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Inverse Problems in Imaging

m Consider the basic inverse problem in imaging:

Recover ' from measurements y = corrupted(Ax"),
where A is a known linear operator.

m Corruptions include noise, quantization, loss of phase, Poisson photons, etc.

m [he operator A depends on the application:
m deblurring

super-resolution

compressive imaging

inpainting

etc

Optimization-Based Recovery and MAP Estimation

m A common approach to recovering the image @ is through posing and solving an optimization problem:

{(x;y): loss function
argmin {{(z; y) + Ap(x) } with p(x): regularization
v A > 0: tuning parameter

x

m [his can be interpreted as Bayesian MAP estimation:

(y|x) : likelihood

~ _ : . - I p
ZTmap = argmin { — Inp(yl) — Inp(z) W'th{ p(x): prior

m The loss function /(-;y) is usually straightforward to choose.
But how do we choose the regularization p(-)?

Plug-and-Play ADMM

m A common approach to convex optimization is ADMM: For some 5 > 0and k=1,2.3, ...
zj, = argmin {{(z; y) + Sl — vy + w1}
vy, = argmin {p(v) + Sl — ap, + ||} 2 prox,glay, — wp_1)
U = Up_ ]+ T} — U

m The prox operation performs denoising (eg, soft-thresholding when p(x) = ||x||1).

m In 2013, Bouman et al. proposed plug-and-play (PnP) ADMM, where the prox is replaced by a
sophisticated image denoiser f(-), such as BM3D.

Regularization by Denoising (RED)

m In 2017, Romano, Elad, and Milanfar proposed a new family of PnP algorithms that find the image
estimate T that obeys

Vi@ y) + \(@ - f(@) =0

m [hey claimed these algorithms result from optimization under the regularizer

pedl@) 2 2z (2~ f())

and thus coined the approach Regularization by Denoising (RED).

m They furthermore claimed that p,.q(-) was convex with practical image denoisers f(-).

m Experiments in the RED paper suggest advantages for RED over PnP-ADMM:
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Super-resolution recovery, averaged over 10 test images.
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The RED algorithms are not explained by the RED regularization!

m Visualize by probing in two random directions:
T, =T+ ar]+ Bra.

m Contours show cost:

1 2
Cred<woz,ﬁ) = Ttg”y — wa,ﬁ” + pred(ma,ﬁ)'

m Arrows show claimed RED gradient:
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m Figures show that 1) zero of gradient field is not
at cost minimizer, and 2) cost may not be convex!

Clarifications on the RED Gradient

In the full paper, we established that. ..

m differentiability of f(-) implies D 1 1
Vied(@) = @ — 5 f(@) - TS (@) .

m adding local-homogeneity (LH), i.e., f((1+€)z) = (1 +¢€)f(x), gives

Vrea(@) "M@ S f (@ — o[ f ()] e

m adding Jacobian symmetry (JS) finally leads to

Vpreg(®) V0 2 — f(x) ... which yields the RED algorithms.

But practical denoisers are not LH and JS! And there exists no regularizer p,.q for a non-JS denoiser f!

How can we explain the RED algorithms?

The RED algorithms solve V{(Z;y) + A\(Z — f(Z)) = 0 and work well.

Can we justify this approach? Even when f(-) is not locally homogeneous or Jacobian symmetric?

Yes! Using score matching, a framework first described by Hyvarinen in 2005. We explain this in 3 steps:
kernel density estimation,
Tweedie's formula,
score matching.

Kernel Density Estimation (KDE)

m Given training data {a:t}thl, consider forming the empirical prior

| T
px(x) = — ; 5l — xy).

m A better match to the true px is obtained via Parzen windowing or KDE:

N(r;x, vI) px(x) de.

“smoothed prior”
RN

T

. 1

px(x;v) = T g N(x; xy, vI) =
t=1

m Using the smoothed prior px for MAP image recovery, we get

T = arg ming {f(w; y) — Inpx(x; V)}

Tweedie’'s Formula

m Assuming differentiable /(-;y), the MAP estimation problem is solved by
0=Vix;y) — Vinpx(zx;v).
m Tweedie's formula (see [Robbins’56]) says that
Vinpx(x;v) = %(fmmse,u(@ — ),
with fmmse.,(7) the MMSE denoiser of & ~ px from r = x + N (0, v1).

m [ogether, these results match the RED fixed-point equation
1
0=Vlz:y)+ AT — Fmmse(T)) with X\ =—

%
for the specific denoiser fymse ,- What about generic denoisers f7?
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Score-Matching by Denoising

. r=ax+N(0,vI
m Recall fymse, = argmin g E{ ||z — F£(r)|?} for {ZBNpAX ( )

m Since fmmse,, is expensive to implement, we typically use some approximation f@ with
0 = arg mHinE{ T — fH(”“)HQ}

arg mHinE{ xr — fmmse,y("“)HQ} + K {Hfmmse,u(r) - fH(r)HQ}

= arg mHiH]E{ fmmsev(T) — f9(r>H2}

— argm@inE{ \VlnpNx(r; Vz—é('r — f@(r»J HQ}

“score” RED BE;—prior

e.g., deep network

via orthog principle

via Tweedie's formula

m Thus RED algorithm with general denoiser fg can be interpreted as “score matching.”

m Key points:
RED algs solve 0 = V{(z;y) + M@ — fg(x)) where A(x — fgy(x)) approximates the score —V In px(x; /).

This SMD interpretation holds for any px, any denoiser class fg4 (i.e., may be non-JS and/or non-LH), and any 6.

SMD arises naturally via non-parametric estimation (i.e., KDE). Matches construction of learned denoisers liked TNRD

and DnCNN.
m Related work:

m In 2014, Alain and Bengio showed that learned auto-encoders are be explained by score-matching and not by minimization

of an energy function.
m In 2017, Bigdeli and Zwicker used Tweedie's formula to interpret autoencoding-based image priors.

Fast RED Algorithms

Until now we focused on how to explain the RED method, which solves
0=Viz;y)+ ANz — f(@)).

Now we focus on algorithms that try to solve this equation.

In the RED paper by Romano, Elad, and Milanfar, three algorithms were described:
steepest-descent
ADMM with [ inner iters (to solve argming {\prea(x) + 5|l — 74]|*})
a heuristic “fixed-point” method.

31

We proposed three new algorithms: 30 |

m PG: Proximal gradient with stepsize L > 0. 2 |

m DPG: "Dynamic” proximal gradient that
schedules L with the iterations.

m APG: Accelerated proximal gradient, similar in

spirit to FISTA. 26 |-
ADMM I|=1
FP
In the de-blurring experiment on the right, APG is about 25 DPo
3% faster than the “fixed-point” method. MR IR R s swavn
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Convergence to a Fixed Point

Theorem:
If £(-) is proper, convex, and continuous; f(-) is non-expansive; L > 1; and RED-PG has at least one

fixed point, then RED-PG converges to a fixed point.
Proof:

Uses ai-averaged operators and the Mann iteration.

Conclusions
m RED algorithms seem to work well in practice.

m But, in practice, they are not minimizing any cost function.

m Practical denoisers f(-) are not LH and JS.
m Non-JS f implies that there exists no regularizer p s.t. Vp(x) = x — f(x).

m [he RED methodology can be explained as “score-matching by denoising” .

m We proposed new RED algorithms with

m faster recovery
m guaranteed convergence to a fixed point.

m For more details (e.g., an equilibrium analysis), please see:
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