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Imaging inverse problems
Measurements y = A(x0) of unknown image x0 ∼ p(x)
A(·) masks, distorts, and/or corrupts x0 with noise.
Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT),
magnetic resonance imaging (MRI), etc.

Goal: accurately sample from the posterior p(x|y)
Challenges

Ill-posed: Many hypotheses of x0 can explain y
High dimensional

Diffusion methods

Diffusion methods are powerful ways to sample from a complex distribution p(x)

The forward process gradually adds noise to x(0) ∼ p(x). The reverse process gradually
denoises pure noise x(T ), eventually generating a sample from p(x)

To discretize, we’ll assume VP DDPM, where step t ∈ {1, . . . , T} provides
xt =

√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, I)

Although the reverse process is usually written using the score function ∇x log pt(xt), it can
also be written using the MMSE denoiser E{x0|xt} via Tweedie’s rule

∇x log pt(xt) =

√
αtE{x0|xt} − xt

1− αt

Solving inverse problems with diffusion
We can train an approximation to the score function ∇x log pt(xt) from samples of
x0 ∼ p(x), independently of any forward model A(·)
Then we can run the diffusion reverse process using an approximation to the conditional
score function ∇x log pt(xt|y) in place of ∇x log pt(xt), or equivalently by using
E{x0|xt,y} in place of E{x0|xt}
Many strategies have been proposed to approximate ∇x log pt(xt|y) or E{x0|xt,y} using
some combination of a pretrained approximation to ∇x log pt(xt) and the likelihood function
p(y|x0)

Popular methods include DDRM [1], DPS [2], DDNM [3], ΠGDM [4], DiffPIR [5], DDS [6], etc.

The main challenge
The main challenge is computing a good approximation to E{x0|xt,y} under computational
constraints

Any given method can be assessed by computing the MSE of its E{x0|xt,y} approximation,
since the exact E{x0|xt,y} minimizes MSE
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The DDRM, DiffPR, and DPS approximations of E{x0|xt,y} are all relatively poor,
especially early in the reverse process

Fast Iterative REnoising (FIRE)
We propose an iterative approximation of E{x0|xt,y} that we call FIRE
For linear inverse problems y = Ax0 +w with w ∼ N (0, σ2

wI), FIRE iterates the following
steps after initializing r = xt and σ2

r = (1− αt)/αt:

1 x̃0← Denoise(r;σ2
r), σ2

x← E ∥x̃0 − x0∥2/d
2 x̂0← argmin

x

1

σ2
w

∥y −Ax∥2 + 1

σ2
x

∥x̃0 − x∥2

3 σ2
r ← σ2

r/ρ for some ρ > 1 . . . decrease denoising variance
4 renoise: set r ← x̂0 + n with colored Gaussian n that gives

r ∼ N (x0, σ
2
rI)

Key idea: renoising ensures that the denoiser sees AWGN,
consistent with how it was trained!

Two options for renoising: exact SVD-based, or approximate
(A,AT)-based
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DDfire: Putting the FIRE into diffusion
FIRE can be plugged into any diffusion reverse process. We use DDPM

Because FIRE uses multiple NFEs per E{x0|xt,y}, we subsample the diffusion steps {t}
using DDIM and schedule the FIRE iterations to meet a given total-NFE budget

We allocate FIRE iterations using a
“waterfilling” procedure, which is best
illustrated using inverse variances, i.e.,
precisions:

Basically, waterfilling ensures that FIRE’s
final-iteration denoiser-input-precision meets
a target at each DDIM step

The resulting “DDfire” approach
outperforms many state-of-the-art diffusion
methods at the tested NFE budgets of 20,
100, 1000

Noisy FFHQ results
Results on 256× 256 FFHQ faces with measurement noise σw = 0.05:

Inpaint (box) Deblur (Gaussian) Deblur (Motion) 4× Super-resolution

# NFEs Model PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

20
DiffPIR 20.87 0.2741 41.50 23.55 0.3269 41.29 27.31 0.2704 29.27 22.32 0.3560 44.85
DDRM 22.02 0.2052 40.61 26.27 0.2896 51.70 - - - 28.62 0.2417 45.82
DDfire 21.80 0.1974 28.49 27.18 0.2843 36.22 28.52 0.2455 28.86 27.02 0.2917 37.72

100
DiffPIR 22.44 0.2415 31.98 24.57 0.2936 34.82 26.91 0.2683 26.67 26.76 0.3061 32.33
ΠGDM 21.75 0.2614 44.41 24.34 0.3125 45.34 25.94 0.2706 41.95 25.42 0.3109 51.41
DDfire 23.78 0.1623 26.75 27.48 0.2274 25.48 27.79 0.2193 25.91 27.20 0.2399 26.24

1000
DPS 22.84 0.1793 35.69 26.32 0.2327 25.18 27.64 0.2176 27.17 27.11 0.2360 27.38
DDfire 24.14 0.1579 24.56 26.84 0.2259 24.68 27.71 0.2155 24.57 27.32 0.2356 25.75

DDfire outperforms the competitors in 33 of the 36 cases

Fast inference speed
DDfire can be run using an SVD or CG, and in batch mode

SVD-DDfire faster than all competitors when batch size ≥ 2 (10× faster than DPS)

Extension to generalized-linear models
To handle problems like phase retrieval, dequantization, Poisson regression, and
non-Gaussian additive noise, we leverage to the generalized linear model (GLM):

y ∼ p(y|z0) =

m∏
j=1

py|z(yj|z0,j) with z0 ≜ Ax0

GLM-FIRE is constructed with
expectation-propagation iterations
between linear FIRE and a scalar
MMSE inference stage:

MMSE inference
of z0,j ∼ N (z̄0,j, σ̄

2
z)

from yj ∼ py|z(·|z0,j)

linear FIRE
with ȳ = Ax0 + w̄

and w̄ ∼ N (0, σ̄2
wI)

ȳ, σ̄w

z̄0, σ̄z

y x̂0

Noisy FFHQ phase-retrieval results
Results on 256× 256 FFHQ faces with shot noise level αshot:

4x OSF @ αshot = 8 4x CDP @ αshot = 45

# NFEs Model PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓
- HIO 23.66 0.5299 130.58 17.59 0.5818 84.87

1000 DOLPH [7] 14.73 0.7089 389.88 25.76 0.2163 32.93
1000 DPS [2] 23.63 0.3326 53.91 29.19 0.1994 27.87
800 prDeep [8] 30.90 0.1585 31.51 19.24 0.4352 59.44
800 GLM-DDfire 33.56 0.1160 28.94 30.01 0.1767 23.49
100 GLM-DDfire 25.88 0.2643 46.54 30.16 0.1707 23.30

GLM-DDfire gives state-of-the-art noisy phase-retrieval performance with both oversampled
Fourier (OSF) and coded diffraction pattern (CDP) operators
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