is not a drop-in solver for arbitrary inverse problems.
So, we are trading off generality for improved posterior sampling performance.

We can derive an “ancestral sampling” strategy for DDB where [18], for any s < t,
we have

x; = (1 — agp)To + s + o5y, Mg ~ N(0, 1) (5.3)

.. . A A
for n, that is independent of @y and x;, with o, = /oy and Uzu £ a?(e2 —€2). In
practice, we cannot actually compute x, because xq is unknown. Instead, we use an

estimate of &y computed using an approximation Z; of x;, yielding

T, = (1 — o) GolZy, t) + gy + ospMgy, Mg ~ N(0,I), (5.4)

72

where Gy is trained to estimate g from x;. The typical training objective for Gy is

mein Eo@1,2,tmp(t) {)\tHGe(th, t) — 5130||§}, (5.5)

where @, is computed according to (5.2), A, is some t-dependent weight, and p(t) is a
user-selected density (e.g., uniform).

Even though Gy is analogous to the denoiser/score-network used by diffusion
models, it is something else entirely. In particular, it is trained with a specific forward
model (i.e., A) in mind. Consequently, we are free to train G in whatever way we
see fit. To that end, one potential direction is to train Gy with the rcGAN /pcaGAN
regularization described in Chapters 2 and 3 to improve the generator’s statistics. The

rcGAN regularization yields objective

Be
00 Eay) { e D Go(@it) — @ll3) + BLiso (6. 550) (5.6)
=1

where x;; = (1 — ap)xo + s + 0214, BN > 0, P > 2, and the regularizer
expressions are defined in (2.7)-(3.5) with Z; = Gg(x,,t). One must choose § and \;

carefully in order to balance the effects of both terms.
Coupled with improved training of Gy, one may also improve the reverse process
with a “conditional DDB” (¢cDDB) approach. In particular, replace x(in (5.3) with
E{xo|Z:, y} instead of E{xy|Z;}. This can be accomplished with a DiffPIR-style [114]

approach, computing E{xo|Z;, y} by
. Ow Y ~
afgm;ﬂgHy—AwHQJrEtHw—onza (5.7)

where 7, and 7; are the noise precision in y and the precision of the error in g

relative to the true xg, respectively. v; can be estimated as in DDfire. Note that with

73

the cGAN approach described above, one could choose to compute &, in a perception-
distortion tradeoff-optimal way at inference time via Z, = % Zfil Go(zi, @y, t) for
some appropriate choice of P > 1.

Another option is to consider an unrolled approach where Gy is trained with a fixed
number of reverse DDB steps in mind, but still leverages our cGAN regularization.
Here, the statistical discrepancy between x; and Z; can be better accounted for in the

training process.

5.3 Conclusion

We proposed three methods for solving inverse problems via posterior sampling.

In Chapter 2 we developed a new regularization framework for image-recovery
c¢GANs that combines a supervised ¢; loss with a carefully weighted standard-deviation
reward. For Gaussian posteriors, we proved that this approach produces samples
matching the true posterior in both mean and covariance, and we identified the
shortcomings of alternatives based on /5 losses. To make the method practical, we
proposed an automatic procedure for tuning the variance-reward weight. On tasks
such as parallel MRI reconstruction and large-scale face inpainting, our approach
consistently outperformed state-of-the-art ¢cGANs and score-based methods across
CFID, FID, PSNR, SSIM, LPIPS, and DISTS. Importantly, it also enabled sampling
thousands of times faster than Langevin or score-based approaches.

In Chapter 3 we then proposed pcaGAN, an image-recovery cGAN designed to
enforce correctness in key statistical components of the conditional distribution: the
mean, trace covariance, and the leading K principal components of the covariance

matrix Xg,. Synthetic Gaussian experiments showed that pcaGAN achieved lower

74

Wasserstein-2 distances than rcGAN and NPPC across a range of dimensions. On
real-world tasks—MNIST denoising, accelerated multicoil MRI, and large-scale in-
painting—pcaGAN surpassed competing cGANs and diffusion models in CFID, FID,
and standard perceptual /quality metrics. Moreover, pcaGAN achieved these results
while sampling 3—4 orders of magnitude faster than diffusion-based competitors, mak-
ing it well suited for uncertainty quantification, fairness in recovery, and balancing
perception-distortion trade-offs.

In Chapter 4 we introduced the Fast Iterative Renoising (FIRE) algorithm, inter-
pretable as a plug-and-play HQS method with a colored renoising step that whitens
denoiser input error. Since FIRE approximates the measurement-conditional denoiser
E{xo|z:, y}—equivalently, the measurement-conditioned score—it can be seamlessly
paired with DDIM to yield the DDfire algorithm for solving linear inverse problems.
Across diverse experiments, including box inpainting, Gaussian/motion deblurring,
and 4x super-resolution on FFHQ and ImageNet, DDfire consistently outperformed
DDRM, IIGDM, DDS, DiffPIR, DPS, RED-diff, and DAPS in PSNR, LPIPS, and
FID. It also delivered superior LPIPS—runtime trade-offs, establishing itself as both
fast and high-performing for posterior sampling in linear inverse problems.

Finally, in Section 5.1, we compared rcGAN, pcaGAN, and DDfire for accelerated
multicoil MRI reconstruction at accelerations R € {4, 8} using the same data splits
and testing protocol as Chapter 3. Quantitatively, DDfire outperforms both ¢cGANs
at R = 8 across PSNR, SSIM, LPIPS, DISTS, CFID, and FID, albeit with slower
sample generation time, but it remains substantially faster than prior diffusion-based
MRI methods. However, DDfire falls short of pcaGAN in PSNR, SSIM, LPIPS, and

DISTS at R = 4 MRI. Qualitatively, DDfire yields higher-fidelity details at R = 8

75

(with some reduction in sample diversity), which align better with the ground truth

than rcGAN/pcaGAN.

76

1]

Bibliography

Asad Aali, Marius Arvinte, Sidharth Kumar, Yamin Ishraq Arefeen, and
Jonathan I Tamir. Robust multi-coil mri reconstruction via self-supervised
denoising. Magn. Reson. Med., 94:1859 — 1877, 2024.

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu,
Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi,
U Rajendra Acharya, et al. A review of uncertainty quantification in deep
learning: Techniques, applications and challenges. Info. Fusion, 76:243-297,
2021.

Philip M Adamson, Arjun D Desai, Jeffrey Dominic, Christian Bluethgen, Jeff P.
Wood, Ali B Syed, Robert D. Boutin, Kathryn J. Stevens, Shreyas Vasanawala,
John M. Pauly, Akshay S Chaudhari, and Beliz Gunel. Using deep feature
distances for evaluating MR image reconstruction quality. In Proc. Neural Info.
Process. Syst. Workshop, 2023.

Jonas Adler and Ozan Oktem. Deep Bayesian inversion. arXiv:1811.05910,
2018.

R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu, E. T. Reehorst,
and P. Schniter. Plug and play methods for magnetic resonance imaging. IEEE
Signal Process. Mag., 37(1):105-116, March 2020.

Anastasios N. Angelopoulos, Amit P. Kohli, Stephen Bates, Michael I. Jordan,
Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, and Yaniv Romano.
Image-to-image regression with distribution-free uncertainty quantification and
applications in imaging. In Proc. Intl. Conf. Mach. Learn., 2022.

Lynton Ardizzone, Carsten Liith, Jakob Kruse, Carsten Rother, and Ullrich
Ko6the. Guided image generation with conditional invertible neural networks.
arXiv:1907.02592, 2019.

Chinmay Belthangady and Loic A Royer. Applications, promises, and pitfalls of
deep learning for fluorescence image reconstruction. Nature Methods, 16(12):1215~
1225, 2019.

7

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Matthew Bendel, Rizwan Ahmad, and Philip Schniter. A regularized conditional

GAN for posterior sampling in inverse problems. In Proc. Neural Info. Process.
Syst. Conf., 2023.

Sayantan Bhadra, Varun A Kelkar, Frank J Brooks, and Mark A Anastasio. On
hallucinations in tomographic image reconstruction. IEEE Trans. Med. Imag.,
40(11):3249-3260, 2021.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In Proc.
IEEE Conf. Comp. Vision Pattern Recog., pages 6228-6237, 2018.

Levi Borodenko. motionblur. Downloaded from https://github.com/
LeviBorodenko/motionblur, 2020.

Charles A Bouman and Gregery T Buzzard. Generative plug and play: Posterior
sampling for inverse problems. In Proc. Allerton Conf. Commun. Control
Comput., pages 1-7, 2023.

Dongdong Chen and Mike E Davies. Deep decomposition learning for inverse
imaging problems. In Proc. Furop. Conf. Comp. Vision, pages 510-526, 2020.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim.
The probability flow ODE is provably fast. In Proc. Neural Info. Process. Syst.
Conf., volume 36, pages 68552-68575, 2023.

Hyungjin Chung, Jeongsol Kim, Michael T McCann, Marc L. Klasky, and
Jong Chul Ye. diffusion-posterior-sampling. https://github.com/DPS2022/
diffusion-posterior-sampling, March 2023.

Hyungjin Chung, Jeongsol Kim, Michael T McCann, Marc L Klasky, and
Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems.
In Proc. Intl. Conf. Learn. Rep., 2023.

Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Direct diffusion bridge using
data consistency for inverse problems. In Proc. Neural Info. Process. Syst. Conf.,
volume 36, 2023.

Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. DDS. https://github.com/
hyungjin-chung/DDS, 2024.

Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. Decomposed diffusion sampler
for accelerating large-scale inverse problems. In Proc. Intl. Conf. Learn. Rep.,
2024.

78

https://github.com/LeviBorodenko/motionblur
https://github.com/LeviBorodenko/motionblur
https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/hyungjin-chung/DDS
https://github.com/hyungjin-chung/DDS

[21]

[22]

[23]

Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Plug-and-play
split Gibbs sampler: Embedding deep generative priors in Bayesian inference.
IEEE Trans. Image Process., 33:3496-3507, 2024.

Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye,
Peyman Milanfar, Alexandros G Dimakis, and Mauricio Delbracio. A survey on
diffusion models for inverse problems. arXiw:2410.00083, 2024.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An
alternative to denoising diffusion for image restoration. Trans. on Mach. Learn.,
June 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Proc. IEEE Conf. Comp. Vision
Pattern Recog., pages 248-255, 2009.

Puneesh Deora, Bhavya Vasudeva, Saumik Bhattacharya, and Pyari Mohan
Pradhan. Structure preserving compressive sensing MRI reconstruction using
generative adversarial networks. In Proc. IEEE Conf. Comp. Vision Pattern
Recog. Workshop, pages 2211-2219, June 2020.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat GANs on image
synthesis. In Proc. Neural Info. Process. Syst. Conf., volume 34, pages 8780
8794, 2021.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality
assessment: Unifying structure and texture similarity. IEEE Trans. Pattern
Anal. Mach. Intell., 44(5):2567-2581, 2020.

Vineet Edupuganti, Morteza Mardani, Shreyas Vasanawala, and John Pauly.
Uncertainty quantification in deep MRI reconstruction. IEEE Trans. Med. Imag.,
40(1):239-250, January 2021.

B. Efron. Tweedie’s formula and selection bias. J. Am. Statist. Assoc.,
106(496):1602-1614, 2011.

Nina M Gottschling, Vegard Antun, Anders C Hansen, and Ben Adcock. The
troublesome kernel—On hallucinations, no free lunches and the accuracy-stability
trade-off in inverse problems. arXiv:2001.01258, 2023.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. Improved training of Wasserstein GANs. In Proc. Neural Info.
Process. Syst. Conf., page 57695779, 2017.

79

[32]

[36]

[37]

[38]

[40]

[41]

[42]

[43]

Zhenliang He, Meina Kan, and Shiguang Shan. EigenGAN: Layer-wise eigen-
learning for GANs. In Proc. IEEE Intl. Conf. Comput. Vis., pages 14408-14417,
2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a
local Nash equilibrium. In Proc. Neural Info. Process. Syst. Conf., volume 30,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In Proc. Neural Info. Process. Syst. Conf., volume 33, pages 6840-6851,
2020.

David P Hoffman, Isaac Slavitt, and Casey A Fitzpatrick. The promise and
peril of deep learning in microscopy. Nature Methods, 18(2):131-132, 2021.

Aapo Hyvérinen. Estimation of non-normalized statistical models by score
matching. J. Mach. Learn. Res., 6:695-709, 2005.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Proc. IEEE Conf. Comp.
Vision Pattern Recog., pages 1125-1134, 2017.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alex Dimakis,
and Jonathan Tamir. csgm-mri-langevin. https://github.com/utcsilab/
csgm-mri-langevin, 2021. Accessed: 2021-12-05.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alex Dimakis, and
Jonathan Tamir. Robust compressed sensing MRI with deep generative priors.
In Proc. Neural Info. Process. Syst. Conf., 2021.

I. T. Jolliffe. Principal Component Analysis, volume 2. Springer Verlag, New
York, 2002.

Mihir Joshi, Aaron Pruitt, Chong Chen, Yingmin Liu, and Rizwan Ahmad.
Technical report (v1.0)-pseudo-random cartesian sampling for dynamic MRI.
arXiw:2206.03630, 2022.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing
of GANs for improved quality, stability, and variation. In Proc. Intl. Conf. Learn.
Rep., 2018.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. Training generative adversarial networks with limited data. In Proc.

Neural Info. Process. Syst. Conf., volume 33, pages 1210412114, 2020.

80

https://github.com/utcsilab/csgm-mri-langevin
https://github.com/utcsilab/csgm-mri-langevin

[44]

[45]

[46]

[47]

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In Proc. IEEE Conf. Comp. Vision Pattern
Recog., pages 4396-4405, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of StyleGAN. In Proc.
IEEE Conf. Comp. Vision Pattern Recog., pages 8110-8119, 2020.

Segrey Kastryulin, Jamil Zakirov, Nicola Pezzotti, and Dmitry V. Dylov. Image
quality assessment for magnetic resonance imaging. arXiv:2203.07809, 2022.

Sergey Kastryulin, Jamil Zakirov, Nicola Pezzotti, and Dmitry V Dylov. Image
quality assessment for magnetic resonance imaging. IEFE Access, 11:14154—
14168, 2023.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising
diffusion restoration models. In Proc. Neural Info. Process. Syst. Conf., 2022.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denois-
ing diffusion restoration models. Downloaded from https://github.com/
bahjat-kawar/ddrm, May 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Proc. Intl. Conf. Learn. Rep., 2015.

Tuomas Kynkaanniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehti-
nen. The role of imagenet classes in fréchet inception distance. arXiv:2203.06026,
2022.

Benjamin Lambert, Florence Forbes, Senan Doyle, Harmonie Dehaene, and
Michel Dojat. Trustworthy clinical Al solutions: A unified review of uncertainty
quantification in deep learning models for medical image analysis. Artificial
Intelligence in Medicine, page 102830, 2024.

Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain
Durmus, and Marcelo Pereyra. Bayesian imaging using plug & play priors:
When Langevin meets Tweedie. SIAM J. Imag. Sci., 15(2):701-737, 2022.

Fred C Leone, Lloyd S Nelson, and RB Nottingham. The folded normal distri-
bution. Technometrics, 3(4):543-550, 1961.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos Theodorou, Weili
Nie, and Anima Anandkumar. 12SB: Image-to-image Schrodinger bridge. In
Proc. Intl. Conf. Mach. Learn., pages 22042-22062, 2023.

81

https://github.com/bahjat-kawar/ddrm
https://github.com/bahjat-kawar/ddrm

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

David G Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer,
2016.

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational
perspective on solving inverse problems with diffusion models. In Proc. Intl.
Conf. Learn. Rep., 2024.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiw:1411.1784, 2014.

Matthew J Muckley, Bruno Riemenschneider, Alireza Radmanesh, Sunwoo Kim,
Geunu Jeong, Jingyu Ko, Yohan Jun, Hyungseob Shin, Dosik Hwang, Mahmoud
Mostapha, et al. Results of the 2020 fastMRI challenge for machine learning
MR image reconstruction. IEEE Trans. Med. Imag., 40(9):2306-2317, 2021.

Dominik Narnhofer, Andreas Habring, Martin Holler, and Thomas Pock.
Posterior-variance-based error quantification for inverse problems in imaging.
SIAM J. Imag. Sci., 17(1):301-333, 2024.

Elias Nehme, Omer Yair, and Tomer Michaeli. Uncertainty quantification via
neural posterior principal components. In Proc. Neural Info. Process. Syst. Conf.,
2023.

Elias Nehme, Omer Yair, and Tomer Michaeli. Uncertainty quantification via
neural posterior principal components. Downloaded from https://github.com/
EliasNehme/NPPC, January 2023.

NVlabs. RED-diff. Downloaded from https://github.com/NVlabs/RED-diff,
2023.

Guy Ohayon, Theo Adrai, Gregory Vaksman, Michael Elad, and Peyman Milan-
far. High perceptual quality image denoising with a posterior sampling CGAN.
In Proc. IEEE Intl. Conf. Comput. Vis. Workshops, volume 10, pages 18051813,
2021.

Guy Ohayon, Theo Adrai, Gregory Vaksman, Michael Elad, and Peyman Milan-
far. High perceptual quality image denoising with a posterior sampling CGAN.
Downloaded from https://github.com/theoad/pscgan, July 2021.

Guy Ohayon, Theo Joseph Adrai, Michael Elad, and Tomer Michaeli. Reasons
for the superiority of stochastic estimators over deterministic ones: Robustness,

consistency and perceptual quality. In Proc. Intl. Conf. Mach. Learn., pages
26474-26494, 2023.

Frank Ong and Michael Lustig. SigPy: A python package for high performance
iterative reconstruction. In Proc. Annu. Meeting ISMRM, volume 4819, 2019.

82

https://github.com/EliasNehme/NPPC
https://github.com/EliasNehme/NPPC
https://github.com/NVlabs/RED-diff
https://github.com/theoad/pscgan

[68]
[69]

[70]

[71]

[77]

[78]

Beresford N Parlett. The symmetric eigenvalue problem. STAM, 1998.

H. V. Poor. An Introduction to Signal Detection and Estimation. Springer, New
York, NY, USA, 2nd edition, 1994.

Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boe-
siger. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med., 42(5):952—
962, 1999.

Edward T. Reehorst and Philip Schniter. Regularization by denoising: Clarifica-
tions and new interpretations. IEEE Trans. Comput. Imag., 5(1):52-67, March
2019.

Marien Renaud, Jean Prost, Arthur Leclaire, and Nicolas Papadakis. Plug-and-
play image restoration with stochastic denoising regularization. In Proc. Intl.
Conf. Mach. Learn., 2024.

Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that
could: Regularization by denoising (RED). SIAM J. Imag. Sci., 10(4):1804-1844,
2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
networks for biomedical image segmentation. In Proc. Intl. Conf. Med. Image
Comput. Comput. Assist. Intervent., pages 234-241, 2015.

Rohan Sanda, Asad Aali, Andrew Johnston, Eduardo Reis, Jonathan Singh,
Gordon Wetzstein, and Sara Fridovich-Keil. Padis-mri: Patch-based diffusion for
data-efficient, radiologist-preferred mri reconstruction. https://github.com/
voilalab/PaDIS-MRI, 2025. Accessed: 2025-10-07.

Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A U-Net based discriminator
for generative adversarial networks. In Proc. IEEE Conf. Comp. Vision Pattern
Recog., pages 8207-8216, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXww:1409.1556, 2014.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In Proc.
Intl. Conf. Mach. Learn., pages 2256—2265, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output
representation using deep conditional generative models. In Proc. Neural Info.
Process. Syst. Conf., 2015.

83

https://github.com/voilalab/PaDIS-MRI
https://github.com/voilalab/PaDIS-MRI

[30]

[81]

[82]

[83]

[84]

[85]

[89]

[90]

[91]

Michael Soloveitchik, Tzvi Diskin, Efrat Morin, and Ami Wiesel. Conditional
Frechet inception distance. arXiw:2103.11521, 2021.

Casper Kaae Sgnderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc
Huszar. Amortised MAP inference for image super-resolution. In Proc. Intl.
Conf. Learn. Rep., 2017.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit
models. In Proc. Intl. Conf. Learn. Rep., 2021.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-
guided diffusion models for inverse problems. In Proc. Intl. Conf. Learn. Rep.,
2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of
the data distribution. In Proc. Neural Info. Process. Syst. Conf., 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based
generative models. In Proc. Neural Info. Process. Syst. Conf., 2020.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems
in medical imaging with score-based generative models. In Proc. Intl. Conf.
Learn. Rep., 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. Score-based generative modeling through stochastic
differential equations. In Proc. Intl. Conf. Learn. Rep., 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. Score-based generative modeling through stochastic
differential equations. Downloaded from https://github.com/yang-song/
score_sde_pytorch, October 2022.

Anuroop Sriram, Jure Zbontar, Tullie Murrell, Aaron Defazio, C. Lawrence
Zitnick, Nafissa Yakubova, Florian Knoll, and Patricia Johnson. End-to-end
variational networks for accelerated MRI reconstruction. In Proc. Intl. Conf.
Med. Image Comput. Comput. Assist. Intervent., pages 64—73, 2020.

He Sun and Katherine L. Bouman. Deep probabilistic imaging: Uncertainty
quantification and multi-modal solution characterization for computational
imaging. In Proc. AAAI Conf. Artificial Intell., volume 35, pages 26282637,
2021.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proc.
IEEE Conf. Comp. Vision Pattern Recog., 2016.

84

https://github.com/yang-song/score_sde_pytorch
https://github.com/yang-song/score_sde_pytorch

[92]

[93]

[94]

[99]

[100]

[101]

[102]

Jacopo Teneggi, Matthew Tivnan, J. Webster Stayman, and Jeremias Sulam.
How to trust your diffusion model: A convex optimization approach to conformal
risk control, 2023.

Francesco Tonolini, Jack Radford, Alex Turpin, Daniele Faccio, and Roderick
Murray-Smith. Variational inference for computational imaging inverse problems.
J. Mach. Learn. Res., 21(179):1-46, 2020.

Martin Uecker, Peng Lai, Mark J Murphy, Patrick Virtue, Michael Elad, John M
Pauly, Shreyas S Vasanawala, and Michael Lustig. ESPIRiT-an eigenvalue
approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA.
Magn. Reson. Med., 71(3):990-1001, 2014.

Y. Wang. DDNM. Downloaded from https://github.com/wyhuai/DDNM,
September 2023.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using
denoising diffusion null-space model. In Proc. Intl. Conf. Learn. Rep., 2023.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Proc. Intl. Conf. Mach. Learn., pages 681-688, 2011.

Jeffrey Wen, Rizwan Ahmad, and Philip Schniter. A conditional normalizing
flow for accelerated multi-coil MR imaging. In Proc. Intl. Conf. Mach. Learn.,
2023.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learn-
ing likelihoods with conditional normalizing flows. arXiw:1912.00042, 2019.

Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine
Bouman. Principled probabilistic imaging using diffusion models as plug-and-play
priors. In Proc. Neural Info. Process. Syst. Conf., 2024.

Xingyu Xu and Yuejie Chi. Provably robust score-based diffusion posterior
sampling for plug-and-play image reconstruction. In Proc. Neural Info. Process.
Syst. Conf., 2024.

Jure Zbontar, Florian Knoll, Anuroop Sriram, Matthew J. Muckley, Mary
Bruno, Aaron Defazio, Marc Parente, Krzysztof J. Geras, Joe Katsnelson,
Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael
Rabbat, Pascal Vincent, James Pinkerton, Duo Wang, Nafissa Yakubova, Erich
Owens, C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, and
Yvonne W. Lui. fastMRI: An open dataset and benchmarks for accelerated MRI.
arXiw:1811.08839, 2018.

85

103]

[104]

[105]

106]

107]

[108]

109]

[110]

[111]

[112)

[113]

Yu Zeng. co-mod-gan-pytorch. Downloaded from https://github.com/
zengxianyu/co-mod-gan-pytorch, September 2022.

Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar,
and Yang Song. Improving diffusion inverse problem solving with decoupled noise
annealing. Downloaded from https://github.com/zhangbingliang2019/
DAPS, 2024.

Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar,
and Yang Song. Improving diffusion inverse problem solving with decoupled
noise annealing. In Proc. IEEE Conf. Comp. Vision Pattern Recog., 2025.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu
Timofte. Plug-and-play image restoration with deep denoiser prior. IEEE Trans.
Pattern Anal. Mach. Intell., 44(10):6360-6376, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In Proc.
IEEE Conf. Comp. Vision Pattern Recog., pages 586—-595, 2018.

Tao Zhang, John M Pauly, Shreyas S Vasanawala, and Michael Lustig. Coil
compression for accelerated imaging with Cartesian sampling. Magn. Reson.
Med., 69(2):571-582, 2013.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image
restoration with neural networks. IEEE Trans. Comput. Imag., 3(1):47-57,
March 2017.

He Zhao, Huiqi Li, Sebastian Maurer-Stroh, and Li Cheng. Synthesizing retinal
and neuronal images with generative adversarial nets. Med. Image Analysis, 49,
07 2018.

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I-Chao
Chang, and Yan Xu. Large scale image completion via co-modulated generative
adversarial networks. In Proc. Intl. Conf. Learn. Rep., 2021.

Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, and
Han Zhang. Improved consistency regularization for GANs. In Proc. AAAI
Conf. Artificial Intell., volume 35, pages 11033-11041, 2021.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu
Timofte, and Luc Van Gool. Diffpir. Downloaded from https://github.com/
yuanzhi-zhu/DiffPIR, July 2024.

86

https://github.com/zengxianyu/co-mod-gan-pytorch
https://github.com/zengxianyu/co-mod-gan-pytorch
https://github.com/zhangbingliang2019/DAPS
https://github.com/zhangbingliang2019/DAPS
https://github.com/yuanzhi-zhu/DiffPIR
https://github.com/yuanzhi-zhu/DiffPIR

[114] Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu
Timofte, and Luc Van Gool. Denoising diffusion models for plug-and-play image
restoration. In Proc. IEEE Conf. Comp. Vision Pattern Recog., pages 1219-1229,
2023.

87

Appendix A: Additional Details for Inverse Problems

A.1 MR Imaging Details

We now give details on magnetic resonance (MR) image recovery. Suppose that
the goal is to recover the N-pixel MR image 2 € CV from the multicoil measurements
{k.}< |, where [70]

k.= MFS.+n.. (A1)

In (A.1), C refers to the number of coils, k. € CM are the measurements from the cth
coil, M € RM*N is a sub-sampling operator containing rows from Iy—the N x N

CN*N is the unitary 2D discrete Fourier transform, S, € CV*¥

identity matrix, F' €
is a diagonal matrix containing the sensitivity map of the cth coil, and n. € CM is
noise. From (A.1l), it can be seen that the MR measurements are collected in the
spatial Fourier domain, otherwise known as the “k-space.” The sensitivity maps
{S.} are estimated from {k.} using ESPIRIT [94] (in our case via SigPy [67]), which
yields maps with the property 200:1 SHS, = Iy. The ratio R £ % is known as the
acceleration rate.

There are different ways that one could apply the generative posterior sampling
framework to multicoil MR image recovery. One is to configure the generator to

produce posterior samples i of the complex image ¢. Another is to configure the

88

generator to produce posterior samples Z of the stack = [x],...,2}]"T of “coil

images” x, 2 8,4 and later coil-combining them to yield a complex image estimate
il [SH ..., SH]Z. We take the latter approach. Furthermore, rather than feeding
our generator with k-space measurements k., we choose to feed it with aliased coil

images y. = F'M k.. Writing (A.1) in terms of the coil images, we obtain
y.=F"M " MFzx, +w,, (A.2)

where w, = F*M "n.. Then we can stack {y.} and {w.} column-wise into vectors
y and w, and set A = Io @ FPAMTMF € CNY*NC to obtain the formulation
y=Ax + w.

To train our generator, we assume to have access to paired training examples
{(x¢,y¢)}, where @, is a stack of coil images and y; is the corresponding stack of
kf-space coil measurements. The fastMRI multicoil dataset [102] provides {(x¢, k) },

from which we can easily obtain {(x;,y;)}.

A.2 Data-Consistency for Inverse Problems

In this section, we describe a data-consistency procedure that can be optionally
used when our cGAN is used to solve a linear inverse problem, i.e., to recover x from
y under a model of the form

y=Ax +w, (A.3)

where A is a known linear operator and w is unknown noise. The motivation is
that, in some applications, such as medical imaging or inpainting, the end user may

feel comfortable knowing that the generated samples {Z;} are consistent with the

89

measurements y in that
y = AZ;. (A.4)

When (A.4) holds, ATy = AT AZ; must also hold, where (-)* denotes the pseudo-
inverse. The quantity AT A can be recognized as the orthogonal projection matrix
associated with the row space of A. So, (A.4) requires the component of Z; in the
row space of A to equal ATy, while placing no constraints on the component of Z; in

the nullspace of A. This suggests the following data-consistency procedure:

Z= (I — AT A)Z™ + Aty (A.5)

raw

where " is the raw generator output. We note that a version of this idea for point
estimation was proposed in [81].

The data-consistency procedure (A.5) ensures that any generative method will
generate only the component of & that lies in the nullspace of A. Consequently, (A.5)
is admissible only when A has a non-trivial nullspace. Also, because no attempt is
made to remove the noise w in y, this approach is recommended only for low-noise
applications. For high-noise applications, an extension based on the dual-decomposition
approach [14] would be more appropriate, but we leave this to future work.

When applying (A.5) to the MRI formulation in App. A.1, we note that A =
Io ® FIMTMF is an orthogonal projection matrix, and so I — ATA =1 — A =

I®FR(I— M"M)F.

90

Appendix B: Additional Diffusion Details

B.1 VP Formulation

In the main text, we describe DDfire for the VE SDE formulation from [87] and
the corresponding SMLD discretization from [84]. Here, we describe it for the VP
SDE from [87] and the corresponding DDPM discretization from [34].

From [87], the general SDE forward process can be written as
de = f(=x,t)dt + g(t) dw (B.1)

for some choices of f(-,-) and g¢(-), where dw is the standard Wiener process (i.e.,

Brownian motion). The reverse process can then be described by
de = (f(a:, t) — ¢*(t)Va lnpt(a:)) dt + ¢(t) dw, (B.2)

where p;(-) is the distribution of & at time ¢ and dw is the reverse Wiener process. In
the VE-SDE, f(x,t) = 0 and g(t) = \/d[02(t)]/ dt for some variance schedule o?(t),
but in the VP-SDE, f(x,t) = —18(t)x and g(t) = 1/A(t) for some variance schedule

B(t). When discretized to ¢t € {0,1,...,T}, the VP forward process becomes

T =1— Bz + \/E’lﬁtq (B.3)

91

with i.i.d. {w,;} ~ N(0,I), so that
&Et = \/a_tm(] + 1-— atgt (B4.)

with oy £ 1 — 8, oy = Htszl as, and € ~ N(0,I). Throughout, we write the VP
quantities with tildes to distinguish them from the VE quantities. The DDPM reverse

process then takes the form

1
N

and is typically initialized at €7 ~ N(0,I). By rewriting (B.4) as

1 1— o
—T, =T+ || —& (B.6)
Qi Qi

and comparing it to (4.1), we recognize the VP/VE relationships

~ - -) 1—0o;_
(azt + BV, lnp(:ct)) +Ym; with X7 & 1;.21& (B.5)
- g

Ti—1 =

1 1—a 1
— Ly = Ty and — = 0'1:2 ~ at = -
oy ay 1+ o;

(B.7)

Furthermore, assuming that ar < 1, the VP initialization &7 ~ N(0,I) is well

approximated by the VE initialization &7 ~ N(0,02.I).
B.2 DDIM Details for VP

The DDIM reverse process from [82] provides an alternative to the DDPM reverse
process that offers a flexible level of stochasticity. When describing VP DDIM, we
will write the quantities as @y, €, g, @ to distinguish them from the corresponding
VP DDPM quantities x;, €;, n;, @;, and we will write the total number of steps as K.

Like (B.4), DDIM is built around the model

ik} = \/akmo =+ v/ 1 —ak-gk, Ek; ~ N(O; I) (B8)

92

Adapting the first two equations from [82, App.D.3] to our notation, we have

R e

+ /1 — 1 — ¢ E{€| Tk, y} + Genr (B.9)
~ 1—a,_ «
G = Nddim 4 / % 1— _ak (B.10)
- O k1

with 1, ~ N(0, I') and tunable n44im > 0. When 7ggim = 1 and K = T, DDIM reduces

to DDPM. But when 7n44im = 0, the reverse process is deterministic. In fact, it can be
considered a discretization of the probability flow ODE [82], which often works much
better than the SDE when the number of discretization steps K is small. We now

write (B.9) in a simpler form. Applying E{:|Zs, y} to both sides of (B.8) gives

Z1 = Van E{wol@r, y} + V1= ar E{elEe) (B.11)

which implies

x, — o, E{xo|zr, y}

E{e.|x = B.12
{€k|mk7y} m ’ ()
and plugging (B.12) into (B.9) gives
Tp_1 = \/ Q1 E{xo|Tk, y} + i
= _ =& .
+ Ldnl—ﬁ(% ”ak{?m“w> (B.13)
VI—ay

= v ap_1 E{zo|xr, y} + Gnie
+ Iy, (& — Va, E{zo| @y, y}) (B.14)
I%kik —|—§k E{w0|£k,y} +f§vk’l’:ik (B15)

for

~ 1 —ay_q —<2 - — 7=

93

Thus the VP DDIM reverse process can be described by (B.10), (B.15), and (B.16)

with 1, ~ N(0, I) Vk and initialization x5 ~ N (0, I).
B.3 DDIM Details for VE

We now provide the details for the VE version of DDIM. Starting with the VP

DDIM reverse process (B.15), we can divide both sides by /ax_; to get
Tio1 /@ . %~

S Ve v ME{wokﬂk, yt+ mnk (B.17)
and leveraging the VP-to-VE relationship (B.7) to write
x—1 = hpTi + gr E{xo|Tr, Y} + m (B.18)
with
By — hi/@r, gk Sk (B.19)

= y gk = = y Sk = =
vV OaE—1 a1 A1

with ny, ~ N(0,I) Vk and initialization xx ~ N(0, 0% 1

~—"

. Plugging g from (B.16)
into (B.18), we find
e VT hi. (B.20)

Q1

Then plugging (B.10) into (B.18), we find

TIddlm /1 — o (B.21)
1 —ay \/ @

gk =

1 1—-¢«
- nddlm\/ bl (1 —) (B22)
ap—1 1 —ay Q1
l—a,1 «@ 1 1
= nddim\/ _ak : ak_ (_— - =) (B.23)
a1 1—ap \ap ap
02_1 2 2
= Tladim{ | (1407 —[1+02,]) (B.24)
k
o?_ (02 — o?
= Hddim\/ 1 (%% 3 1) (B.25)
Ok

94

Finally, noting from (B.7), (B.18), and (B.25) that

~ — 2 2 2 2 2
Sk 2 k-1 Sg T4dim oi_4 (0} —0i1)
— k —)) 2
1—a,_4 1—a,_4 Ty Oy o

2
— 2. (11— Ok—1
ddim 0—]3)

we plug Ay from (B.16) into (B.18) to find

B ap 1—ap - ar 1—ag_1 —3}
k — — — - — —
ap—1 11—y 1 —ay Qg1

(B.26)

(B.27)

_ a1 —ay 1_i _ Th -2, (1
1-— ak 6k_1 1-— ak_l O']% ddim

2 2 2 2 2 2
|0k (1 Sk > I L Y A)
= 2 2 = 2 2 = 2 :

Ok Ok O Ok O

The VE DDIM reverse process is summarized in (4.22)-(4.23).

95

Appendix C: Proofs and Derivations

C.1 Proof of Proposition 1

Here we prove Proposition 1. To begin, for an N-pixel image, we rewrite (2.8)-(2.9)

as

L1p(0) = Z;Vﬂ E, { Bz, zly {‘37] - % Zil i ‘y}} (C.1)
Lsp.p(0) =00 By { Bay oy {00 B0 — 5 Bl |y}, (C2)

where z; £ [z];, T;; = [,];, and

A P
TP =\ 2P0y (C.3)

To simplify the notation in the sequel, we will consider an arbitrary fixed value of j
and use the abbreviations

Recall that and {Z;} are mutually independent when conditioned on y because the
code vectors {z;} are generated independently of both and y. In the context of
Proposition 1, we also assume that the vector elements z; and ;; are independent

Gaussian when conditioned on y. This implies that we can make the notational shift

Puy(5]y) = N(X; 1o, 03), pry(@ii|y) = N (Xi; 1, 02), (C.5)

96

where X and {)A(Z} are mutually independent. With this simplified notation, we note
that [Zmmse]; — o, and that mode collapse corresponds to o = 0.

Furthermore, if @ can completely control (i, o), then (2.12) can be rewritten as

(b, 04) = arg Tﬁin {El,P(Na o) — BspLsp, (i, 0)} = {Z* B 50 (C.6)
N x — 0p
with
Lip(p,o) =By, g X =550 Xil} (C.7)
Lsop(i,0) =Eg, 2 {BX0 X — 530, Xal). (C.8)

Although o, must be positive, it turns out that we do not need to enforce this in the
optimization (C.6) because it will arise naturally.

To further analyze (C.7) and (C.8), we define

TES D YEPe (C.9)

ey by} (C.10)

The quantity i can be recognized as the unbiased estimate of the mean p of)A(i, and
we now show that & is an unbiased estimate of the SD o of)A(, in the case that)?Z is
Gaussian. To see this, first observe that the i.i.d. N'(y, o) property of {X;} implies
that X; — i = (1— }%))A(Z - }%Zk# X}, is Gaussian with mean zero and variance
(1— $)%0? + £lo? = 5102 The variable |X; — 7| is thus half-normal distributed
with mean \/%02 [54]. Because {X;} are i.i.d., the variable 5 S | X, — 7i has
the same mean as |)?Z — 7|. Finally, multiplying & Zf:l |X’, — fi| by vp yields ¢ from

(C.10), and multiplying its mean using the expression for yp from (C.3) implies

E{5} = o, (C.11)

97

and so ¢ is an unbiased estimator of o, the SD of)A(Z
With the above definitions of i and @, the optimization cost in (C.6) can be written

as

Lip(p,0) — BsoLsp,p(p0) =Ex 5, 3, {IX —7l} — Bsp Eg . %, {7} (C12)

=Ey 3, 2 11X —Al} — Bsoo, (C.13)

where in the last step we exploited the unbiased property of a. To proceed further, we
note that the i.i.d. Gaussian property of {X;} implies fi ~ N (u, o2/ P), after which

the mutual independence of {X;} and X yields
X — i~ Npo — 02 + 0/ P). (C.14)

Taking the absolute value of a Gaussian random yields a folded-normal random variable

[54]. Using the mean and variance in (C.14), the expressions in [54] yield
2(05 + 0%/ P) (1o — p)°)
2(0f +02%/P)

+ (po — p) exf (2(5;;52/13)). (C.15)

Exz..x, UX —1l} = exp (-

Thus the optimization cost (C.13) can be written as

J(:ua O') — 2(03 + 02/P> (/JJ - NO)Q)

T 2(c2 + 0%/ P)

+ (1 — po) erf (2(5§;M;2/P)> — Bspo. (C.16)

o (-

Since J(-,) is convex, the minimizer (u., 0.) = argmin,, , J(u, o) satisfies VJ(puy, 0.) =

(0,0). To streamline the derivation, we define
¢ \/2(03 + 02/ P)/, s2 /o2 +02/P (C.17)

98

so that

J(p,0) = cexp (- %) + (p — po) erf (M\/;?l?) — Bspo. (C.18)

Because ¢ and s are invariant to u, we get

(Y (228
o)z exp (- L0 (.19)

which equals zero if and only if 4 = pg. Thus we have determined that p, = uqg.

Plugging p. = po into (C.16), we find

J(2,0) = \[2(03 + 02/ P) /7w — fspo. (C.20)

Taking the derivative with respect to o, we get

a‘](;u*,O') - 2
oo B \/WP(PUg/gz 1) — DBsp (C.21)
2 2
= \/7‘(P(P0'8/(72 + 1) B \/M» (0.22)

where in the last step we applied the value of Ssp from (2.11). It can now be seen

aJ(.U‘* 70)

that o

= 0 if and only if 0 = oy, which implies that o, = 0¢. Thus we have

established (C.6), which completes the proof of Proposition 1.

C.2 Derivation of Proposition 2

Here we prove Proposition 2. To start, we establish some notation and conditional-

mean properties:

C/C\mmse %]Ex|y{ic|y}
Emmse j L — Tmmse; 0 f Ex\y{‘immsek’/}
7.0) 2 Golz). 3(0) 2B,y (#(0)lu))
T (0) = % > ie1 Zi(0), Z(0) = E;, 2o {Zr)(0)|y}
d;(9)) = z:(0) — %(0), 0 =E,,,{di(6)|y} VO
N
dir(0) = 53 i-, di(0), 0=E, zy{der(0)y} Vo

Our first step is to write (2.14) as

Lo,p(0) = By { Exay,...zop {1z — Ziry (0) 513} - (C.24)

Leveraging the fact that Zmmse and Z(6) are deterministic given y, we write the inner

term in (C.24) as

Exa,...zpiy 1T — Ty (0) 519}
= Exay...zoly{ [Emmse + €mmse — Z(0) — dir)(0)[3]y} (C.25)
= Exzy,znly L Bromse — Z(0) 131y}

+2ReE ZPIy{({B\mmse - 5(9))H(emmse - d<p>(9))|y}

+ By, zply [€mmse — dir) (0)[5]3} (C.26)
= ”fv\mmse - 5(9)”3 +2Re [(/m\mmse - E(0))H IE:’X,Z1 ,,,,, ZP|y{(emmse - d(P)(0>)|y}j
=0
+ By, zply { | €mmse — dir) (0) 513} (C.27)
= || Zmmse = oy {Z:(0)|y}I5 + Euzy...zoly { | €mmse — i (0)][319}- (C.28)

where in (C.27) we used the fact that d and emmse are both zero-mean when
conditioned on y. We now leverage the fact that {z;} are independent of « and y to

write

Eya,..., ZPIy{Hemmse - d<p)(0)||§|y}

=Euz,., Zp\y{Hemmse”gw} +2ReEyy,. zp|y{€:msed<m(9)|y}

+ vl (O]} (©.29)
=]EX\y{”emmseH%’y} +2Re EEX\y{emmseW}JH \En ,,,,, ZP|y{d(P)(0)|y}]
=0 =0
+ Ear.. 2oy LAy (0) 314} (C.30)

100

Finally, we can leverage the fact that {z;} are i.i.d. to write

ey, 2oy {dim (O) 314} = Eay oLl 5 S, di(0)]3]} (C.31)
= 22 2isy Eay{[1di(0) 131y} (C.32)
= 5 Bz {l1di(0)|13ly} for any i (C.33)
— LB, {tr[d;(0)di(6)"]|y} (C.34)
= 4 tr By, {di(6)d:(6)"}|y}] (C.35)
= L tr [Cov,, {Z:(8)|y}]. (C.36)

Combining (C.24), (C.28), (C.30), and (C.36), we get the bias-variance decomposition

Lyp(0) =E, {Ilimmse — Eop {Z:(0)|y}3 + 5 tr [Covzyy {:(0)|y}]

+ Ex{lenmsel3y} }- (C.37)

We now see that if @ has complete control over the y-conditional mean and covariance

of ;(0), then minimizing (C.37) over 8 will cause

Ezib’{fc\i(e”y} = Trmmse (C38>

COVZily{ii(e)‘y} =0, (C.39)
which proves Proposition 2.

C.3 Derivation of (2.19)

To show that the expression for L, p in (2.19) holds, we first rewrite (2.18) as

Loarp(0) = 57 i1 B {Bay iy {1 0(0) — T (0) 3]y} (C.40)

101

where the definitions from (C.23) imply

= Esy..zpy {[1Z(0) + di(0) — dir)(0) — T(8) 3]y} (C.41)
= Eo o A 1di(0) — 5 3271 di(0) 3]y} (C.42)
=By aop{ll(1 = 5)di(0) — 532, d;(0)[3]y} (C.43)
= (1= 3 Eap{lldi(0) 31y} + 75 Eayy {1l di(0) 131y} (C.44)
= 5 Eay {1 di(0)]3]y} for any i. (C.45)

For (C.44), we leveraged the zero-mean and i.i.d. nature of {d;(0)} conditioned on y.

By plugging (C.45) into (C.40), we get

Loarp(0) = 5 30 EAR, {(1d:(0) 31y} } (C.46)
= E {E,;,{[|d:(8)|3|y}} for any i (C.47)
= E,{tr[Cov,,{Z:(0)|y}]}, (C.48)

where (C.47) follows because {d;(0)} are i.i.d. when conditioned on y and (C.48)

follows from manipulations similar to those used for (C.36).

C.4 Proof of Proposition 3

Here we prove Proposition 3. Recall from (C.23) that Zgmse = E{x|y} and
€mmse = T — Tmmse. 10 reduce clutter, we will abbreviate emmse by € in this appendix.

Also, for true-posterior samples Z; ~ pyy(-|y), we define

/éi é Z/B\z - /m\mmse~ (C49>

102

Then using Z) £ - ZZ . Z; and from Ep from (2.20), we have
Ep = B{| 2, — z|ly} (C.50)

= E{I(5 i1, &) — =[Ply} (C.51)

= E{|l$ XL, (@ —)|y} (C.52)
= 22 B{[| /11 (i — Bromse + Tmmse — @) [2|y} (C.53)
= HE{I X0 - e)l’ly} (C.54)
= mE{E (@ - el (€ - e)ly} (C.55)
= 22 E{@ - e)(e - e)ly} (C.56)
= 3 L B{(& —e)(@ —e)ly} + 5 i, X4 E{(@ - e)'(e; — e)ly}
(C.57)

= 52 i [E{ll&:]’ly} — 2ReE{elely} + E{|le||y}]

+ 2 i1 2y Re [E{el'e ly} — E{el'ely} — E{e"e;|y} + E{[e|ly}]

(C.58)
= & i E{lEl?ly} + $E{lellPly} + 25 E{lle]?y}, (C.59)
where certain terms vanished because the i.i.d. and zero-mean properties of {e, ey, ..., ep}
imply
E{el'e;ly} = E{&|y}" E{ejly} =0 (C.60)
E{el'ely} = E{ei|y}" E{ely} =0 (C.61)
E{e"e;ly} = E{ely}" E{&|y} = 0. (C.62)

Finally, note that E{||e||*|y} = Emmse from (C.23). Furthermore, because {x, Z1,...,Zp}
are independent samples of py, (-|y) under the assumptions of Proposition 3, we have

E{|le||*ly} = E{||€:||*|y} and so (C.59) becomes

P
1 1 P(P—1) P+1
(C/'P = ﬁ 2221 gmmse + Fgmmse + Tgmmse - Tgmmse' <C63)

103

This result holds for any P > 1, which implies the ratio

& 2P
gp P+1 <C6)

C.5 Proof of Theorem 4

To prove Theorem 4, we begin by writing the key FIRE steps with explicit iteration

index n > 1:

Z[n) = d(r|n], ofn)) (C.65)
&{n] = (ATA + %I) B <ATy + %i[n]) (C.66)
o*[n+1] = max{o?[n]/p, vn]} (C.67)
Mln) = ?[n+1] — (2/02 + 1/v[n])™", i=1,....d (C.68)
nln] = V Diag(Aln])e[n], e[n] ~ N(0,T) (C.69)
rln+1] = &n] + nfn) (C.70)

Our proof uses induction. By the assumptions of the theorem, we know that there
exists an iteration n (in particular n = 1) for which r[n] = x¢ + o[n]e[n] with
€[n] ~ N(0,I) and finite o[n]. Then due to the denoiser assumption, we know that
Z[n| = ¢y — y/v[n|e[n] with e[n] = N(0, I) and known v[n] < o?[n]. We assume that
this value of v[n| is used in lines (C.66)-(C.68). Using these results and (4.4), we can

rewrite (C.66) as

104

for

o= <ATA " %V:;]I) h (UiATA + %I) (ATA + %I) h

_ (%ATA + ﬁI) h (C.73)

by leveraging the independent-Gaussian assumption on e[n]. From this and (C.68)-

(C.69), we can then deduce
n[n] ~ N (0, X[n]) with £[n] £ V Diag(A[n))V" = ¢*[n+1]I — C[n] (C.74)
so that, from (C.70),

rln+1] ~ N(zo, Cn] + [n]) = N(x, 0*[n+1]I) (C.75)

& rin+l] =y + on+1len+1], €n+1] ~N(0,1). (C.76)

Thus, by induction, if r[n] = @y + o[n|e[n] with €[n] ~ A (0, I) holds at n = 1, then
it holds at all n > 1.
Recall that the theorem also assumed that v[n] < ¢%[n| for all n. Thus, there

exists a p > 1 for which ¢?[n]/p > v[n] for all n, for which we can rewrite (C.67) as
o*[n+1] = o*[n]/p Vn. (C.77)
Consequently, for any iteration n > 1 we can write
o’[n] = o*[1]/p" " = oine/p" (C.78)

Finally, because the error covariance on Z[n] obeys

1 o2

Cln] = (iATA - —I) B < V[l < o*[n]I=—"tT (C.79)

T vin] p
we see that the error variance in Z[n] decreases exponentially with n and thus Z[n]
converges to the true x.

105

Appendix D: Implementation Details

D.1 Conditional Fréchet Inception Distance

With the Gaussian approximation described in Sec. 2.3.1, where py, and pg), are
approximated by N (g, Zuqy) and N (pgy, Xss)y), respectively, the CWD in (2.24)

reduces to

CFID £ E, {Hﬂxlx - MZIx”% +tr [Eﬁlx + gy — 2<El/2 Z&Alzzl/2)1/2} } (D.1)

xx|y x|y

The values in (D.1) are computed using

Py = B+ Sy B0y — py) (D.2)
DINEDINED W e 4 (D.3)
pay = bz + 220 (Y — py) (D.4)
Sy = B — Sy Dy, T (D.5)

Plugging (D.2)-(D.5) into (D.1), the CFID can be written as [80, Lemma 2]

CFID = [|pte — psll} + 1 [(B —) Ty, (By — Ty) |

Yy

+ tr [Dy + Ty — 2(Sily Ty =iln) 7). (D.6)

xx|y xx|y

where Ey_yl is typically implemented using a pseudo-inverse.

106

We now detail how the means and covariances in (D.6) are computed. We start
with a dataset {(ax;, y;)}7; of truth/measurement pairs. For each y;, we generate a
set of P posterior samples {Z;;}1_;. We merge these samples with P repetitions of
x; and y; to obtain {(xy, Yz,)}, for t = 1...n. These terms are processed by a
feature-generating network to yield the feature embeddings {(z;,y,,, z,;) 7, which
are then packed into matrices X, Y, and X with Pn rows. We used the VGG-16
feature-generating network [77] for our MRI experiments, since [46] found that it gave
results that correlated much better with radiologists’ perceptions, while we used the
standard Inception-v3 network [91] for our inpainting experiments. The embeddings

are then used to compute the sample-mean values

Pt A1UTX, py2A1TY, 2 A1TX (D.7)

We then subtract the sample mean from each row of X, Y, and X to give the zero-

mean embedding matrices X, | £ X - lu;, Y. . Ly — luJ, and sz £ X— 1#;

Z

which are then used to compute the sample covariance matrices

Eﬁ = 1n£:mX m> Eﬂ = nX;rmY 27 £ 1n£sz (D8a)
EKX = ﬁl;rmxlm’ ZXX = lnlsz (D8b)

We plug the sample statistics from (D.7)-(D.8) into (D.2)-(D.5), which yields the
statistics needed to compute the CFID in (D.6). In [80], the authors use P =1 in all
of their experiments. To be consistent with how we evaluated the other metrics, we

use P = 32 unless otherwise noted.

107

D.2 Implementation Details for Chapter 2

The code for our model can be found here: https://github.com/matt-bendel/

rcGAN.
D.2.1 Accelerated MRI

cGAN training. At each training iteration, our cGAN’s generator takes in
Npatch Measurement samples y; and P,. code vectors for every y,;, and performs an

optimization step on the loss

L6(0) £ BagLaa(0. @) + L1.5.(0) — BspLsp,p.(0), (D.9)

where by default we use Sagy = 1€-5, Npatech = 36, P = 2, and update f[sp via (2.23)
using P,, = 8. Then, using the P, npaten generator outputs, our cGAN’s discriminator

performs an optimization step on the loss

Lp(@) = —Laa(0,) + a1 Lgp (@) + a2 Lariee(P), (D.10)

with gradient penalty Ly, from [31]. As per [42], Lqy is a drift penalty, a; = 10,
as = 0.001, and one discriminator update was used per generator update. The models
were trained for 100 epochs using the Adam optimizer [50] with a learning rate of le-3,
p1 =0, and fy = 0.99, as in [42]. Running PyTorch on a server with 4 Tesla A100
GPUs, each with 82 GB of memory, the training of an MRI ¢cGAN took approximately
1 day.

Adler and Oktem’s cGAN [4] uses generator 1oss Bag, £297(0,), where £29"(0, ¢)

adv adv

was described in (2.5), and discriminator loss —£29(0,) + a1 Lgp (@) + @2 Laviee (@)

adv

with the values of oy =10, ay =0.001, and [.4, =1, as in the original paper.

108

https://github.com/matt-bendel/rcGAN
https://github.com/matt-bendel/rcGAN

Ohayon et al.’s pscGAN [64] uses generator 1oss SagyLadav (0, @) + Lo p. (), where
L5 p.(0) was described in (2.14), and discriminator loss —Laay (0, @) + a1 Lgp() +
as Lyt (@) with the values a1 =10, ay =0.001, and S.q, =1e-5. We modify .4, to
re-balance the loss due to an increased magnitude of our discriminator’s outputs.

All three cGANSs used the same generator and discriminator architectures (detailed
below), except that Adler and Oktem’s discriminator used extra input channels to
facilitate the 3-input loss £29°(0, ¢) from (2.5).

cGAN Generator Architecture. For our MRI experiments, we take inspiration
from the U-Net architecture from [74], using it as the basis for the cGAN generators.
The primary input y is concatenated with the code vector z and fed through the
U-Net. The network consists of 4 pooling layers with 128 initial channels. However,
instead of pooling, we opt to use convolutions with kernels of size 3 x 3, “same”
padding, and a stride of 2 when downsampling. Likewise, we upsample using transpose
convolutions, again with kernels of size 3 x 3, “same” padding, and a stride of 2. All
other convolutions utilize kernels of size 3 x 3, “same” padding, and a stride of 1.

Within each encoder and decoder layer we include a residual block, the architecture
of which can be found in [4]. We use instance-norm for all normalization layers and
parametric ReLLUs as our activation functions, in which the network learns the optimal
“negative slope.” Finally, we include 5 residual blocks at the base of the U-Net, in
between the encoder and decoder. This is done in an effort to artificially increase the
depth of the network and is inspired by [25]. Our generator has 86 734 334 trainable
parameters.

cGAN Discriminator Architecture. Our discriminator is a standard CNN

with 6 layers and 1 fully-connected layer. In the first 3 layers, we use convolutions

109

with kernels of size 3 x 3, “same” padding. We reduce spatial resolution with average
pooling, using 2 x 2 kernels with a stride of 2. We use batch-norm as our normalization
layer and leaky ReLUs with a “negative-slope” of 0.2 as our activation functions. The
network outputs an estimated Wasserstein score for the whole image.

E2E-VarNet. For the Sriram et al.’s E2E-VarNet [89], we use the same training
procedure and hyperparameters outlined in [39] other than replacing the sampling
pattern with the GRO undersampling mask. As in [39], we use the SENSE-based
coil-combined image as the ground truth instead of the RSS image.

Langevin Approach. For Jalal et al.’s MRI approach [39], we do not modify the
original implementation from [38] other than replacing the default sampling pattern
with the GRO undersampling mask. We generated 32 samples for 72 different test
images using a batch-size of 4, which took roughly 6 days. These samples were
generated on a server with 4 NVIDIA V100 GPUs, each with 32 GB of memory. We
used 4 samples per batch (and recorded the time to generate 4 samples in Table 2.1)

because the code from [38] is written to generate one sample per GPU.
D.2.2 CelebA-HQ Inpainting

Our cGAN. For our generator and discriminator, we use the CoModGAN
networks from [111]. Unlike CoModGAN, however, we train our cGAN with £, sp p,
regularization and we do not use MBSD at the discriminator. We use the same
general training and testing procedure described in Sec. 2.3.2, but with [.q, = 5e-3,
Npatch = 100, and 110 epochs of cGAN training. Running PyTorch on a server with 4
Tesla A100 GPUs, each with 82 GB of memory, the training takes approximately 2

days.

110

CoModGAN. We use the PyTorch implementation of CoModGAN from [103]
and train the model to inpaint a 128 x 128 centered square on 256 x 256 CelebA-HQ
images. The total training time on a server with 4 NVIDIA A100 GPUs, each with
82 GB of memory, is roughly 2 days.

Score-Based SDE. For the inpainting experiment in Sec. 2.3.3, we compare
against Song et al.’s more recent SDE technique [87], for which we use the publicly
available pretrained weights, the suggested settings for the 256 x 256 CelebA-HQ
dataset, and the code from the official PyTorch implementation [88]. We generate 32
samples for all 1000 images in our test set, using a batch-size of 20 and generating 32
samples for each batch element concurrently. The total generation time on a server

with 4 NVIDIA A100 GPUs, each with 82 GB of memory, is roughly 9 days.

D.3 Implementation Details for Chapter 3

In each experiment, all cGANs were trained using the Adam optimizer with a
learning rate of 1073, ; = 0, and £, = 0.99 as in [42]. The code for our model can be

found here: https://github.com/matt-bendel/pcaGAN.
D.3.1 Synthetic Gaussian Data

Algorithm 7 captures how we construct the Gaussian priors used in Sec. 3.3.1.
We begin with dimension d = 100, generating random mean p{'®” € R and

(100) 100

eigenvalues {); " };2,. To construct the eigenvectors {'v,(:oo) 100

i1, we perform a QR
decomposition on a 100x 100 matrix with i.i.d. A(0,1) entries and set v](:oo) as the kth
column of Q. For each remaining d € {90, 80,...,10}, we construct uid), {A,gd) }, and

u,(fd) by truncating the previous quantities to ensure some level of continuity across d.

111

https://github.com/matt-bendel/pcaGAN

Algorithm 7 Gaussian prior generation

1: giloo) ~ N(O, IlUO)
2: A1 L N(0,1) for k=1,...,100
30 AU — XU for k=1, 100
2 ul'™ ~ N(0, Iip) for k=1,...,100
5 [Q, R] = QRdecomp([uf ui'™ . ufy’])
6: v = [Qlsx for k=1,...,100
7
8: for d =90,80,...,10 do
d 100
9: pl? = [ui)]O:d
10: AP =219 for k=1 .d
11: u,id) = UIS(?:? for k=1,...,d
12: Q,R| = QRdecomp([ugd)ugd) . .ufid)])
13 v\ =[Qly for k=1,....d
14: end for

D.3.2 Synthetic Gaussian Recovery

cGAN training. We choose Baqy = 1077, npateh = 64, P = 2, and train for
100 epochs for both rcGAN and pcaGAN. Running PyTorch on a server with 4 Tesla
A100 GPUs, each with 82 GB of memory, the cGAN training for d = 100 takes
approximately 8 hours, with training time decreasing with smaller d. For pcaGAN, we
choose K = d for each d in this experiment (unless otherwise noted) and By, = 1072

cGAN architecture. We exploit the Gaussian nature of the problem, construct-
ing Gg with two dense layers; one which takes in y as input and one which takes in z
as input. The output of each layer is added, yielding Z. Similarly, Dy is comprised of
a single dense layer which takes in the concatenation of & / and y and outputs a
scalar. We use this architecture for both rcGAN and pcaGAN. Note that there is no

listed license for rcGAN.

112

NPPC. For NPPC, we use the suggested hyperparameters from [61] and opt to
train the MMSE network before training NPPC. We use the suggested architectures
from their Gaussian denoising experiment and train for 100 epochs with npaicn = 64.
We leverage the authors’ implementation in [62], modifying it for this Gaussian

problem. There is no listed license for NPPC.

D.3.3 MNIST Denoising

The MNIST dataset is available under the GNU general public license, which we
respect through our use.

cGAN training. We choose Baqy = 1072, npaten = 64, P = 2, and train for
125 epochs for both rcGAN and pcaGAN. Running PyTorch on a server with 4 Tesla
A100 GPUs, each with 82 GB of memory, the cGAN training for d = 100 takes
approximately 8 hours, with training time decreasing with smaller d. For pcaGAN, we
train two models, one with K =5 and one with K = 10. In both cases, fSpca = 1071,
Eevec = 25, and Fe 5 = 50.

cGAN architecture. For both cGANs, the generator is the standard U-Net
which takes in the concatenation of y and code z. The network consists of 3 pooling
layers and 32 initial channels. The convolutions use a kernel of size 3 x 3, instance
normalization, and leaky ReLU activations with a negative slope of 0.1. For the
encoder portion of the U-Net, we use max pooling with a kernel size of 2 x 2 to reduce
spatial resolution by a factor of 2. For the decoder portion of the U-Net, we use
nearest-neighbor interpolation to increase spatial resolution by a factor of 2. The

discriminator is simply the encoder portion of the U-Net with an additional dense

113

layer appended to map the U-Net’s latent space to a scalar output. Note that there is
no listed license for rcGAN.

NPPC. For NPPC, we do not modify the authors’ implementation in [62] in
any way. We first train the MMSE reconstruction network and then train the NPPC

network. There is no listed license for NPPC.
D.3.4 Accelerated MRI

For our MRI experiments, we use the fastMRI dataset which is available under
the MIT license, which we respect through our use.

cGAN training. We choose Baay = 107, Boca = 1072, Npatech = 2, P = 2,
K =1, FEevee = 25, and Eg,, = 50 for pcaGAN. For rcGAN, pscGAN , and Adler’s
cGAN, we use the hyperparameters and training procedure described in Sec. 2.3.2.
All models were trained for 100 epochs using the Adam optimizer [50] with a learning
rate of 1073, B, = 0, and B, = 0.99, as in [42]. Running PyTorch on a server with
4 Tesla A100 GPUs, each with 82 GB of memory, the training of each MRI ¢cGAN
took approximately 1 day. Note that there is no listed license for rcGAN, pscGAN, or
Adler and Oktem’s ¢cGAN.

cGAN architecture. All four cGANs used the same generator and discriminator
architectures described in Sec. 2.3.2, except that Adler and Oktem’s discriminator
used extra input channels to facilitate the 3-input loss.

E2E-VarNet. For the Sriram et al.’s E2E-VarNet [89], we use the same training
procedure and hyperparameters outlined in [39] with modification to the GRO sampling

pattern. As in [39], we use the SENSE-based coil-combined image as the ground truth

114

instead of the RSS image. The E2E-VarNet is available under the MIT license, which
we respect.

Langevin approach. For Jalal et al.’s MRI approach [39], we do not modify the
authors’ implementation from [38] other than replacing the default sampling pattern
with the GRO sampling mask. We borrow both generated samples and results from

Chapter 2. The authors’ code is available under the MIT license, which we respect.
D.3.5 FFHQ Inpainting

For our inpainting experiment, we use the FFHQ dataset which is available under
the Creative Commons BY-NC-SA 4.0 license, which we respect through our use.

cGAN training. We choose Baqy =5 X 1072, Bpca = 1072, npaten = 5, Prc = 2,
K =2, Feyee = 25, and Eg,; = 50 for pcaGAN. Running PyTorch on a server with
4 Tesla A100 GPUs, each with 82 GB of memory, the training of our cGAN took
approximately 1.5 days.

cGAN architecture. As in Chapter 2, we use the CoModGAN networks from
[111] which extend the StyleGAN2 [45] network. The StyleGAN2 architecture is
available under the NVIDIA Source Code License, which we respect.

rcGAN. We follow the training procedure outlined in Chapter 2, only modifying
the inpainting mask to be random. The total training time on a server with 4 NVIDIA
A100 GPUs, each with 82 GB of memory, is roughly 1 day. There is no listed license
for rcGAN.

pscGAN. We use the same training procedure outlined in Chapter 2, modifying
the inpainting masks to be random and using the Lo p objective described briefly

in Sec. 4.1 with P =38. The total training time on a server with 4 NVIDIA A100

115

GPUs, each with 82 GB of memory, is roughly 1.5 days. There is no listed license for
pscGAN.

CoModGAN. We use the PyTorch implementation of CoModGAN from [103]
and train the model. The total training time on a server with 4 NVIDIA A100
GPUs, each with 82 GB of memory, is roughly 1 day. There is no listed license for

CoModGAN;, beyond the NVIDIA Source Code License.

Diffusion Methods

For all three diffusion methods, we use the pretrained weights from [17].

DPS. We use the suggested settings for the 256 x 256 FFH(Q dataset and the
code from the official PyTorch implementation [16]. We found the LPIPS-minimizing
step-size (via grid search over a 1000 image validation set. We generate 1 sample for
all 20000 images in our test set, using a batch-size of 1 and 1000 NFEs. The total
generation time on a server with 4 NVIDIA A100 GPUs, each with 82 GB of memory,
is roughly 9 days. There is no listed license for DPS.

DDNM. We use the code from the official PyTorch implementation [95]. We
generate 1 sample for all 20000 images in our test set, using a batch-size of 1 and 100
NFEs. The total generation time on a server with 4 NVIDIA A100 GPUs, each with
82 GB of memory, is roughly 1.5 days. There is no listed license for DDNM.

DDRM. We use the code from the official PyTorch implementation [49]. We
generate 1 sample for all 20000 images in our test set, using a batch-size of 1 and 20
NFEs. The total generation time on a server with 4 NVIDIA A100 GPUs, each with

82 GB of memory, is roughly 5.5 hours. There is no listed license for DDRM.

116

D.4 Implementation Details for Chapter 4

D.4.1 Speeding up CG

In this section, we describe a small modification to FIRE that can help to speed
up the CG step. When CG is used to solve (4.10), its convergence speed is determined
by the condition number of AT A + (02 /v)I [56]. Thus CG can converge slowly when
02 /v is small, which can happen in early DDfire iterations. To speed up CG, we
propose to solve (4.10) using a,, in place of oy, for some 7,, > o,. Since the condition
number of AT A + (62 /v)I is at most vs?_ /52 + 1, we can guarantee a conditional

number of at most 10001 by setting

o2 = st max{107* o2 /(vs?)} (D.11)

w max

Although using ,, > o, in (4.10) will degrade the MSE of &, the degradation is
partially offset by the fact that less noise will be added when renoising r. In any case,

the modified (4.10) can be written as

z=(ATA/G:+1T/v) Y (AT y/52 +T/v) (D.12)
=(ATA/G: +I/v) Y (AT[Axg + 0,w]/52 + [xg — Vve]/v) (D.13)
=x+(ATA/GE+T/v) (AT wo,, /5% — e/\/V), (D.14)

in which case & ~ N (xo, C) with covariance

C=(ATA/G2 +T/v) (ATAG2 /5L +T/v)(ATA/G2 + T /v)™! (D.15)
— (VSTSVT /52 +I/v) " (VSTSV 62 /5t + I/v)(VSTSVT /52 + 1 /v)™"
(D.16)
2 .2 /=4
= V Diag(~)V' for v; = 510w/ O+ 1/V (D.17)

[s7/0% +1/v]*

117

eigenspectrum of cov(X — xp) eigenspectrum of cov(r— xg)
0 e e e e

695.000 +-{—/
|
101 4 694.975 1 f
|
__________________ 694.950 4|1
1071 47 |
I 11
! --- targeto? 694.925 | —— ideal
103 4 . 11)
! error with a; 694.900 } : approx with aﬁ
f I
1075 4/ -=- error with &} 694.875 11 i —-- approx with ¢}
I' T T T 694-850 L I\J T T T
0 20000 40000 60000 0 20000 40000 60000
sorted index sorted index

Figure D.1: For FFHQ Gaussian deblurring, the left plot shows the eigenspectrum
of the error covariance Cov{Z —x,} with either 52 from (D.11) (if CG speedup) or
02 = o2 (if no CG speedup), as well as the eigenspectrum of the target error covariance
021 to aim for when renoising. The right plot shows the eigenvalues of the renoised
error covariance Cov{r—x,} for the ideal case when X is used (possible with SVD)
and the case when 3 from (4.16) is used (if no SVD), with either 32 or ¢2. Here we
used 02 = 1075, v = 0.16 (corresponding to the first FIRE iteration of the first DDIM

step), and p = 35.7 (corresponding to the example in Fig. 4.2).

The desired renoising variance then becomes

5i0w/0w + 1)V
[s7/0% + 1/v)?

Y =02 — C = V Diag(A)V' for \; = 0% — (D.18)

and we can generate the colored noise ¢ via (4.15) if the SVD is practical. If not, we

approximate 3 by

S 1 s2 0l /ol +1)v
2 T : max~w/ ¥w
Y¥=("-v)I+{A A with {=— (1/ T2, 57 + 1/V]2) (D.19)

maXx
and generate the colored noise ¢ via (4.18). It is straightforward to show that £ > 0
whenever G,, > o, in which case 02 > v guarantees that S is a valid covariance

matrix. Figure D.1 shows the close agreement between the ideal and approximate

Y-renoised error spectra both when o,, = o0,, and when a,, > o,,.

118

D.4.2 Inverse Problems

For the linear inverse problems, the measurements were generated as
y=Axo+o,w, w~N(0,I) (D.20)

with appropriate A. For box inpainting, Gaussian deblurring, and super-resolution
we used the A and A" implementations from [49]. For motion deblurring, we
implemented our own A and AT with reflect padding. All methods used these
operators implementations except DiffPIR, which used the authors’ implementations.

Motion-blur kernels were generated using [12].
D.4.3 Evaluation Protocol

For the linear inverse problems, we run each method once for each measurement
y in the 1000-sample test set and compute average PSNR, average LPIPS, and FID

from the resulting recoveries.
D.4.4 Unconditional Diffusion Models

For the FFHQ experiments, all methods used the pretrained model from [17]. For
the ImageNet experiments, all methods used the pretrained model from [26]. In both

cases, 1" = 1000.
D.4.5 Recovery Methods

DDfire. Our Python/Pytorch codebase is a modification of the DPS codebase from
[16] and is available at https://github.com/matt-bendel/DDfire. For all but one
row of the ablation study in Table 4.1 and the dashed line in Fig. 4.4, we ran DDfire

without an SVD and thus with the approximate renoising in (4.18).

119

https://github.com/matt-bendel/DDfire

Table D.1: Hyperparameter values used for DDfire.

Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4x Super-resolution

Dataset Ow K 1) K 19 K) K 1)
FFHQ 0.05 100 0.50 650 0.60 500 0.20 650 0.60
ImageNet 0.05 100 0.50 500 0.20 500 0.20 650 0.60

For the linear inverse problems, unless noted otherwise, we ran DDfire for 1000
NFEs using nq4dim = 1.5, and we did not use stochastic denoising (i.e., V,(c) = 0 Vo in
Alg. 2), as suggested by our ablation study. We tuned the (K, 0) hyperparameters to
minimize LPIPS on a 100-sample validation set, yielding the parameters in Table D.1.
For the runtime results in Fig. 4.4, we used 7ggim = 1.0 for Ny € {50, 100, 200, 500}
and nggim = 0 for Ny = 20, and we used K = NFE/2 and 6 = 0.2 for all cases. For the
v-estimation step in Alg. 2, we used ||A|2 ~ L 37 ||Aw||? with i.i.d. w; ~ N(0,)

and L = 25.

DDRM. We ran DDRM for 20 NFEs using the authors’ implementation from [49]

with minor changes to work with our codebase.

DiffPIR. We ran DiffPIR for 20 NFEs using the authors’ implementation from [113]
without modification. Hyperparameters were set according to the reported values in

[114].

I[IGDM. We ran IIGDM for 100 NFEs. Since the authors do not provide a IIGDM
implementation for noisy inverse problems in [63], we coded IIGDM ourselves in

Python/PyTorch. With problems for which an SVD is available, we computed

120

(AAT + (. I)~! using the efficient SVD implementation of A from the DDRM codebase

[49], and otherwise we used CG.

DDS. We ran DDS for 100 NFEs. We leveraged the authors’ implementation in [19]
to reimplement DDS in our codebase. We tuned the DDS regularization parameter

~Yads Via grid search and used n4qim = 0.8 and 50 CG iterations.

DPS. For the linear inverse problems, we ran DPS for 1000 NFEs using the authors’
implementation from [16] without modification, using the suggested tuning from [17,

Sec. D.1].

RED-diff. We ran RED-diff for 1000 NFEs using the authors” implementation from
[63], with minor changes to work with our codebase. We tuned the RED-diff learning

rate, A\, and data fidelity weight v; to minimize LPIPS with a 100-image validation set.

DAPS. We ran DAPS for 1000 NFEs using the authors’ implementation from [104],
with minor changes to work in our codebase. The tuning parameters were set as in

[105).
D.4.6 Compute

All experiments were run on a single NVIDIA A100 GPU with 80GB of memory.

The runtime for each method on the GPU varies, as shown in Figure 4.4.

121

D.4.7 DDfire Hyperparameter Tuning Curves

Figures D.2-D.5 show PSNR and LPIPS over the parameter grids K € {10, 20, 50, 100,
200, 500, 1000} and 6 € {0.05,0.1,0.2,0.5,0.75} for box inpainting, Gaussian deblur-
ring, motion deblurring, and 4x super resolution, respectively, using 50 ImageNet
validation images. While there are some noticeable trends, DDfire is relatively sensitive
to hyperparemeter selection, particularly in cases where the degradation is not global

(e.g., in inpainting).

122

Box Inpainting

Box Inpainting

5=0.05
5=0.4 0.26
21 6=02
by 0254 fe==="" " == . -
5=075 : SN B e S B y
I RS Sl N /
h 0.24 \\\ ————————— /J;‘\—_ S~ SN ! -
. ~ Sso o h\‘\\\\\ v
e ST
"] £ 02 R A
£ a ~o N X
Q. - \\ \\ ~ ’,
N N Y
18 0.22 1 N e
- - ~ ‘\ //’ ,/
\ ~
K 021] -#- 6=005 S\ W-—___ e //
17 4 N4 8- 5=01 . -
M- 6=02 W-—___ -
L 0201 _y- 5-05
1 M- 6=075
10 10 10° o - ”
‘ K

Figure D.2: PSNR and LPIPS tuning results for box inpainting with 50 ImageNet
validation images.

Gaussian Deblurring

Gaussian Deblurring

25.5 A -W- 6=10.05
-W- 6=01
-#- 6=02
25.0 A 0.36 A
_____ -M- 6=05
————— Feseo -W- 6=075
L B o 0344 — ~=3 Ssso
________ TS ———
SO . .
« 24.0 ~ 0 0.32 . NG N
H AN S S~ 0y
o N T . ~< AN,
¢ N b} S~o Se-_ AN
~q === N -
23.5 A < AT
0.30 1 N B PR >y, \\
N \
N PO BN
23.0 4 S P P s
0.28 A s S N X
22.5 4
0.26 A
10! 102 10% 10! 102 10°
K K

Figure D.3: PSNR and LPIPS tuning results for gaussian deblurring with 50 ImageNet
validation images.

123

Motion Deblurring

Motion Deblurring

-M- 6=0.05 0.421 M- 6=0.05
254 M- 6=01 -m- 6=01
_____ EETEEEEE EEEEEE T -M- 6=02 -M- 6=02
———————— \ -H- 6=05 0407 - 5=05
‘‘‘‘‘ N -W- 6=075 -W- 6=075
B N I it - 0.38 4
Y A‘w;-._
o \\\ 1 =2Iz= I
< S~ W ¢ 0.36 e SREEN
3 231 S N — g o
2 <~ N Y 5 B
N \ -
h IR == 0.34 1 et
S~ B N
S NG S~ | Lo
2 S N\ \\\\ -
4 W——— R S _-
= 0.32 1 sz .
S ~< Prie S
AN I3 ~ Ll -~
0.30 1
211
10t 10? 10° 10t 102 10°
K K

Figure D.4: PSNR and LPIPS tuning results for motion deblurring with 50 ImageNet
validation images.

25.0 4

24.5 4

24.0 4

PSNR

23.54

23.0 1

4x Super Resolution

4x Super Resolution

0.40
6=0.05 -M- 6=0.05
6=01 M- 6=01
6=02 -M- 6=02
6=05 0.38 1 -W- 6=05
6=075 M- 5075

bz

0.36

N - 4
N [. % 034 7
) 7
< == 7
N z
N
N
N -
S 0.32 A
b = N p—
_______ N
0.30
10! 10? 10° 10! 10? 10°
K K

Figure D.5: PSNR and LPIPS tuning results for 4x super resolution with 50 ImageNet
validation images.

124

Appendix E: Additional Reconstruction Plots

Here, we present some additional reconstruction plots for experiments in Chapters

2 and 3.

125

E.1 Additional Reconstructions for Chapter 2

E.1.1 MRI at Acceleration R =14

E2E-VarNet rcGAN pscGAN cGAN Langevin

Std. Dev. Map

32)

Average
(P

Average
(P=4)

Truth Truth
Average
(P=2)

Sample

Sample

Figure E.1: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: &) with P = 32, Row three: Z, with P = 4, Row four: &, with P = 2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.

126

E2E-VarNet rcGAN pscGAN cGAN Langevin

Std. Dev. Map

Average
(P=32)

Average
(P=4)

(P=2)

Average

Truth
Sample

Figure E.2: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: &) with P = 32, Row three: Z, with P =4, Row four: Z, with P =2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.

127

E.1.2 MRI at Acceleration R =8

E2E-VarNet rcGAN pscGAN cGAN Langevin

Std. Dev. Map

Average
(P=32)

Average
(P=4)

Truth
Sample Average
(P=2)

Truth

Sample

Figure E.3: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: &, with P = 32, Row three: Z, with P = 4, Row four: &, with P = 2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.

128

E2E-VarNet rcGAN pscGAN cGAN Langevin

Std. Dev. Map

Average
(P=32)

4)

Average
(P

Truth
Average
(P=2)

Sample

Sample

Figure E.4: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32,
Row two: &) with P = 32, Row three: Z, with P =4, Row four: Z, with P =2,
Rows five and six: posterior samples. The arrows indicate regions of meaningful
variation across posterior samples.

129

E.1.3 Inpainting

=1
£
.o0
c
o

rcGAN

CoModGAN

Score-SDE

Figure E.5: Example of inpainting a 128 x 128 square on a 256 x 256 resolution CelebA-
HQ image.

Original
rcGAN

Masked
CoModGAN

Score-SDE

Figure E.6: Example of inpainting a 128 x128 square on a 256 x 256 resolution CelebA-
HQ image.

130

Original
rcGAN

Masked

CoModGAN

Score-SDE

Figure E.7: Example of inpainting a 128 x 128 square on a 256 x 256 resolution CelebA-
HQ image.

Original
rcGAN

Masked
CoModGAN

Score-SDE

Figure E.8: Example of inpainting a 128 x 128 square on a 256 x256 resolution CelebA-
HQ image.

131

E.2 Additional Reconstructions for Chapter 3

E.2.1 MNIST Denoising

V1 V2 v3 V4 (5}
i | ' i
=) I LY 2l | L
il
a=-—3 a=-—2 a= a=2 a=3

~

4.4

“x\y+avl

xr

Ei]

(b) NPPC

Hx|y +avy

—

7 il ; f “

a=-—3 a=-—2 a=2 a=3
|

IIII*

Figure E.9: For (a) pcaGAN and (b) NPPC, this figure shows the true image x,
noisy measurements y, the conditional mean fi,,, principal eigenvectors {vy}, and
two perturbations of fiyy.

~

—

xr
@4‘(}1/34 l‘l’x\y+avl

132

V1 Vo U3 Uy Uy
= - i L1 '-l
> iy :
i -Iiﬁ i i
a=-—3 a=0
>
X
g 7
(b) NPPC
V1 Vo U3 vy U5
— — 1{ w_—— = j
i £ ’

a=-—2

727277

xr

Figure E.10: For (a) pcaGAN and (b) NPPC, this figure shows the true image «,
noisy measurements y, the conditional mean fi,,, principal eigenvectors {vy}, and

two perturbations of fiy.

133

xr

Figure E.11: For (a) pcaGAN and (b) NPPC, this figure shows the true image «,
noisy measurements y, the conditional mean fi,,, principal eigenvectors {vy}, and

two perturbations of fiy.

134

E.2.2 MRI at Acceleration R =14

E2E-VarNet pcaGAN rcGAN pscGAN cGAN Langevin
(Ohayon) (Jalal)

Std. Dev.
Map

Average
(P=32)

4)

Average
(P

Truth
2)

Average
(P

Truth

Sample

Sample

— o o ol o e o s ol o e o ar

Figure E.12: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: & with P = 4, Row four:
with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.

135

E2E-VarNet pcaGAN rcGAN pscGAN cGAN Langevin
(Ohayon) (Adler) (Jalal)

Std. Dev.
Map

N Y S R

Average
(P=32)

Average
(P=4)

Truth
2)

Average
(P

Truth
Sample

[

»

Al

|

Sample

Figure E.13: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: & with P = 4, Row four: Z,,
with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.

136

E.2.3 MRI at Acceleration R =8

E2E-VarNet pcaGAN rcGAN pscGAN cGAN Langevin
(Ohayon) (Adler) (Jalal)

Std. Dev.
Map

Average
(P=32)

4)

Average
(P

Truth
2)

Average
(P

Truth
Sample

. A T o O Lo S e e

Sample

T

Figure E.14: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: & with P = 4, Row four:
with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.

137

E2E-VarNet pcaGAN rcGAN pscGAN cGAN Langevin
(Ohayon) (Adler) (Jalal)

r./ L/ L/ L/ k/\ i
L/lh/ L/ 'L/\ #i
£
| T 4
E A W L/ L/\ E
| S
F F
Ml IR AT K E

]

Figure E.15: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with
P = 32, Row two: &, with P = 32, Row three: & with P = 4, Row four: Z,,
with P = 2, Rows five and six: posterior samples. The arrows indicate regions of
meaningful variation across posterior samples.

138

E.2.4 Inpainting

Original

Masked

CoModGAN

DPS

DDNM

DDRM

Figure E.16: Example of inpainting a randomly generated mask on a 256 x 256 FFHQ
face image.

139

leuiSuQ

payse|n

NVOPOWNOD

Figure E.17: Example of inpainting a randomly generated mask on a 256 x 256 FFHQ

face image.

140

Original
pcaGAN

Masked
rcGAN

CoModGAN

DPS

DDNM

DDRM

Figure E.18: Example of inpainting a randomly generated mask on a 256 x 256 FFHQ
face image.

141

leuisuQ

NV

payseln

NVOPOWNOD

Figure E.19: Example of inpainting a randomly generated mask on a 256 x 256 FFHQ

face image.

142

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	A Regularized Conditional GAN for Posterior Sampling in Image Recovery Problems
	Background
	Approach
	Proposed Regularization: Supervised-L1 Plus SD Reward
	Auto-tuning of SD Reward Weight betastd

	Numerical Experiments
	Conditional Fréchet Inception Distance
	MRI Experiments
	Inpainting Experiments
	CFID Decomposition

	Conclusion

	Improving Posterior-Sampling cGANs via Principal Component Regularization
	Background
	Approach
	Numerical Experiments
	Recovering Synthetic Gaussian Data
	MNIST Denoising
	Accelerated MRI
	Large-Scale Inpainting

	Discussion
	Conclusion

	Solving Inverse Problems using Diffusion with Iterative Colored Renoising
	Background
	Approach
	Fast Iterative REnoising (FIRE)
	Putting FIRE into Diffusion
	Relation to Other Methods

	Numerical Experiments
	Ablation Study
	Accuracy of sigma squared and nu
	PSNR, LPIPS, and FID Results
	Runtime Results

	Discussion
	Conclusion

	Final Thoughts
	Final Experiment
	Potential Future Work
	Conclusion

	Bibliography
	Appendices
	Additional Details for Inverse Problems
	MR Imaging Details
	Data-Consistency for Inverse Problems
	Additional Diffusion Details
	VP Formulation
	DDIM Details for VP
	DDIM Details for VE

	Proofs and Derivations
	Proof of Proposition 1
	Derivation of Proposition 2
	Derivation of (2.19)
	Proof of Proposition 3
	Proof of Theorem 4

	Implementation Details
	Conditional Fréchet Inception Distance
	Implementation Details for Chapter 2
	Accelerated MRI
	CelebA-HQ Inpainting

	Implementation Details for Chapter 3
	Synthetic Gaussian Data
	Synthetic Gaussian Recovery
	MNIST Denoising
	Accelerated MRI
	FFHQ Inpainting

	Implementation Details for Chapter 4
	Speeding up CG
	Inverse Problems
	Evaluation Protocol
	Unconditional Diffusion Models
	Recovery Methods
	Compute
	DDfire Hyperparameter Tuning Curves

	Additional Reconstruction Plots
	Additional Reconstructions for Chapter 2
	MRI at Acceleration R=4
	MRI at Acceleration R=8
	Inpainting

	Additional Reconstructions for Chapter 3
	MNIST Denoising
	MRI at Acceleration R=4
	MRI at Acceleration R=8
	Inpainting

