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Abstract—We review MAP and MMSE-based approaches to image
recovery and their implementation via generalized approximate message-

passing (GAMP), highlighting recent results on GAMP convergence for
general measurement operators.

We consider the recovery of image x ∈ C
N from noisy outputs

y ∈ C
M of known linear measurement operator Φ ∈ C

M×N . The

“statistical” approach to image recovery models the image x as a

realization of random x ∼ px and the measurements as a realization

of random y whose statistics are governed by a likelihood function

of the form py|z(y|Φx̂). Here, py|z is the pdf of y conditioned on

the (hidden) transform outputs z = Φx and x̂ is a hypothesis of the

image. For clarity, we denote random quantities in san-serif font.

In the maximum a posteriori (MAP) approach to statistical image

recovery, one computes the most probable estimate of x given y, i.e.,

x̂MAP = argmax
x̂
px|y(x̂|y) = argmax

x̂
py|x(y|x̂)px(x̂)/py(y)

= argmin
x̂

{
− log py|z(y|Φx̂)− log px(x̂)

}
(1)

which can be interpreted (from a non-statistical viewpoint) as regu-

larized loss minimization, i.e.,

x̂MAP = argmin
x̂

{
L(Φx̂) +R(x̂)

}
(2)

using the loss L(z) , − log py|z(y|z) and regularization R(x̂) ,

− log px(x̂). By choosing py|z and px so that both L(·) and R(·)
are convex, one can readily apply convex optimization algorithms to

the image recovery problem. In image recovery, it is popular to use

regularizations of the form R(x̂) = ‖Ωx̂‖1 for a given matrix Ω.

In the minimum mean-squared error (MMSE) approach to statis-

tical image recovery, the objective is to compute

x̂MMSE = E{x |y =y} =
∫
CN x̂ px|y(x̂|y)dx̂, (3)

with the hope of mean-square optimal performance. Unfortunately,

the high-dimensional integral in (3) is computable in closed-form for

only a very narrow class of priors and likelihoods (e.g., Gaussian)

and even then may require the inversion of a very large matrix.

For problems with separable loss and regularization, i.e.,

L(ẑ) =
∑M

i=1
Li(ẑi) and R(x̂) =

∑N

j=1
Rj(x̂j), (4)

a computationally efficient inference methodology that supports either

MAP or MMSE recovery was recently proposed under the name of

“generalized approximate message passing” (GAMP) [1]. GAMP is

an extension of the AMP algorithm [2] from quadratic loss (i.e.,

Li(ẑi) =
1

νw (yi − ẑi)
2 for some νw > 0) to generic loss Li(·), as

needed for phase retrieval, Poisson noise, or quantized measurements.

Interestingly, the behavior of GAMP for large i.i.d Φ is rigorously

characterized by a state evolution whose fixed points, when unique,

are MAP or MMSE optimal [3]. Still, important questions remain

about the convergence of GAMP for generic Φ, and whether GAMP

can be applied to non-separable regularizers like ‖Ωx̂‖1, which are

commonly used in image recovery.
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In this talk, we review recent results on the convergence of GAMP

for generic Φ. First, for any Φ, we recall that the fixed points of

MAP-GAMP are known to coincide with the critical points of the

optimization (2) [4]. Meanwhile, the fixed points of MMSE-GAMP

are known to coincide with the critical points of the optimization [4]

(fx , fz) = argminbx ,bz
J(bx , bz) s.t. E{z|bz}=ΦE{x |bx} (5)

J(bx , bz) , D
(
bx‖px

)
+D

(
bz‖py|zZ

−1
)
+H

(
bz ;ν

p
)
, (6)

where J is a high-dimensional approximation of the Bethe free-

energy [5]. In (6), bx(x) =
∏

j
bxj

(xj) and bz(z) =
∏

i
bzi

(zi)

are pdfs, D(·‖·) denotes KL divergence, and H(bz ;ν
p) ,∑M

i=1
var{zi|bzi

}/νp
i + lnπνp

i for νp
i =

∑N

j=1
|Φij |

2 var{xj |bxj
}.

But these fixed points don’t tell the whole story, because GAMP may

diverge. For quadratic Li(·) and Rj(·), however, the convergence of

GAMP has been fully characterized, and global convergence can be

ensured by “damping” [6]. Damping can also be used to ensure local

convergence under strictly convex Li(·) and Rj(·) [6].

We also review recent results on connections between GAMP and

convex optimization algorithms. For example, with MAP-GAMP,

the variable updates coincide with those of the primal-dual hybrid

gradient (PDHG) approach to (2) while the stepsizes are adapted in

accordance with the local cost [6]. Meanwhile, with MMSE-GAMP,

the mean updates coincide with an application of PDHG to (5) under a

local convexification of the augmented Lagrangian, while the variance

updates adapt that local convexification. Finally, we describe a recent

variant on MMSE-GAMP that guarantees global convergence with

generic Φ for strictly convex F,G with bounded derivatives.

Finally, we describe how GAMP can be configured to use “anal-

ysis” non-separable regularizers R(x̂) =
∑D

d=1
Gd([Ωx̂]d) [7].
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