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/Change Detection: \

e Given a reference signal (or image) » € C" and a signal-under-test

x € CV, how do we detect the pixels that are changed?

e Set up a model:

Vn: xp = spcp + (1 — sp)(rn + dy) with unknown. . .

(

sn € {0,1} change indicators

S Cn values of changed pixels

d, small variations at “unchanged” pixels,
\

where ¢, ~i.i.d po(-), d, ~iid pp(-), sp ~iid pg(:)

e Various optimal detectors can be formulated as a likelihood ratio test:

ny'n nzl n
LRz, 1) = P Talsn =1 pel@n)

pP(Tp,Tnlsn =0)  pp(xy —1y)

e Intuition: look for outliers in difference signal x,, — r,,.
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/Noncoherent Change Detection: \

e Now suppose that » and ax are phase incoherent.

e One application is radar image change detection in foliage, where pixel

phases can vary significantly across looks due to wind-induced motion.

e A possible model is:

VYn: xn = spcn 4+ (1 — sp)(rne’" + d,)

where 6, ~ i.i.d U[0,27) implies complete phase uncertainty.

e Change detection is still a textbook problem,

GLR(zp, 1) 1 — pc(@n) = pc(zn) for circular C & D.
ming, pp(n — rne’’)  pp(|Tn] — |ral)

Intuition: look for outliers in magnitude difference |z, | — |r,]|.
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/Compressive Noncoherent Change Detection:

Now consider noisy compressive linear observations y € C* with M < N:

y=Ax+w, w~CN(0,v"I)

Challenges:

e The signal x is not directly observed:

= Cannot implement standard noncoherent detection without |x,|.

e The signal « is generally non-sparse/compressible:

= Cannot use standard sparse-reconstruction to recover « from y.

Opportunities:

e With sparse changes, we know most magnitudes |z, |, approximately, and

thus have a strong prior on x.

e In practice, the change-pattern s is not i.i.d, but spatially clustered.
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/Proposed Approach: \

We assume the generative mixture model

Ty = Spcp + (1 — Sn)(rnej9” +d,) and y=Ax+w

(

sp ~ 10,1} Markov

cn ~ CN(0,v7) iid

d, ~CN(0,v%)iid, v? <"
0, ~U|0,2m) i.i.d

\

leading to the factor graph

*********

$1
CN(y1;a]x,v") 5
CN (y2; a3 x, V™)
’ p(s)
CN (yu; al,z, v*) SN
- de
\\and then perform inference via “turbo” approximate-message-passing. /
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/Numerical Example: \

e \We compare two schemes:

LMMSE L |noncoherent N

conventional: . :
Y = reconstruction detection

T

Y —| joint noncoherent reconstruction = &

roposed:
Proposed r —— & change detection (turbo-AMP) | _ ¢

e Simulation parameters:
— signal length N = 200,
— changes: 1D Markov chain with rate 0.1 and avg cluster length = 11.
— reference-to-disturbance ratio Z—; = 30 dB,

— signal-to-noise ratio = 15 dB,

— sensing matrix: {A;,} ~ iid N(0,M™1)
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/Numerical Example: \

o N=200, chg=repl, SNR=15dB, lam=0.1, gam=0.1, var-dist=0.001, avg=1000 N=200, chg=repl, SNR=15dB, lam=0.1, gam=0.1, var—dist=0.001, avg=1000
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e AMP-based joint reconstruction-and-change-detection outperforms the
conventional method in both NSER and NMSE, even when the conventional

detector can exploit clustered changes.
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/Adaptive Sensing: \

e Now consider the multi-step observation model

Y, = AT + wy, t=1...T

and the adaptation of A; (s.t. ||A:]|% < &) ]

. . . A _
using knowledge gained from previous measurements Yy, = {y. 3211-

e To infer &, the approach known as Bayesian experimental design chooses

A; to maximize the mutual information I(X;Y ;) between random vectors
X ~p(zly,_,) and Y ~ p(y,ly, ,; As).

e For Gaussian signal and noise, we previously established that the design of
MI-maximizing A; is a waterfilling problem [Schniter CAMSAP 11].

e Since turbo-AMP produces an accurate Gaussian posterior
approximation, it partners well with waterfilling-based adaptation. For
structured-sparse signal recovery, this combination has been shown to
yield recovery-MSE near oracle bounds [Schniter CAMSAP 11].
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/NMSE versus cumulative # measurements [Schniter CAMSAP 11]: \
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e Note gains from structured sparsity, adaptivity, and the combination.

e Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!

. /
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/\Naterfilling—based Adaptation for Noncoherent Change Detection: \

e We now add waterfilling-based adaptive sensing to our noncoherent
change detection scheme.

conventional: MMSE L _|noncoherent| .
Y = reconstruction detection — S
T

roposed: . __________| adaptation|

Proposed | of A; =
V

|
|
|
Yt = joint noncoherent reconstruction [= Lt~ 1
r —=| & change detection (turbo-AMP) | _ gt_l

e To minimize signal-recovery normalized MSE (NMSE), we perform
waterfilling based on a Gaussian approximation of p(x|y, ).

e To minimize the normalized change-support error rate (NSER), we
\\ perform waterfilling based on a Gaussian approximation of p(s|gt_1). /
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/Numerical Example:
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Notice that:

e the matrices designed to improve the recovery of the change pattern s do

significantly improve the NSER (left), and

e those designed to improve the recovery of signal & do improve NMSE (right),

/

e but not vice versal
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