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Inverse Problems in Imaging

Consider the basic inverse problem in imaging:

Recover x0 from measurements y = corrupted(Ax0),
where A is a known linear operator.

Corruptions include noise, quantization, loss of phase, Poisson photons, etc.

The operator A depends on the application:
deblurring
super-resolution
compressive imaging
inpainting
etc

Optimization-Based Recovery and MAP Estimation

A common approach to recovering the image x is through posing and solving an optimization problem:

x̂ = argmin
x

{
`(x;y) + λρ(x)

}
with

 `(x;y) : loss function
ρ(x) : regularization
λ > 0 : tuning parameter

This can be interpreted as Bayesian MAP estimation:

x̂map = argmin
x

{
− ln p(y|x)− ln p(x)

}
with

{
p(y|x) : likelihood
p(x) : prior

The loss function `(·;y) is usually straightforward to choose.

But how do we choose the regularization ρ(·)?

Plug-and-Play ADMM

A common approach to convex optimization is ADMM: For some β > 0 and k = 1, 2, 3, ...

xk = argmin
x

{
`(x;y) + β

2‖x− vk−1 + uk−1‖
2}

vk = argmin
v

{
ρ(v) + β

2‖v − xk + uk−1‖
2} , proxρ/β(xk − uk−1)

uk = uk−1 + xk − vk
The prox operation performs denoising (eg, soft-thresholding when ρ(x) = ‖x‖1).

In 2013, Bouman et al. proposed plug-and-play (PnP) ADMM, where the prox is replaced by a
sophisticated image denoiser f (·), such as BM3D.

Regularization by Denoising (RED)

In 2017, Romano, Elad, and Milanfar proposed a new family of PnP algorithms that find the image
estimate x̂ that obeys

∇`(x̂;y) + λ
(
x̂− f (x̂)

)
= 0

They claimed these algorithms result from optimization under the regularizer

ρred(x) ,
1

2
x>
(
x− f (x)

)
and thus coined the approach Regularization by Denoising (RED).

They furthermore claimed that ρred(·) was convex with practical image denoisers f (·).

Experiments in the RED paper suggest advantages for RED over PnP-ADMM:

Super-resolution recovery, averaged over 10 test images.

The RED algorithms are not explained by the RED regularization!

Visualize by probing in two random directions:

xα,β = x̂ + αr1 + βr2.

Contours show cost:

Cred(xα,β) ,
1

2σ2
‖y − xα,β‖2 + ρred(xα,β).

Arrows show claimed RED gradient:

1

σ2
(xα,β−y)>[r1 r2]+λ(xα,β−f (xα,β))>[r1 r2].

Figures show that 1) zero of gradient field is not
at cost minimizer, and 2) cost may not be convex!
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Clarifications on the RED Gradient

In the full paper, we established that. . .

differentiability of f (·) implies

∇ρred(x)
D
= x− 1

2
f (x)− 1

2
[Jf (x)]>x.

adding local-homogeneity (LH), i.e., f
(
(1 + ε)x

)
= (1 + ε)f (x), gives

∇ρred(x)
D,LH
= x− 1

2
[Jf (x)]x− 1

2
[Jf (x)]>x.

adding Jacobian symmetry (JS) finally leads to

∇ρred(x)
D,LH,JS

= x− f (x) . . .which yields the RED algorithms.

But practical denoisers are not LH and JS! And there exists no regularizer ρred for a non-JS denoiser f !

How can we explain the RED algorithms?

The RED algorithms solve ∇`(x̂;y) + λ
(
x̂− f (x̂)

)
= 0 and work well.

Can we justify this approach? Even when f (·) is not locally homogeneous or Jacobian symmetric?

Yes! Using score matching, a framework first described by Hyvärinen in 2005. We explain this in 3 steps:

1 kernel density estimation,

2 Tweedie’s formula,

3 score matching.

Kernel Density Estimation (KDE)

Given training data {xt}Tt=1, consider forming the empirical prior

p̂x(x) =
1

T

T∑
t=1

δ(x− xt).

A better match to the true px is obtained via Parzen windowing or KDE:

p̃x(x; ν) =
1

T

T∑
t=1

N (x;xt, νI) =

∫
RN
N (r;x, νI) p̂x(x) dx. “smoothed prior”

Using the smoothed prior p̃x for MAP image recovery, we get

x̂ = argminx
{
`(x;y)− ln p̃x(x; ν)

}
.

Tweedie’s Formula

Assuming differentiable `(·;y), the MAP estimation problem is solved by

0 = ∇`(x;y)−∇ ln p̃x(x; ν).

Tweedie’s formula (see [Robbins’56]) says that

∇ ln p̃x(x; ν) =
1
ν(fmmse,ν(x)− x),

with fmmse,ν(r) the MMSE denoiser of x ∼ p̂x from r = x +N (0, νI).

Together, these results match the RED fixed-point equation

0 = ∇`(x;y) + λ
(
x− fmmse,ν(x)

)
with λ =

1

ν
for the specific denoiser fmmse,ν. What about generic denoisers f?

Score-Matching by Denoising

Recall fmmse,ν = argminf E{‖x− f (r)‖2} for

{
r= x +N (0, νI)
x∼ p̂x.

Since fmmse,ν is expensive to implement, we typically use some approximation f
θ̂

with

θ̂ = argmin
θ

E{‖x− fθ(r)‖2} e.g., deep network

= argmin
θ

E{‖x− fmmse,ν(r)‖2} + E
{∥∥fmmse,ν(r)− fθ(r)

∥∥2} via orthog principle

= argmin
θ

E
{∥∥fmmse,ν(r)− fθ(r)

∥∥2}
= argmin

θ
E
{∥∥∇ ln p̃x(r; ν)︸ ︷︷ ︸

“score”

− 1
ν

(
r − fθ(r)

)︸ ︷︷ ︸
RED log-prior

∥∥2} via Tweedie’s formula

Thus RED algorithm with general denoiser fθ can be interpreted as “score matching.”

Key points:
1 RED algs solve 0 = ∇`(x;y) + λ

(
x− fθ(x)

)
where λ

(
x− fθ(x)) approximates the score −∇ ln p̃x(x; ν).

2 This SMD interpretation holds for any p̂x, any denoiser class fθ (i.e., may be non-JS and/or non-LH), and any θ.

3 SMD arises naturally via non-parametric estimation (i.e., KDE). Matches construction of learned denoisers liked TNRD
and DnCNN.

Related work:
In 2014, Alain and Bengio showed that learned auto-encoders are be explained by score-matching and not by minimization
of an energy function.
In 2017, Bigdeli and Zwicker used Tweedie’s formula to interpret autoencoding-based image priors.

Fast RED Algorithms

Until now we focused on how to explain the RED method, which solves

0 = ∇`(x̂;y) + λ
(
x̂− f (x̂)

)
.

Now we focus on algorithms that try to solve this equation.

In the RED paper by Romano, Elad, and Milanfar, three algorithms were described:

1 steepest-descent

2 ADMM with I inner iters (to solve argminx{λρred(x) + β
2‖x− rt‖

2})
3 a heuristic “fixed-point” method.

We proposed three new algorithms:

PG: Proximal gradient with stepsize L > 0.

DPG: “Dynamic” proximal gradient that
schedules L with the iterations.

APG: Accelerated proximal gradient, similar in
spirit to FISTA.

In the de-blurring experiment on the right, APG is about
3× faster than the “fixed-point” method.
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Convergence to a Fixed Point

Theorem:
If `(·) is proper, convex, and continuous; f (·) is non-expansive; L > 1; and RED-PG has at least one
fixed point, then RED-PG converges to a fixed point.

Proof:
Uses α-averaged operators and the Mann iteration.

Conclusions

RED algorithms seem to work well in practice.

But, in practice, they are not minimizing any cost function.
Practical denoisers f (·) are not LH and JS.
Non-JS f implies that there exists no regularizer ρ s.t. ∇ρ(x) = x− f (x).

The RED methodology can be explained as “score-matching by denoising”.

We proposed new RED algorithms with
faster recovery
guaranteed convergence to a fixed point.

For more details (e.g., an equilibrium analysis), please see:
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