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Change Detection:

• Given a reference signal (or image) r ∈ C
N and a signal-under-test

x ∈ C
N , how do we detect the pixels that are changed?

• Set up a model:

∀n : xn = sncn + (1− sn)(rn + dn) with unknown. . .


















sn ∈ {0, 1} change indicators

cn values of changed pixels

dn small variations at “unchanged” pixels,

where cn ∼ i.i.d pC(·), dn ∼ i.i.d pD(·), sn ∼ i.i.d pS(·)

• Various optimal detectors can be formulated as a likelihood ratio test:

LR(xn, rn) =
p(xn, rn|sn = 1)

p(xn, rn|sn = 0)
=

pC(xn)

pD(xn − rn)

• Intuition: look for outliers in difference signal xn − rn.

3



Phil Schniter The Ohio State University✬

✫

✩

✪

Noncoherent Change Detection:

• Now suppose that r and x are phase incoherent.

• One application is radar image change detection in foliage, where pixel

phases can vary significantly across looks due to wind-induced motion.

• A possible model is:

∀n : xn = sncn + (1− sn)(rne
jθn + dn)

where θn ∼ i.i.d U [0, 2π) implies complete phase uncertainty.

• Change detection is still a textbook problem,

GLR(xn, rn) :
pC(xn)

minθn pD(xn − rnejθn)
=

pC(|xn|)

pD(|xn| − |rn|)
for circular C & D.

Intuition: look for outliers in magnitude difference |xn| − |rn|.
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Compressive Noncoherent Change Detection:

Now consider noisy compressive linear observations y ∈ C
M with M < N :

y = Ax+w, w ∼ CN (0, νwI)

Challenges:

• The signal x is not directly observed:

⇒ Cannot implement standard noncoherent detection without |xn|.

• The signal x is generally non-sparse/compressible:

⇒ Cannot use standard sparse-reconstruction to recover x from y.

Opportunities:

• With sparse changes, we know most magnitudes |xn|, approximately, and

thus have a strong prior on x.

• In practice, the change-pattern s is not i.i.d, but spatially clustered.
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Proposed Approach:

We assume the generative mixture model

xn = sncn + (1− sn)(rne
jθn + dn) and y = Ax+w



























sn ∼ {0, 1} Markov

cn ∼ CN (0, νr) i.i.d

dn ∼ CN (0, νd) i.i.d, νd ≪ νr

θn ∼ U [0, 2π) i.i.d

{

w ∼ CN (0, νwI)

leading to the factor graph

.

p(x1|s1)

p(x2|s2)

p(xN |sN )

p(s)

x1

x2

xN

s1

s2

sN

CN (y1;a
T
1
x, νw)

CN (y2;a
T
2
x, νw)

CN (yM ;aT
Mx, νw)

...
...

...
...

AMP support
decoding

and then perform inference via “turbo” approximate-message-passing.

6



Phil Schniter The Ohio State University✬

✫

✩

✪

Numerical Example:

• We compare two schemes:

conventional:

proposed:

LMMSE
reconstruction

noncoherent
detection

joint noncoherent reconstruction
& change detection (turbo-AMP)

y

y

r

r

x̂

x̂
ŝ

ŝ

• Simulation parameters:

– signal length N = 200,

– changes: 1D Markov chain with rate 0.1 and avg cluster length = 11.

– reference-to-disturbance ratio νr
νd

= 30 dB,

– signal-to-noise ratio = 15 dB,

– sensing matrix: {Amn} ∼ i.i.d N (0,M−1)
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Numerical Example:
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• AMP-based joint reconstruction-and-change-detection outperforms the

conventional method in both NSER and NMSE, even when the conventional

detector can exploit clustered changes.
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Adaptive Sensing:

• Now consider themulti-step observation model

yt = Atx+wt, t = 1 . . . T

and the adaptation of At (s.t. ‖At‖
2

F ≤ E)

= ++

using knowledge gained from previous measurements y
t−1

, {yτ}
t−1

τ=1
.

• To infer x, the approach known as Bayesian experimental design chooses

At to maximize the mutual information I(X;Y t) between random vectors

X ∼ p(x|y
t−1

) and Y t ∼ p(yt|yt−1
;At).

• For Gaussian signal and noise, we previously established that the design of

MI-maximizing At is a waterfilling problem [Schniter CAMSAP 11].

• Since turbo-AMP produces an accurate Gaussian posterior

approximation, it partners well with waterfilling-based adaptation. For

structured-sparse signal recovery, this combination has been shown to

yield recovery-MSE near oracle bounds [Schniter CAMSAP 11].
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NMSE versus cumulative # measurements [Schniter CAMSAP 11]:
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← LASSO non-adaptive

← RVM adaptive [JXC 08]
← turbo-AMP non-adaptive
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← support-oracle

• Note gains from structured sparsity, adaptivity, and the combination.

• Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!
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Waterfilling-based Adaptation for Noncoherent Change Detection:

• We now add waterfilling-based adaptive sensing to our noncoherent

change detection scheme.

conventional:

proposed:

MMSE
reconstruction

noncoherent
detection

adaptation
of At

joint noncoherent reconstruction
& change detection (turbo-AMP)

yt

y

r

r

x̂t

x̂

ŝt

ŝ

• To minimize signal-recovery normalized MSE (NMSE), we perform

waterfilling based on a Gaussian approximation of p(x|y
t−1

).

• To minimize the normalized change-support error rate (NSER), we

perform waterfilling based on a Gaussian approximation of p(s|y
t−1

).
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Numerical Example:
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Notice that:

• the matrices designed to improve the recovery of the change pattern s do

significantly improve the NSER (left), and

• those designed to improve the recovery of signal x do improve NMSE (right),

• but not vice versa!
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