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Image Recovery

Our goal is to recover an N -pixel image u0 from M ≪ N noisy linear
measurements

y = Φu0 +w ∈ C
M with

⎧
⎨

⎩

u0 : true image
Φ : linear measurement operator
w : white noise of variance σ2

w.

In the sparsity-based approach 1 , one writes

y = ΦΨc0 +w ∈ C
M with

{
c0 : wavelet coefficients
Ψ : inverse wavelet transform,

and first recovers a sparse estimate ĉ of c0, then later the image û = Ψĉ.

In the plug-and-play approach 2 , one repeatedly calls an image denoising
algorithm (e.g., BM3D)

ût = denoise(rt; σt) where

{
rt : noisy version of u0

σ2
t : noise variance

inside an iterative reconstruction algorithm like ADMM or AMP.

Approximate Message Passing (AMP)

For recovery of x0 from y = Ax0 +w, the AMP algorithm 3 is

Input y,A, g(·; σt) and initialize x̂0 = 0 and v−1 = 0.

For t = 0, 1, 2, . . . , T−1,

vt = y −Ax̂t +
N
Mαtvt−1 Onsager-corrected residual

rt = x̂t +AHvt back-projection

σ2
t = M−1∥vt∥

2 variance update
x̂t+1 = g(rt; σt) denoising

αt+1 =
〈
g′(rt; σt)

〉
divergence

Return x̂T

where the divergence is defined as
〈
g′(rt; σt)

〉
=

1

N
tr

[
∂g

∂r
(rt; σt)

]
.

With large i.i.d. Gaussian A:
AMP has a rigorous state-evolution (SE) 4 when g is Lipschitz and separable:

[g(r; σ)]j = g(rj; σ) ∀j.

The SE fixed points are “good” in that they match the replica prediction (recently
proven correct 5 ) under an i.i.d. signal and MMSE scalar denoiser g.
Good empirical performance in plug-and-play case, as in Metzler/Maleki/Baraniuk 6 .

With other A:
AMP can diverge when A is (mildly) mean-perturbed, ill-conditioned, or structured 7 .
Damping or sequential updating helps convergence over a limited range of A.
Even if it converges, AMP’s fixed points are suboptimal with non-i.i.d. Gaussian A.
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Vector AMP (VAMP)

For recovery of x0 from y = Ax0 +w, the VAMP algorithm 8 is

Input g̃ from (1) and denoiser g, and initialize r̃1 = 0 and σ̃1.

For t = 1, 2, . . . , T ,

x̃t = g̃(r̃t; σ̃t) LMMSE estimation

α̃t =
〈
g̃′(r̃t; σ̃t)

〉
divergence

rt = (x̃t − α̃tr̃t)/(1− α̃t) Onsager correction

σ2
t = σ̃2

t α̃t/(1− α̃t) variance update

x̂t = g(rt; σt) denoising

αt =
〈
g′(rt; σt)

〉
divergence

r̃t+1 = (x̂t − αtrt)/(1− αt) Onsager correction

σ̃2
t+1 = σ2

tαt/(1− αt) variance update

Return x̂T

where, given the SVD A = U Diag(s)V H, the LMMSE stage does

g̃(r̃, σ̃) =
(
σ̃2AHA + σ2

wI
)−1 (

σ̃2AHy + σ2
wr̃

)
(1)

= V
(
σ̃2 Diag(s)2 + σ2

wI
)−1 (

σ̃2 Diag(s)UHy + σ2
wV

Hr̃t
)

⟨g̃(r̃, σ̃)⟩ = N−1 tr
[
(σ̃2AHA + σ2

wI)
−1
]
σ2
w =

1

N

N−1∑

n=0

σ2
w

σ̃2s2n + σ2
w

We say that A is right-rotationally invariant if a V is a Haar-distributed
random matrix (i.e., uniformly distributed on the set of unitary matrices).

The other SVD quantities, U and s, are deterministic and arbitrary
This model includes mean-perturbed and ill-conditioned A

With large, right-rotationally invariant A:
VAMP has a rigorous state-evolution (SE) 8 when g is Lipschitz and separable.
The SE fixed points are “good” in that, with an i.i.d. signal xj and MMSE scalar
denoiser g, they match the replica prediction from 9 .
Excellent empirical performance in plug-and-play case (see below).

With structured V :
VAMP can diverge, especially when V Hx0 is not i.i.d. Gaussian!
This occurs, e.g., when V is the DFT matrix and x0 is a natural image!

Image Recovery with i.i.d. Gaussian Φ (after 20 iterations)
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128× 128 images

average over:
{lena, barbara,
boat, fingerprint,
house, peppers}

avg over 10 realizations

sampling ratio 10% 20% 30% 40% 50%
PSNR time PSNR time PSNR time PSNR time PSNR time

ℓ1-AMP 17.7 0.7s 20.2 1.5s 22.4 2.3s 24.6 3.3s 27.0 4.7s
ℓ1-VAMP 17.6 0.8s 20.2 1.4s 22.4 2.0s 24.8 2.6s 27.2 3.4s

BM3D-AMP 25.2 11.3s 30.0 10.0s 32.5 10.1s 35.1 11.0s 37.4 12.3s
BM3D-VAMP 25.2 11.6s 30.0 9.8s 32.5 9.5s 35.2 10.1s 37.7 10.7s

Image Recovery with Φ = Diag(s)PF Diag(±1), 10 iterations

Here, M
N = 0.2, s logarithmically spaced, P = random permutation, F = DFT2.

condition no. 1 10 102 103 104

PSNR time PSNR time PSNR time PSNR time PSNR time
ℓ1-AMP 22.4 0.03 <0 — <0 — <0 — <0 —
ℓ1-VAMP 22.9 0.05 22.3 0.05 20.8 0.04 19.6 0.04 18.8 0.04

BM3D-AMP 29.1 4.2s 26.6 4.6s 7.6 — 7.4 — 7.1 —
BM3D-VAMP 29.0 4.2s 29.1 4.1s 27.4 5.1s 25.6 5.2s 24 5.2s

Whitened VAMP for Image Recovery (VAMPire)

To apply VAMP to image recovery with non-random (e.g., Fourier) Φ, we
“whiten” the signal:

y = ΦΨDiag(τ )︸ ︷︷ ︸
A

s0 +w for

{
s0 : whitened wavelet coefs
τ : wavelet standard deviations

and use plug-and-play denoising in the whitened-coefficient space:

ŝt = g(rt, σt) = Diag(τ )−1
Ψ

Hdenoise
(
ΨDiag(τ )rt;N

−1/2∥τ∥σt
)
.

For Ψ we use any orthonormal wavelet transform, and for τ we assume
+22dB approximation coefs and −7dB/level detail coefs.

Since the U ,V matrices of the resulting A are no longer fast transforms,
we solve (1) approximately via preconditioned LSQR:

g̃(r̃, σ̃) =

[
σ̃A
σwI

]+ [
σ̃y
σwr̃

]
= Diag(τ )−1

[
ΦΨσ̃/σw
Diag(τ )−1

]+ [
yσ̃/σw

r̃

]
.

The divergence α̃t is approximated using the Monte-Carlo approximation

α̃t =
σ2
w

N
tr
[(
σ̃2
tA

HA + σ2
wI

)−1
]
≈

1

NK

K∑

k=1

pk

[
σ̃tA
σwI

]+ [
0

σwpk

]
,

where E{pkp
H
k} = I. Here again, preconditioned LSQR can be used.

The divergence αt is approximated a Monte-Carlo approximation inspired by
Metzler/Maleki/Baraniuk 6 , but different due to the form of g(·).

Finally, we employ a damping scheme under which VAMP has been proven
to converge for any strictly convex g̃ and g.

Image Recovery with Subsampled 2D-Fourier Φ

Experiment setup:
DFT Φ, subsampling pattern from Roman/Adcock/Hansen 10

SNR=40dB
128× 128 images {lena, barbara, boat, fingerprint, house, peppers}
db1 wavelet decomposition, D = 2 levels
PSNR results averaged over 10 realizations and six images above

PSNR vs M/N and PSNR vs iteration:
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LASSO via SPGL1

LMMSE
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Example image recovery at M/N = 0.3:
original LMMSE LASSO via SPGL1 VAMPire-BM3D

Example image recovery at M/N = 0.1:
original LMMSE LASSO via SPGL1 VAMPire-BM3D

http://dsp.rice.edu/software/DAMP-toolbox

