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Imaging inverse problems

m Measurements y = A(x) of unknown image x
m A(-) masks, distorts, and/or corrupts x( with noise.

m Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT),
magnetic resonance imaging (MRI), etc.

m [ypical goals
m Recover image x
m Extract quantitative information from x (e.g., probability of a pathology)

m Challenges

m lll-posed: Many hypotheses of x( can explain y
m Hallucinations: Inaccurate & can still look “good,” leading to false sense of trust

THE OHIO STATE UNIVERSITY

Uncertainty quantification (UQ)
m We'd like to quantify the uncertainty or error in the image recovery x
m Especially important in safety-critical applications (e.g., medical imaging)

m Most UQ methods produce pixel-wise uncertainty maps like
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m But how useful are they?
m Do they say when the recovery is accurate enough for the task at hand?

Probabilistic bounds on recovered-image accuracy
m Say we have an image-recovery method 7(-) that produces xy, = r(y,)

m We'd like to know the accuracy' of Z, relative to the true x;

m To measure accuracy, we'll use an arbitrary image-quality metric 2y = m(xg, ) like

m PSNR, SSIM ... higher preferred (we'll focus on this below)
m LPIPS [1], DISTS [2] ... lower preferred

m Can we guarantee the accuracy of x;? Can we construct a bound Sy(y,) such that

Pr{Zy > By(Y o)} > 1—a for some chosen error rate o

An impractical bound
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m Say we have a perfect posterior sampler generating c i.i.d image samples {587)}]-:1
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m [ he corresponding image-accuracy samples are = m(xy, ;) ~ pZO‘YO(- | y)

m An accuracy lower bound 3 that obeys
DI{ZO Z 50 | Y():y()} =1 —«
can be constructed using an infinite number of perfect posterior samples:

By = lim BO with 50 2 EmpQuant(a, {Z’éj)}c-zl)
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A conformal image-accuracy bound

m In practice, we have only a finite number ¢ of imperfect posterior samples
m We propose to design a valid lower bound using conformal prediction [3]

m Assume we have n calibration samples {(x;,y,)}! , in addition to the test measurements y,

m Construct approximate c-sample bounds: §; = EmpQuant(c, {E§]>}§:1) fori =0,....n
and “bound-violation scores” s; = 5; — z; fori=1.....n

m Using the set d, il {s;}, of calibration scores, compute a bound correction term

/>\\<dC3|) = EmpQuant (m_&%nﬂﬂ, {Si}?’zl)

m Form the final “test” lower bound as [y(y,, dcal) = By — /):(dca|)
m [his conformal bound obeys the marginal coverage guarantee

1l —a<Pr{Z > 6(Yo,Dca)} <1—a+—
assuming that {5y, S1, . .

., Sy} are statistically exchangeable

Bound \

Construction

Recovered Image (
Zo

True Image

Posteri(o.r) Samples
~\JJ)\c
{5 151

Metric

m('a )

Recovery

Accuracy I

Calibration Set
T
dcal — {Si i=1

Conformal Bound

BO(dcaI) D

Conformal

Prediction

Example: Bounding recovery accuracy in MRI

m Scatter plots of (2, 8y) from fastMRI knee recovery @ acceleration R = 8 using a

conditional normalizing flow:
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The red line indicates where the bound would be exact

m Marginal coverage validation via 10 000 Monte-Carlo trials (random 70% test / 30%
calibration split):

target coverage 1 — o/ average empirical coverage
0.95 0.9504 == 0.0001
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Application: Multi-round MRI acquisition

m Consider acquiring over multiple rounds (i.e., R € {16,8,4,2,1}), stopping as soon at the
conformal upper bound on DISTS [4] is good enough (i.e., < Bax)
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Quantitative / Task-based imaging
m Again consider measurements y, = A(x() and some recovery Ty = r(y,)

m But now say that our goal is to extract quantitative information about @

m Example: Does the MRI knee image @ indicate a meniscus tear?
m Say we've trained & calibrated a soft-output binary classifier f(-) on clean images
m Naively applying f(-) to imperfect recoveries &, would give unreliable results
m Instead, we want to estimate f(x() from vy, (without knowing x)

m More generally, one may wish to estimate a generic 2y = f(xy) € R given y,

m Can one construct guaranteed upper and lower bounds on z;?

Conformal prediction of the true task output [5]

m Our approach is similar to before, in that we combine posterior image sampling with
conformal prediction

m But instead of a one-sided bound, we construct a prediction interval C\ = |, £, that is
guaranteed to contain the true task output z; with probability > 1—«
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Example: Predicting meniscus tears in knee MR]

m We trained and calibrated a ResNet50 to output meniscus-tear probability zy = f(ag) using
clean images from fastMRI

m From R-accelerated measurements y,, we compute a prediction interval C'\ that contains
the true zo with 99% probability

m [he conformal bound uses ¢ posterior samples from a conditional normalizing flow
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Application: Multi-round MRI acquisition

m Consider acquiring over multiple rounds (i.e., R € {16,8,4,2,1}), stopping as soon at the
task uncertainty is small enough (|C)\| < 7 for 7 = 0.1)
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m [he adaptive LWR and CQR schemes achieve much higher average acceleration rates than

the non-adaptive AR scheme: 10/ —
LWR
Method| Average Empirical | Average Center § 0'8 ==
Acceleration | Coverage Error © R =2 2 "
AR 2.000 0.991 4 0.008| 0.032 £ 0.017 g 04
LWR 5.157 10.992 £ 0.005 0.020 = 0.002 02
CQR 6.762 0.987 4 0.008| 0.044 £ 0.009 0ol b , | | ,
Center Error £ |2y — @| e ° Acceleration i '
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