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Abstract—Recently, a family of plug-and-play image recovery algo-
rithms were proposed by Romano, Elad, and Milanfar under the name
of “Regularization by Denoising” (RED). The RED algorithms were
originally described as minimizing an optimization objective with an

explicit regularization term. It was later shown, however, that this
interpretation holds only when the denoiser exhibits both Jacobian
symmetry and local homogeneity, which is not the case for practical

denoisers like non-local means, BM3D, TNRD, and DnCNN. To explain
these RED algorithms, we propose a new framework called Score-
Matching by Denoising (SMD). We show tight connections between
SMD, Parzen windowing, and approximate minimum mean-squared

error denoising. Also, we propose new RED/SMD algorithms with fast
convergence and guaranteed convergence to a fixed point.

I. INTRODUCTION

Consider the problem of recovering image x0 ∈ R
N from mea-

surements y that are noisy and linearly (or non-linearly) transformed.

Recently, Romano, Elad, and Milanfar [1] proposed a family of

algorithms that seek a solution x̂ to

0 = ∇ℓ(x̂;y) + λ(x̂− f(x̂)), (1)

where ℓ(·;y) is a differentiable loss function, f(·) is an image

denoiser like BM3D [2] or DnCNN [3], and λ > 0 is a constant.

They called this approach regularization by denoising (RED) because

they claimed that the solutions to (1) obey

x̂ = argmin
x

{
ℓ(x;y) + λρ(x)

}
(2)

with an explicit regularizer ρ(·) of the form

ρred(x) =
1

2
x

⊤
(
x− f(x)

)
. (3)

It was shown in [4], however, that (2)-(3) match (1) only when f(·)
is both Jacobian symmetric and locally homogeneous, which is not

the typical case in practice. Still, experiments show that the RED

algorithms usually give excellent performance. So, there remains the

question of how to interpret them.

II. SCORE MATCHING BY DENOISING

From the Bayesian perspective, x̂ in (2) is the MAP estimate when

ℓ(x;y) is the negative log-likelihood and λρ(x) is the negative log

prior. The likelihood is often straightforward to choose, but what

about the prior? Suppose we have access to a large corpus of training

data {xt}
T
t=1, from which we build the empirical pdf

p̂(x) , 1

T

∑T

t=1
δ(x− xt). (4)

Now say we smooth p̂ via Parzen windowing to build the image prior

pν(x) ,
1

T

∑T

t=1
N (x;xt, νI) (5)

with appropriately chosen ν > 0. In this case, Tweedie’s formula [5]

says that ∇ ln pν(x), known as the score of pν , takes the form

∇ ln pν(x) =
(
f p̂,ν(x)− x

)
/ν, (6)

where f p̂,ν(r) is the MMSE estimator of x ∼ p̂ from the noisy

measurement r = x + N (0, νI). If we use the smoothed prior pν
for MAP estimation, then, from (2) and (6), x̂ must obey

0 = ∇ℓ(x̂;y) + λ
(
x̂− f p̂,ν(x̂)

)
for λ = 1/ν. (7)

Since (7) recovers the RED fixed-point equation (1), it explains RED

with MMSE denoisers like f p̂,ν(·). But what about other f(·)?
Above, we established that RED results from MAP estimation

through Tweedie’s formula with MMSE denoising, i.e.,

f p̂,ν = argmin
f

1

T

T∑

t=1

E
∥∥xt − f

(
xt +N (0, νI)

)∥∥2

. (8)

But, since f p̂,ν(·) is difficult to implement, it is usually approximated

by some computationally efficient f(·), which may not be Jacobian

symmetric nor locally homogeneous. However, noting from (6) that
∥∥f(x)− f p̂,ν(x)

∥∥2

∝
∥∥(x− f(x))/ν −∇ ln pν(x)

∥∥2

, (9)

we see that denoiser approximation is equivalent to score matching, as

defined in [6]. In summary, the fixed-point equation (1) results from

approximating MAP estimation under a smooth prior pν , where the

approximation is performed on the score ∇ ln pν . Thus, we claim that

the algorithms solving (1) are actually performing score-matching by

denoising (SMD), not regularization by denoising (RED).

III. CONVERGENCE AND ACCELERATION

When f(·) has a non-symmetric Jacobian, the right side of (1) is

not the gradient of any cost function. So, for algorithms that solve

(1), we consider convergence not to a cost minimizer but rather to a

fixed point. Consider iterating, for k = 1, 2, 3, . . . , the lines

xk = argmin
x

{
ℓ(x;y) + λL

2
‖x− vk‖

2
}

(10a)

zk = xk +
tk−1−1

tk
(xk − xk−1) (10b)

vk = 1

L
f(zk)−

1−L

L
zk, (10c)

with L > 1. In the full paper [4], the authors prove that, when

tk = 1 ∀k (i.e., the unaccelerated case), the iteration (10) converges

to a fixed point when ℓ(·;y) is convex and f(·) is non-expansive.

Meanwhile, with the Nesterov-like acceleration

tk =
1 +

√
1 + 4t2k−1

2
, (11)

although there is no convergence proof, numerical experiments in

[4] show (10) converging about 3 times as fast as the “fixed point”

algorithm from [1], which is the fastest algorithm proposed in [1].
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