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Imaging inverse problems
Measurements y = A(x0) of unknown image x0

A(·) masks, distorts, and/or corrupts x0 with noise.
Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT),
magnetic resonance imaging (MRI), etc.

Typical goals
Recover image x0

Extract quantitative information from x0 (e.g., probability of a pathology)

Challenges
Ill-posed: Many hypotheses of x0 can explain y
Hallucinations: Inaccurate x̂ can still look “good,” leading to false sense of trust

Uncertainty quantification (UQ)

We’d like to quantify the uncertainty or error in the image recovery x̂

Especially important in safety-critical applications (e.g., medical imaging)

Most UQ methods produce pixel-wise uncertainty maps like

But how useful are they?
Do they say when the recovery is accurate enough for the task at hand?

Probabilistic bounds on recovered-image accuracy
Say we have an image-recovery method r(·) that produces x̂0 = r(y0)

We’d like to know the accuracy’ of x̂0 relative to the true x0

To measure accuracy, we’ll use an arbitrary image-quality metric z0 = m(x̂0,x0) like
PSNR, SSIM . . . higher preferred (we’ll focus on this below)
LPIPS [1], DISTS [2] . . . lower preferred

Can we guarantee the accuracy of x̂0? Can we construct a bound β0(y0) such that

Pr{Z0 ≥ β0(Y 0)} ≥ 1−α for some chosen error rate α?

An impractical bound

Say we have a perfect posterior sampler generating c i.i.d image samples {x̃(j)
0 }cj=1

The corresponding image-accuracy samples are z̃
(j)
0 ≜ m(x̂0, x̃

(j)
0 )

iid∼ pZ0 |Y 0
(· |y0)

An accuracy lower bound β0 that obeys

Pr{Z0 ≥ β0 |Y 0=y0} = 1− α

can be constructed using an infinite number of perfect posterior samples:

β0 = lim
c→∞

β̂0 with β̂0 ≜ EmpQuant(α, {z̃(j)0 }cj=1)

A conformal image-accuracy bound
In practice, we have only a finite number c of imperfect posterior samples
We propose to design a valid lower bound using conformal prediction [3]

Assume we have n calibration samples {(xi,yi)}ni=1 in addition to the test measurements y0

Construct approximate c-sample bounds: β̂i = EmpQuant(α, {z̃(j)i }cj=1) for i = 0, . . . , n

and “bound-violation scores” si ≜ β̂i − zi for i = 1, . . . , n

Using the set dcal ≜ {si}ni=1 of calibration scores, compute a bound correction term

λ̂(dcal) = EmpQuant
(⌈(1−α)(n+1)⌉

n , {si}ni=1
)

Form the final “test” lower bound as β0(y0, dcal) = β̂0 − λ̂(dcal)

This conformal bound obeys the marginal coverage guarantee

1− α ≤ Pr{Z0 ≥ β0(Y 0, Dcal)} ≤ 1− α + 1
n+1

assuming that {S0, S1, . . . , Sn} are statistically exchangeable

Example: Bounding recovery accuracy in MRI
Scatter plots of (z0, β0) from fastMRI knee recovery @ acceleration R = 8 using a
conditional normalizing flow:

DISTS ↓ (𝑝 = 4) LPIPS  ↓ (𝑝 = 4) PSNR ↑ (𝑝 = 32) SSIM ↑ (𝑝 = 32)
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The red line indicates where the bound would be exact

Marginal coverage validation via 10 000 Monte-Carlo trials (random 70% test / 30%
calibration split): target coverage 1− α average empirical coverage

0.95 0.9504± 0.0001

Application: Multi-round MRI acquisition
Consider acquiring over multiple rounds (i.e., R ∈ {16, 8, 4, 2, 1}), stopping as soon at the
conformal upper bound on DISTS [4] is good enough (i.e., ≤ βmax)

Multi-round acquisition achieves much higher average
acceleration than single-round acquisition:

method avg acceleration empirical coverage
single-round 2.000± 0.0000 0.9505± 0.0001
multi-round 5.422± 0.0001 0.9461± 0.0001 Acceleration, <latexit sha1_base64="hbylI2SrLm1xjTpdYUOsb4es2GA=">AAAB/HicbVBLTgJBFHyDP8Qf6tJNR2LiiswYgy6JblyCESSBCenpeUCHnk+6e0zIBC/gVm/gzrj1Ll7Ac9gDsxCwkk4qVe/lVZcXC660bX9bhbX1jc2t4nZpZ3dv/6B8eNRWUSIZtlgkItnxqELBQ2xprgV2Yok08AQ+euPbzH98Qql4FD7oSYxuQIchH3BGtZGa9/1yxa7aM5BV4uSkAjka/fJPz49YEmComaBKdR071m5KpeZM4LTUSxTGlI3pELuGhjRA5aazoFNyZhSfDCJpXqjJTP27kdJAqUngmcmA6pFa9jLxP6+b6MG1m/IwTjSGbH5okAiiI5L9mvhcItNiYghlkpushI2opEybbhau+CqLNi2ZYpzlGlZJ+6Lq1Kq15mWlfpNXVIQTOIVzcOAK6nAHDWgBA4QXeIU369l6tz6sz/lowcp3jmEB1tcvzsuVXg==</latexit>
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Quantitative / Task-based imaging
Again consider measurements y0 = A(x0) and some recovery x̂0 = r(y0)

But now say that our goal is to extract quantitative information about x0

Example: Does the MRI knee image x0 indicate a meniscus tear?
Say we’ve trained & calibrated a soft-output binary classifier f (·) on clean images
Naively applying f (·) to imperfect recoveries x̂0 would give unreliable results
Instead, we want to estimate f (x0) from y0 (without knowing x0)

More generally, one may wish to estimate a generic z0 = f (x0) ∈ R given y0

Can one construct guaranteed upper and lower bounds on z0?

Conformal prediction of the true task output [5]
Our approach is similar to before, in that we combine posterior image sampling with
conformal prediction

But instead of a one-sided bound, we construct a prediction interval Cλ = [βl, βu] that is
guaranteed to contain the true task output z0 with probability ≥ 1−α

Example: Predicting meniscus tears in knee MRI
We trained and calibrated a ResNet50 to output meniscus-tear probability z0 = f (x0) using
clean images from fastMRI+

From R-accelerated measurements y0, we compute a prediction interval Cλ that contains
the true z0 with 99% probability

The conformal bound uses c posterior samples from a conditional normalizing flow

Application: Multi-round MRI acquisition
Consider acquiring over multiple rounds (i.e., R ∈ {16, 8, 4, 2, 1}), stopping as soon at the
task uncertainty is small enough (|Cλ| ≤ τ for τ = 0.1)

The adaptive LWR and CQR schemes achieve much higher average acceleration rates than
the non-adaptive AR scheme:

Method Average
Acceleration

Empirical
Coverage

Average Center
Error @ R = 2

AR 2.000 0.991± 0.008 0.032± 0.017
LWR 5.157 0.992± 0.005 0.020± 0.002
CQR 6.762 0.987± 0.008 0.044± 0.009

Center Error ≜ |z0 − βl+βu
2 | Acceleration
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