Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction

Jeffrey Wen, Rizwan Ahmad, and Phil Schniter Supported by NIH grant R01-EB029957

2025 BASP Frontiers Conference Villars-sur-Ollon, Switzerland

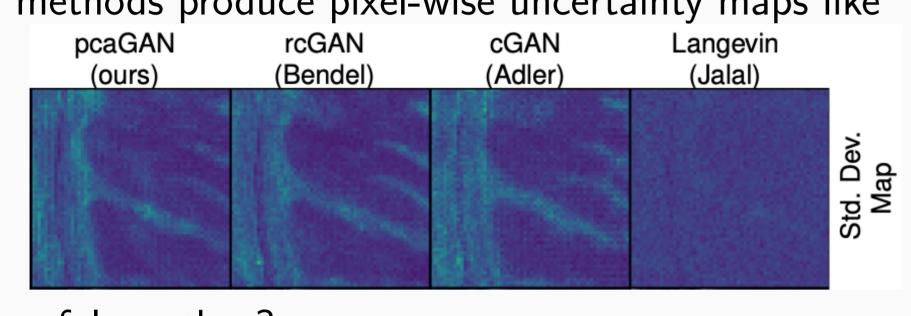
Acceleration, R

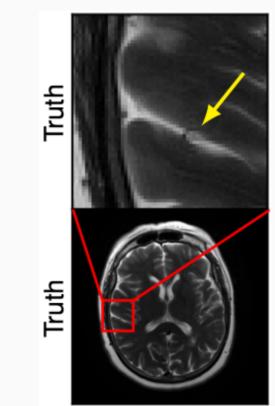
Imaging inverse problems

- Measurements $\boldsymbol{y} = \mathcal{A}(\boldsymbol{x}_0)$ of unknown image \boldsymbol{x}_0
 - lacksquare $\mathcal{A}(\cdot)$ masks, distorts, and/or corrupts $oldsymbol{x}_0$ with noise.
 - Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT), magnetic resonance imaging (MRI), etc.
- Typical goals
 - Recover image \boldsymbol{x}_0
 - Extract quantitative information from x_0 (e.g., probability of a pathology)
- Challenges
 - III-posed: Many hypotheses of \boldsymbol{x}_0 can explain \boldsymbol{y}
 - lacktriangle Hallucinations: Inaccurate $\widehat{m{x}}$ can still look "good," leading to false sense of trust

Uncertainty quantification (UQ)

- lacktriangle We'd like to quantify the uncertainty or error in the image recovery $\widehat{m{x}}$
- Especially important in safety-critical applications (e.g., medical imaging)
- Most UQ methods produce pixel-wise uncertainty maps like





- But how useful are they?
 - Do they say when the recovery is accurate enough for the task at hand?

Probabilistic bounds on recovered-image accuracy

- lacksquare Say we have an image-recovery method $m{r}(\cdot)$ that produces $\widehat{m{x}}_0 = m{r}(m{y}_0)$
- We'd like to know the accuracy' of $\widehat{\boldsymbol{x}}_0$ relative to the true \boldsymbol{x}_0
- lacktriangle To measure accuracy, we'll use an arbitrary image-quality metric $|z_0=m(\widehat{m{x}}_0,m{x}_0)|$ like
 - PSNR, SSIM ... higher preferred (we'll focus on this below)
 - LPIPS [1], DISTS [2] ... lower preferred
- lacksquare Can we guarantee the accuracy of $\widehat{m{x}}_0$? Can we construct a bound $eta_0(m{y}_0)$ such that

$$\Pr\{Z_0 \geq \beta_0(\boldsymbol{Y}_0)\} \geq 1-\alpha$$
 for some chosen error rate α ?

An impractical bound

- lacksquare Say we have a perfect posterior sampler generating c i.i.d image samples $\{\widetilde{m{x}}_0^{(j)}\}_{j=1}^c$
- The corresponding image-accuracy samples are $\widetilde{z}_0^{(j)} \triangleq m(\widehat{\boldsymbol{x}}_0, \widetilde{\boldsymbol{x}}_0^{(j)}) \stackrel{iid}{\sim} p_{Z_0 \mid \boldsymbol{Y}_0}(\cdot \mid \boldsymbol{y}_0)$
- An accuracy lower bound β_0 that obeys

$$\Pr\{Z_0 \ge \beta_0 \mid \boldsymbol{Y}_0 = \boldsymbol{y}_0\} = 1 - \alpha$$

can be constructed using an infinite number of perfect posterior samples:

$$\beta_0 = \lim_{c \to \infty} \widehat{\beta}_0$$
 with $\widehat{\beta}_0 \triangleq \text{EmpQuant}(\alpha, \{\widetilde{z}_0^{(j)}\}_{j=1}^c)$

A conformal image-accuracy bound

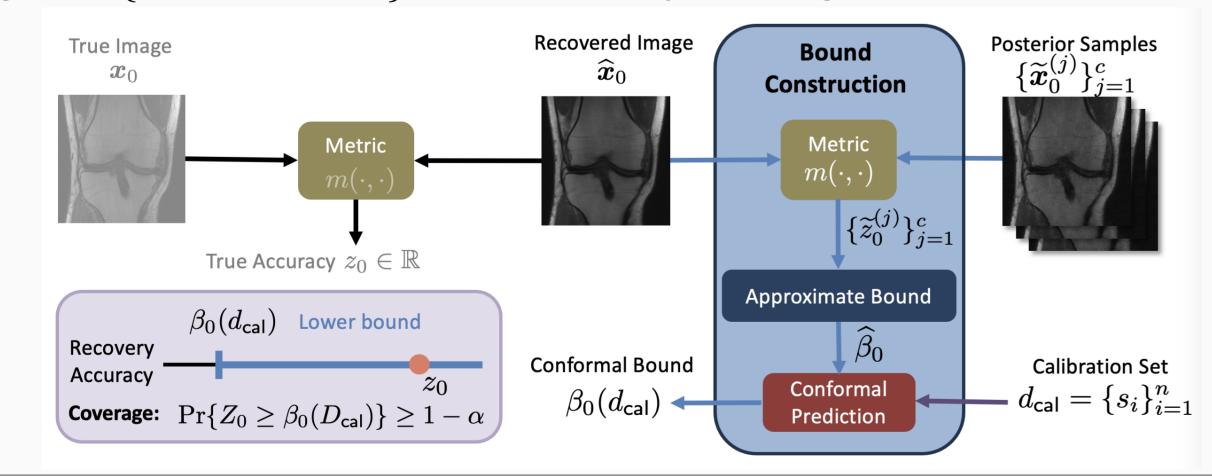
- \blacksquare In practice, we have only a finite number c of imperfect posterior samples
- We propose to design a valid lower bound using conformal prediction [3]
 - lacksquare Assume we have n calibration samples $\{(m{x}_i, m{y}_i)\}_{i=1}^n$ in addition to the test measurements $m{y}_0$
 - Construct approximate c-sample bounds: $\widehat{\beta}_i = \operatorname{EmpQuant}(\alpha, \{\widetilde{z}_i^{(j)}\}_{j=1}^c)$ for $i = 0, \ldots, n$ and "bound-violation scores" $s_i \triangleq \widehat{\beta}_i - z_i$ for $i = 1, \ldots, n$
 - Using the set $d_{cal} \triangleq \{s_i\}_{i=1}^n$ of calibration scores, compute a bound correction term

$$\widehat{\lambda}(d_{\mathsf{cal}}) = \text{EmpQuant}\left(\frac{\lceil (1-\alpha)(n+1)\rceil}{n}, \{s_i\}_{i=1}^n\right)$$

- Form the final "test" lower bound as $\beta_0(\boldsymbol{y}_0,d_{\mathsf{cal}})=\widehat{\beta}_0-\widehat{\lambda}(d_{\mathsf{cal}})$
- This conformal bound obeys the marginal coverage guarantee

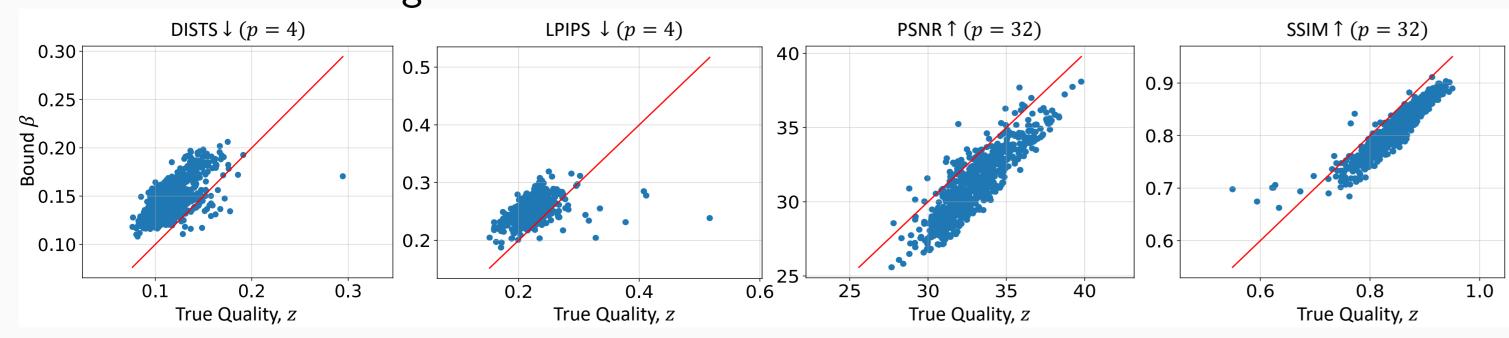
$$1 - \alpha \le \Pr\{Z_0 \ge \beta_0(\mathbf{Y}_0, D_{\mathsf{cal}})\} \le 1 - \alpha + \frac{1}{n+1}$$

assuming that $\{S_0, S_1, \ldots, S_n\}$ are statistically exchangeable



Example: Bounding recovery accuracy in MRI

lacksquare Scatter plots of (z_0, β_0) from fastMRI knee recovery lacksquare acceleration R=8 using a conditional normalizing flow:



The red line indicates where the bound would be exact

 \blacksquare Marginal coverage validation via $10\,000$ Monte-Carlo trials (random 70% test / 30%calibration split):

target coverage $1-\alpha$ average empirical coverage 0.9504 ± 0.0001 0.95

Application: Multi-round MRI acquisition

 \blacksquare Consider acquiring over multiple rounds (i.e., $R \in \{16, 8, 4, 2, 1\}$), stopping as soon at the conformal upper bound on DISTS [4] is good enough (i.e., $\leq \beta_{\text{max}}$)



Quantitative / Task-based imaging

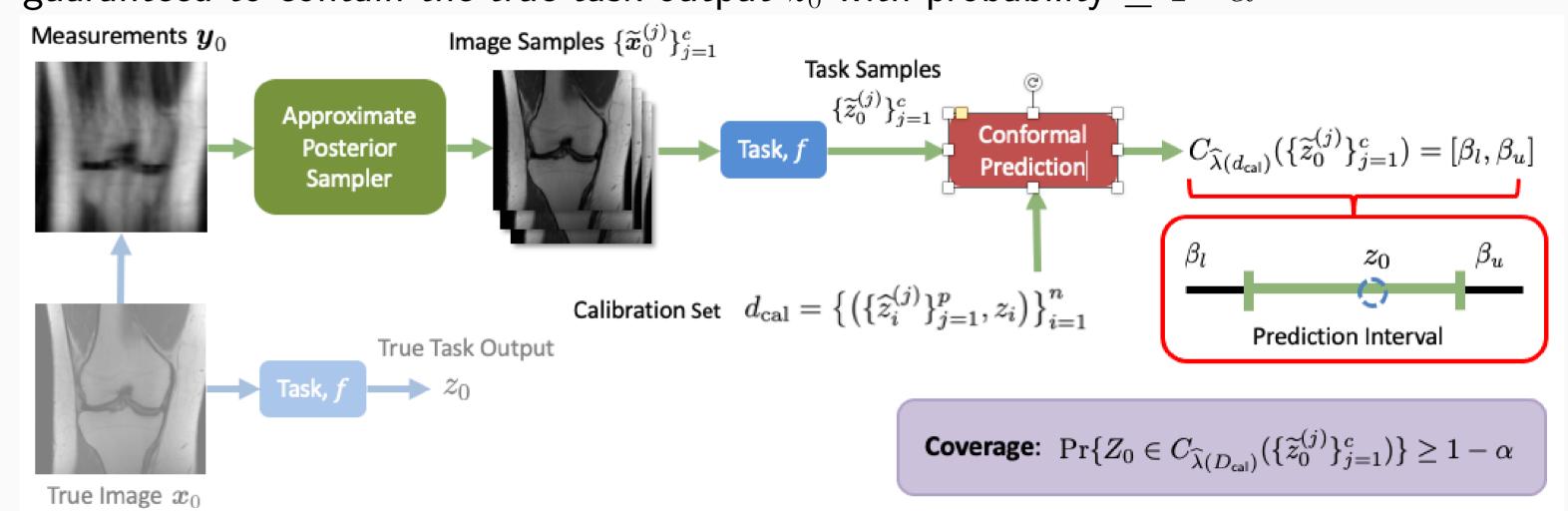
- lacksquare Again consider measurements $m{y}_0 = \mathcal{A}(m{x}_0)$ and some recovery $\widehat{m{x}}_0 = r(m{y}_0)$
- But now say that our goal is to extract quantitative information about x_0
- **Example:** Does the MRI knee image x_0 indicate a meniscus tear?
- Say we've trained & calibrated a soft-output binary classifier $f(\cdot)$ on clean images
- Naively applying $f(\cdot)$ to imperfect recoveries $\widehat{\boldsymbol{x}}_0$ would give unreliable results
- Instead, we want to estimate $f(\boldsymbol{x}_0)$ from \boldsymbol{y}_0 (without knowing \boldsymbol{x}_0)

multi-round 5.422 ± 0.0001 0.9461 ± 0.0001

- lacktriangle More generally, one may wish to estimate a generic $|z_0=f(m{x}_0)\in\mathbb{R}|$ given $m{y}_0$
- lacktriangle Can one construct guaranteed upper and lower bounds on z_0 ?

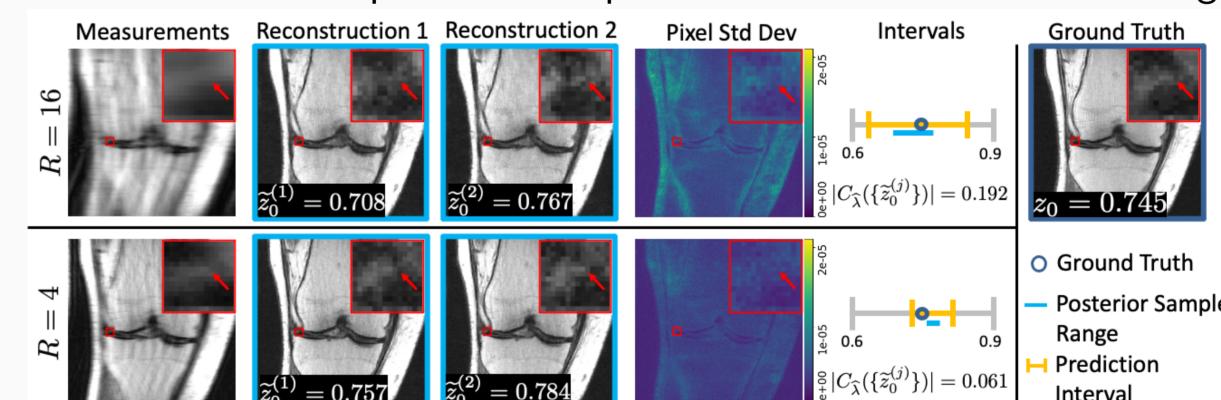
Conformal prediction of the true task output [5]

- Our approach is similar to before, in that we combine posterior image sampling with conformal prediction
- lacksquare But instead of a one-sided bound, we construct a prediction interval $C_{\lambda}=[\beta_l,\beta_u]$ that is guaranteed to contain the true task output z_0 with probability $\geq 1-\alpha$



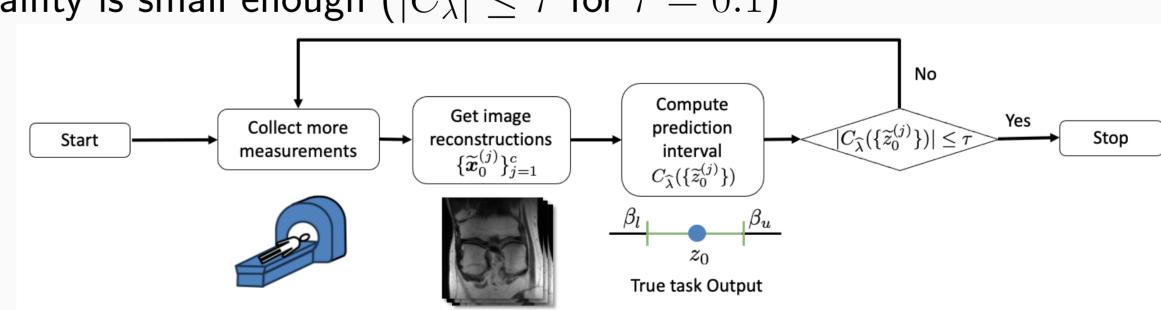
Example: Predicting meniscus tears in knee MRI

- lacktriangle We trained and calibrated a ResNet50 to output meniscus-tear probability $z_0=f(m{x}_0)$ using clean images from fastMRI+
- lacktriangle From R-accelerated measurements $oldsymbol{y}_0$, we compute a prediction interval C_λ that contains the true z_0 with 99% probability
- \blacksquare The conformal bound uses c posterior samples from a conditional normalizing flow



Application: Multi-round MRI acquisition

 \blacksquare Consider acquiring over multiple rounds (i.e., $R \in \{16, 8, 4, 2, 1\}$), stopping as soon at the task uncertainty is small enough ($|C_{\lambda}| \leq \tau$ for $\tau = 0.1$)



■ The adaptive LWR and CQR schemes achieve much higher average acceleration rates than the non-adaptive AR scheme:

Method	Average	Empirical	Average Center	of Slices					CQP
	Acceleration	Coverage	Error @ $R = 2$	ou of 0.6-					
AR	2.000	0.991 ± 0.008	0.032 ± 0.017	Fraction - 4.0					
LWR	5.157	0.992 ± 0.005	0.020 ± 0.002	正 0.2 -					
CQR	6.762	0.987 ± 0.008	0.044 ± 0.009	0.0			,		
Center Error $\triangleq z_0 - \frac{\beta_l + \beta_u}{2} $					16	8 A	4 Accelerati	2 on	1

References

- [1] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, "The unreasonable effectiveness of deep features as a perceptual metric," in Proc. IEEE Conf.
- Comp. Vision Pattern Recog., pp. 586-595, 2018. K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, "Image quality assessment: Unifying structure and texture similarity," IEEE Trans. Pattern Anal. Mach. Intell.
- vol. 44, no. 5, pp. 2567–2581, 2020. [3] J. Lei, M. G'Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman, "Distribution-free predictive inference for regression," J. Am. Statist. Assoc., 2018.
- [4] S. Kastryulin, J. Zakirov, N. Pezzotti, and D. V. Dylov, "Image quality assessment for magnetic resonance imaging," IEEE Access, vol. 11, pp. 14154–14168,
- [5] J. Wen, R. Ahmad, and P. Schniter, "Task-driven uncertainty quantification in inverse problems via conformal prediction," in Proc. Europ. Conf. Comp. Vision,