Plug-and-play Image Recovery using Vector AMP
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Image Recovery

m Our goal is to recover an N-pixel image u” from M < N noisy linear

Vector AMP (VAMP)

m For recovery of 2’ from y = Ax" + w, the VAMP algorithm H is

i)

Whitened VAMP for Image Recovery (VAMPire)

m To apply VAMP to image recovery with non-random (e.g., Fourier) ®, we
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measurements
u' : true image

0 Mo . Fort=1,2,...,7T,
y=Pu +wec C" with ® : linear measurement operator L
w : white noise of variance o= Lt = g(7; 1)
m In the sparsity-based approach |, one writes <g T4 0y >

¢’ - wavelet coefficients

LU

Inverse wavelet transform,

y=®Wc"+w e CY with {

and first recovers a sparse estimate ¢ of ¢’, then later the image u = We.

m In the plug-and-play approach H, one repeatedly calls an image denoising

Input g from (1) and denoiser g, and initialize 71 = 0 and 7.

ry = (2 — ayry) /(1 — )

2

il?‘t

of = oray /(1 — ay)

— g(rtSUt)

Q — <g/("°t; Ut)>

“whiten” the signal:

sY - whitened wavelet coefs

—_ . 0
y = QW Diag(7) 5"+ w for T : wavelet standard deviations

N—— ———

; {

and use plug-and-play denoising in the whitened-coefficient space:
= g(rs,04) = Diag(T) " ®"denoise (¥ Diag(7)r; N_1/2H7'Hat).

For W we use any orthonormal wavelet transform, and for 7 we assume
+22dB approximation coefs and —7dB/level detail coefs.

LMMSE estimation

divergence
Onsager correction 3
variance update
denoising

divergence m Since the U, V matrices of the resulting A are no longer fast transforms,

algorithm (e.g., BM3D) ;Ft;l — @275 —ayry) /(1 — o) Onsager correction we solve (1) approximate y via preconditioned LSQR:
r; : noisy version of u’ Ot = ora/ (1 — ) variance update e~ cA|" Jy L [®®5 /0, [y5/o
u; = denoise(r;; 0;) where o . Ret g(r,o)= = Diag(T)” . | Lo I
o7 : noise variance eturn T owl| |ouT Diag(T) T

inside an iterative reconstruction algorithm like ADMM or AMP. broximation

where, given the SVD A = U Diag(s)V", the LMMSE stage does
§(7,5) = (PA"A + o2 1) (52 A%y + o>F)
=V (6° Diag(s)* +o,I) - ( Dlag( Uy +02VH /)
N—1

§(7.9)) Z "

m We say that A is right-rotationally invariant if a V' is a Haar—dlstrlbuted
random matrix (i.e., uniformly distributed on the set of unitary matrices).

m [he other SVD quantities, U and s, are deterministic and arbitrary

m The divergence oy is approximated using the I\/Ionte—Carlo ap
Z O'tA i 0
Pilo | |owpy

where E{p,p}} = I. Here again, precondltloned LSQ? can be used.

(1)

2
th——N Ir

Approximate Message Passing (AMP) [( 72AMA + o2 1) 1} ~—

w, the AMP algorithm B is
0 and v_ 1 — = 0.

m For recovery of x” from y = Ax"

= N"'tr [(c7A"A + o 1)

Input y, A, g(-; 0y) and initialize x, =
Fort=20,1,2,...,7T—1,

=y — Aa:t+ T704V¢—1 Onsager-corrected residual

r, =z, + A,

m [ he divergence oy is approximated a Monte-Carlo approximation inspired by
Metzler/Maleki/Baraniuk B, but different due to the form of g(-).

back-projection m Finally, we employ a damping scheme under which VAMP has been proven

(7752 _ M_IH’UtHQ variance update N .ThIS model |.nc|udes me.'fm—pertur.bed a.nd ill-conditioned A to converge for any strictly convex g and g.

i1 = g(re: o7) denoising m With large, right-rotationally invariant A: . ,
. _ m VAMP has a rigorous state-evolution (SE) B when g is Lipschitz and separable. |mage ReCOvery Wlth SUbsampled 2D- Fourier &
Qi1 = <g (rt; Ut)> divergence m The SE fixed points are “good” in that, with an i.i.d. signal z; and MMSE scalar
Return 27 denoiser g, they match the replica prediction from El. m Experiment setup:
. . . m Excellent empirical performance in plug-and-play case (see below). m DFT ®, subsampling pattern from Roman/Adcock/Hansen Mg
where the divergence is defined as Witk v = SNR—40dB
, 1 d0g VWit StrUCtur_e v | H o N _ m 128 x 128 images {lena, barbara, boat, fingerprint, house, peppers}
<g (re; Ut)> - Ntr a—(rt; o) | . m VAMP can diverge, especially when V"'2" is not i.i.d. Gaussian! s dbl wavelet decomposition. D — 2 levels
r = This occurs, e.g., when V' is the DFT matrix and & is a natural image! m PSNR results averaged over 10 realizations and six images above

m With large i.i.d. Gaussian A:

m AMP has a rigorous state-evolution (SE) B when g is Lipschitz and separable: m PSNR vs M/N and PSNR vs iteration:

Image Recovery with i.i.d. Gaussian ® (after 20 iterations)

VAMPire-BM3D
35 . .

: 34
9(r0)); = glrj; ) Vj _ BM3D-AMP BM3D-VAMP | — T
m The SE fixed points are “good” in that they match the replica prediction (recently _ 128 x 126 images 321 | LmmsE 01
proven correct B) under an i.i.d. signal and MMSE scalar denoiser g. 20| ﬁ“ﬁ 20| average over: | | /o
Good irical perf in plug-and-pl - as in Metzler/Maleki/Baraniuk [d. TH
m Good empirical performance in plug-and-play case, as in Metzler/ i/Baraniuk @ %15_ £t %15_ {/ena, barbara | |
m With other A ol LR PeENL o boat, fingerprint, - -
m AMP can diverge when A is (mildly) mean-perturbed, ill-conditioned, or structured H. " }{YXH/ --TT*iM/N Oﬂ_ ol T wncoos | house peppers} 26| : * 15|
m Damping or sequential updating helps convergence over a limited range of A. — —1—%%22 i%gggz ’ oal | ol |
m Even if it converges, AMP’s fixed points are suboptimal with non-i.i.d. Gaussian A. ; | — - | — avg over 10 realizations —MN=0s
0 10 20 30 0 10 20 30 o
iteration iteration 227 di ez |
References sampling ratio 10% 20% 30% 40% 50% 2 | | | 0 | ——
_ _ _ _ _ 0.1 0.2 0.3 0.4 0.5 0 5 10 15
A. Chambolle, R. A. DeVore, N. Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: Variational PSNR time PSNR time PSNR time PSNR time PSNR time measurement rate M/N iteration
problems, compression, and noise removal through wavelet“shrinkage,” IEEE. Trans. Image Process., 1998. gl_AMP 177 07s!1 202 1b5s 1224 235|246 33s | 27.0 4.7s -~ Example image recovery at M/N — (0.3
> V. Yemarakrishnan, - . Bouman, and B. Wohlberg, “Plug-and-play priors for model based (-VAMP 176 08s| 202 1.4s 224 20s 248 26s 27.2 3.4s original LMMSE LASSO via SPGL1  VAMPire-BM3D
uction, . R - i~ _ i~ T
D.L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing,” PNAS BM3D-AMP 25.2 11.3s) 30.0 10.0s| 32.5 10.1s| 35.1 11.0s| 37.4 12.3s
2000. BM3D-VAMP | 25.2 11.6s| 30.0 9.8s 325 95s| 35.2 10.1s 37.7 10.7s
M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with applications to

compressed sensing,” IEEE Trans. Info. Thy, 2011.

Image Recovery with ® = Diag(s)PF Diag(=+

G. Reeves and H.D. Pfister, “The replica-symmetric prediction for compressed sensing with Gaussian matrices 1), ].O iteratiOnS

is exact,” ISIT, 2016. :
[@ C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to compressed sensing,” |[EEE Trans. Info. Here = 0.2, s ogarithmically spaced, P = random permutation, F =DFT2. _ _

Thy, 2016. (See also arXiv:1406.4175 and http://dsp.rice.edu/software/DAMP-toolbox.) 5 3 A - Example Image recovery at M/N = 0.1
J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborova, “Adaptive damping and mean removal for the COﬂdItIOn no. 1 10 10 10 10 original L_MMSE LASSO Vi_a SPGL1

generalized approximate message passing algorithm,” /CASSP, 2015. PSNR time PSNR time PSNR time PSNR time! PSNR time 3 ™ = L
g i Ii/lan:?_a?, P. éclénljcer,sanil/ AC.I K Fldetsch;,] Ve.c’EZLA[))priglmate Message Pa.sskllng, arIX/v:161|0.33]’cO82. d gl—AMP 24 003 <0 . <0 . <0 . <0 .

. M. Tulino, G. Caire, 5. Verdu, and 5. Shamal Itz), Support recovery with sparsely sampled free random

S trices IEEE Toome, oo Th 2013, (-VAMP | 22.9 0.05 22.3 0.05 20.8 0.04 19.6 0.04 18.8 0.04

B. Roman, B. Adcock and A. C. Hansen, “On asymptotic structure in compressed sensing,” arXiv:1406.4178. BM3D—AMP 201 4.2s| 2606 4.6s| 7.6 — (.4 — (.1 —
BM3D-VAMP | 29.0 4.2s 29.1 41s 274 51s 256 52s 24 5.2s



http://dsp.rice.edu/software/DAMP-toolbox

