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Abstract—The D-AMP methodology, recently proposed by Metzler,

Maleki, and Baraniuk, allows one to plug in sophisticated denoisers like

BM3D into the AMP algorithm to achieve state-of-the-art compressive

image recovery. But AMP diverges with small deviations from the i.i.d.-

Gaussian assumption on the measurement matrix. Recently, the VAMP

algorithm has been proposed to fix this problem. In this work, we show

that the benefits of VAMP extend to D-VAMP.

Consider the problem of recovering a (vectorized) image x0 ∈ R
N

from compressive (i.e., M ≪ N ) noisy linear measurements

y = Φx0 +w ∈ R
M , (1)

known as “compressive imaging.” The “sparse” approach to this

problem exploits sparsity in the coefficients v0 , Ψx0 ∈ R
N of

an orthonormal wavelet transform Ψ. The idea is to rewrite (1) as

y = Av0 +w for A , ΦΨ
T, (2)

recover an estimate v̂ of v0 from y, and then construct the image

estimate as x̂ = Ψ
Tv̂.

Although many algorithms have been proposed for sparse recovery

of v0, a notable one is the approximate message passing (AMP)

algorithm from [1]. It is computationally efficient (i.e., one multipli-

cation by A and AT per iteration and relatively few iterations) and

its performance, when M and N are large and Φ is zero-mean i.i.d.

Gaussian, is rigorously characterized by a scalar state evolution.

A variant called “denoising-based AMP” (D-AMP) was recently

proposed [2] for direct recovery of x0 from (1). It exploits the fact

that, at iteration t, AMP constructs a pseudo-measurement of the form

v0 + N (0, σ2

t I) with known σ2

t , which is amenable to any image

denoising algorithm. By plugging in a state-of-the-art image denoiser

like BM3D [3], D-AMP yields state-of-the-art compressive imaging.

AMP and D-AMP, however, have a serious weakness: they diverge

under small deviations from the zero-mean i.i.d. Gaussian assumption

on Φ, such as non-zero mean or mild ill-conditioning. A robust

alternative called “vector AMP” (VAMP) was recently proposed [4].

VAMP has similar complexity to AMP and a rigorous state evolution

that holds under right-rotationally invariant Φ—a much larger class

of matrices. Although VAMP needs to know the variance of the

measurement noise w, an auto-tuning method was proposed in [5].

In this work, we integrate the D-AMP methodology from [2] into

auto-tuned VAMP from [5], leading to “D-VAMP.” (For a matlab

implementation, see http://dsp.rice.edu/software/DAMP-toolbox.)

To test D-VAMP, we recovered the 128× 128 lena, barbara, boat,

fingerprint, house, and peppers images using 10 realizations of Φ.

Table I shows that, for i.i.d. Gaussian Φ, the average PSNR and

runtime of D-VAMP is similar to D-AMP at medium sampling ratios.

The PSNRs for v-based indirect recovery, using Lasso (i.e., “ℓ1”)-

based AMP and VAMP, are significantly worse. At small sampling

ratios, D-VAMP behaves better than D-AMP, as shown in Fig. 1.

To test robustness to ill-conditioning in Φ, we constructed Φ =
JSPFD, with D a diagonal matrix of random ±1, F a (fast)

Hadamard matrix, P a random permutation matrix, and S ∈ R
M×N
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Fig. 1. PSNR versus iteration at several sampling ratios M/N for i.i.d.
Gaussian A.

a diagonal matrix of singular values. The sampling rate was fixed

at M/N = 0.1, the noise variance chosen to achieve SNR=32 dB,

and the singular values were geometric, i.e., si/si−1 = ρ ∀i > 1,

with ρ chosen to yield a desired condition number. Table II shows

that (D-)AMP breaks when the condition number is ≥ 10, whereas

(D-)VAMP shows only mild degradation in PSNR (but not runtime).

TABLE I
AVERAGE PSNR AND RUNTIME FROM MEASUREMENTS WITH I.I.D.

GAUSSIAN MATRICES AND ZERO NOISE AFTER 30 ITERATIONS

sampling ratio 10% 20% 30% 40% 50%

PSNR time PSNR time PSNR time PSNR time PSNR time

ℓ1-AMP 17.7 0.5s 20.2 1.0s 22.4 1.6s 24.6 2.3s 27.0 3.1s
ℓ1-VAMP 17.6 0.5s 20.2 0.9s 22.4 1.4s 24.8 1.8s 27.2 2.3s

BM3D-AMP 25.2 10.1s 30.0 8.8s 32.5 8.6s 35.1 9.1s 37.4 9.8s
BM3D-VAMP 25.2 10.4s 30.0 8.5s 32.5 8.2s 35.2 8.5s 37.7 8.8s

TABLE II
AVERAGE PSNR AND RUNTIME FROM MEASUREMENTS WITH

DHT-BASED MATRICES AND SNR=32 DB AFTER 10 ITERATIONS

condition no. 1 10 102 103 104

PSNR time PSNR time PSNR time PSNR time PSNR time

ℓ1-AMP 17.3 0.02 <0 — <0 — <0 — <0 —
ℓ1-VAMP 17.4 0.04 17.4 0.04 15.6 0.03 14.7 0.03 14.4 0.03

BM3D-AMP 24.8 5.2s 8.0 — 7.2 — 7.1 — 7.2 —
BM3D-VAMP 24.8 5.4s 24.3 5.5s 22.6 5.3s 21.4 4.9s 20 4.5s
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