Prox versus Prior?

Who cares—Just learn the damn thing!
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Compressive Sensing

@ Goal: recover signal « from noisy sub-Nyquist measurements
y=Az+w zecRY gyweRY M<N.

where x is K-sparse with K < M, or compressible.

@ With sufficient sparsity and appropriate conditions on the mixing
matrix A (e.g. RIP, nullspace), accurate recovery of x is possible
using polynomial-complexity algorithms.

@ A common approach (LASSO) is to solve the convex problem
min [ly — Az |3 + of|z|

where « can be tuned in accordance with sparsity and SNR.
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I
Phase Transition Curves (PTC)

@ The PTC identifies ratios (N, M) for which perfect noiseless recovery
of K-sparse  occurs (as M, N, K — oo under i.i.d sub-Gaussian A).

@ Suppose {z,} are drawn i.i.d.
px (@) = Mx (@) +(1=Nd(za)|
with known A\ £ K/N.

o
©

=
@ LASSO’s PTC is invariant to 2o
fx(-). Thus, LASSO is robust &
in the face of unknown fx(-). E\O""
@ MMSE-reconstruction's PTC 02p oW b
is far better than Lasso’s, but , — theoretical LASSO
requires knowing prior fx(-). 02 M/N (undersamplmg) 08

Wu and Verdd, “Optimal phase transitions in compressed sensing,” arXiv Nov. 2011.

Philip Schniter and Jeremy Vila (OSU) EM-GM-AMP BASP Frontiers — Jan '13 3 /20



e
Motivations

For practical compressive sensing. . .

@ want minimal MSE

— distributions are unknown = can't formulate MMSE estimator
— but there is hope:

various algs seen to outperform Lasso for specific signal classes
— really, we want a universal algorithm: good for all signal classes

@ want fast runtime
— especially for large signal-length N (i.e., scalable).

@ want to avoid algorithmic tuning parameters,
— who wants to tweak an algorithm when you can ski in the alps!
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Proposed Approach: “EM-GM-AMP”

@ Model the signal and noise using flexible distributions:
— i.i.d Bernoulli Gaussian-mixture (GM) signal

L
Pan) =AY wiN(@ni 01, ¢1) + (1= N)é(2n) Yn
1=1
— i.i.d Gaussian noise with variance ¢ (but easy to generalize)

@ Learn the prior parameters g = {A,wl,ﬁl,qbl,iﬁ}f:l
— treat as deterministic and use expectation-maximization (EM)

@ Exploit the learned priors in near-MMSE signal reconstruction

— use the approximate message passing (AMP) algorithm
— AMP also provides EM with everything it needs to know
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Approximate Message Passing (AMP)

@ AMP methods infer  from y = Ax 4+ w using loopy belief
propagation with carefully constructed approximations.

@ The original AMP [Donoho, Maleki, Montanari '09] solves the LASSO
problem assuming i.i.d sub-Gaussian matrix A.

@ The Bayesian AMP [Donoho, Maleki, Montanari '10] framework tackles
MMSE inference under any factorized signal prior, AWGN, and i.i.d A.

@ The generalized AMP [Rangan '10] framework tackles MAP or MMSE
inference under any factorized signal prior & likelihood, and generic A.
@ AMP is a form of iterative thresholding, requiring only two
applications of A per iteration and = 25 iterations. Very fast!
@ Rigorous large-system analyses (under i.i.d sub-Gaussian A) have
established that (G)AMP follows a state-evolution trajectory with
certain optimalities [Bayati, Montanari '10], [Rangan '10].
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AMP Heuristics (Sum-Product)

© Message from y; node to x; node:

N(yr: [Az)1, ) px(z1)

N (ys; [Az]a, v) px(x2)
~ N via CLT
—
pimi(xi) < [ N(yi; 2, airar ;) [T,z picr (@)
{@r}rz; N(yar; [A]ar, ) px(zN)

PN (TN)

[ N ) N (i a), i () ~ N

To compute Z;(z;), v7(x;), the means and variances of {p;,}r»; suffice,
thus Gaussian message passing!

Remaining problem: we have 2M N messages to compute (too many!).

@ Exploiting similarity among the messages
{picj}M,, AMP employs a Taylor-series A4zl v)
approximation of their difference whose
error vanishes as M — oo for dense A (and
similar for {p;;}}¥| as N — o).
Finally, need to compute only O(M+N)  xiyy:(40]us,v)
messages! Parcn(zn)

proa(xy)

—1(T1
AN

N(ya; [Az]a, )
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The GAMP Algorithm

Require: Matrix A, Bayes € {0, 1}, initializations x°, v/9

t=0,81=0 Vmn:Smn = |Amn|?

repeat

=Svt, p'=Axt—s"

if Bayes then
Vm : 3%,
else

end if

vi = (1-vi./v}). /vy,
vi=1./(8Tvt), r'=x'+vLATS!

if Bayes then

else
Vn @ g5t =
end if
t+—t+1
until Terminated

Note connections to primal-dual, ADMM, split-Bregman, proximal FB splitting, DR
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E(Z|P; pmanm) v

Vm : Zy, = prox,: ;. (b
Pm Y Z

Vn gt = E(X|R; 7L, L),

= prox,e , ("1),

1 .,t

t
17

= (= —p!). /¥,

H1

Vgl = var

tH1

vt =l prox

EM-GM-AMP

v, (gradient step)

S = Vo PIOXye (i)

= var(Z|P; pt,, I/;m),

m

(dual update)
(gradient step)

(X|R; 7, vr,),
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Expectation-Maximization

@ We use expectation-maximization (EM) to learn the signal and noise
prior parameters ¢ 2 {\,w,0, ¢, 1)}

o Alternate between

E: maximizing a lower bound on In p(y; q) for fixed g
M: maximizing q for fixed lower bounding function.

o Lower bound via posterior approx nglﬁ(xﬂy; q') ~ p(z|y; q*).

N
Inp(y;q) = Z/ P(@nly; ') p(2n; q) + D (Paly || Paly)
n=1"Y%n SN—

>0

lower bound

@ Incremental maximization: A\, 60y,...,0p,¢1,...,¢00,w, ¥

@ All quantities needed for the EM updates are provided by AMP!
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Parameter Initialization

Initialization matters; EM can get stuck in a local max. Our approach:
@ initialize the sparsity A according to the theoretical LASSO PTC.

@ initialize the noise and active-signal variances using known energies
lyl3, | Al|% and SNRY = 20 dB (or user-supplied value):

W0 = lyll3 (0%)° = lyll3 — My°
(SNR? 4 1) M’ A0JA|12,

@ fix L = 3 and initialize the GM parameters (w, 8, ¢) as the best fit to

a uniform distribution with variance o2.

As other options, we provide
@ a “heavy tailed” mode that forces zero-mean GM components.

@ a model-order-selection procedure to learn L.
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Examples of Learned Signal-pdfs
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Empirical PTCs: Bernoulli-Gaussian signals

@ We now evaluate noiseless reconstruction performance via
phase-transition curves constructed using N =1000-length i.i.d
signals, i.i.d Gaussian A, and 100 realizations.

@ We see all variants of 09|
EM-GM-AMP performing o8
significantly better than o
LASSO for i.i.d <%
. . . iO.S’
Bernoulli-Gaussian signals. i
o4r —— EM-GM-AMP
. -—--genie GM-AMP
@ Perhaps not a fair 03 — EM.GM-AMP.3||
. L —— EM-BG-AMP ||
comparison because the true Q2 T Laplacian-AMP
. . L —— LASSO th
prior is matched to our o I S B e —
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
model. M/N

Empirical noiseless Bernoulli-Gaussian PTCs

Philip Schniter and Jeremy Vila (OSU) EM-GM-AMP BASP Frontiers — Jan '13 12 /20



I
PTCs for Bernoulli and Bernoulli-Rademacher signals
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For these signals, we see EM-GM-AMP performing. ..
@ significantly better than LASSO,
@ with model-order-selection enabled, as good as genie-aided GM-AMP
@ significantly better than EM-BG-AMP with the i.i.d BR signal.
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Noisy Recovery: Bernoulli-Rademacher (£1) signals

@ We now compare the normalized MSE of EM-GM-AMP to several
state-of-the-art algorithms (SLO, T-MSBL, BCS, Lasso via SPGL1)

for the task of noisy i.i.d signal recovery under i.i.d Gaussian A.
@ For this, we fixed N=1000, K =100, SNR=25dB and varied M.

@ For these i.i.d BR signals, we see \\
EM-GM-AMP outperforming ) XY
the other algorithms for all s Q\\
) : 4
undersampling ratios M /N. R |
. enie Lasso
o Notice that the EM-BG-AMP s i T
algorithm cannot accurately -0 S saup
. —8-T-MSBL
model the Bernoulli-Rademacher ~35(] - EN-GM-AMP-3 Lo
EM-GM-AMP - A M
prior. 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M/N
Noisy Bernoulli-Rademacher recovery NMSE.
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Noisy Recovery: Bernoulli-Gaussian and Bernoulli signals
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@ For i.i.d Bernoulli-Gaussian and i.i.d Bernoulli signals, EM-GM-AMP
again dominates the other algorithms.

@ We attribute the excellent performance of EM-GM-AMP to its ability
to learn and exploit the true signal prior.
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Noisy Recovery of Heavy-Tailed signals
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@ In its “heavy tailed” mode, EM-GM-AMP again uniformly
outperforms all other algorithms.

@ Rankings among other algorithms differ across signal types. (Compare
OMP and SLO performances.)
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Runtime versus signal-length NV

o We fix M/N=0.5, K/N=0.1, SNR=25dB, and average 50 trials.

2
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N N
Noisy Bernoulli-Rademacher recovery time. Noisy Bernoulli-Rademacher recovery NMSE.

o For all N > 1000, EM-GM-AMP has the fastest runtime!
@ EM-GM-AMP can also leverage fast operators for A (e.g., FFT).
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Extension to structured sparsity (Justin Ziniel)

@ Recovery of an audio signal sparsified via DCT ¥ and compressively
sampled via i.i.d Gaussian ® (so that A = ®W).

@ Exploit persistence of support across time via Markov chains and

turbo AMP.

Magnitude (in dB) of DCT Coefficients of Audio Signal

Coefficient Index [n]

20 30
Timestep 1

algorithm

M/N =1/5

M/N =1/3

M/N =12

EM-GM-AMP-3
turbo EM-GM-AMP-3

-9.04 dB
-12.34 dB

8.77s | -12.72 dB
9.37 s | -16.07 dB

1026 s | -17.17dB | 11.92 s
11.05s | -20.94 dB | 12.96 s
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Conclusions

@ We proposed a sparse reconstruction alg that uses EM and AMP to
learn and exploit the GM-signal prior and AWGN variance.
@ Advantages of EM-GM-AMP: for signal length N = 1000,...
o State-of-the-art NMSE performance with all tested i.i.d priors.
@ State-of-the-art complexity
@ Minimal tuning: choose between “sparse” or “heavy-tailed” modes.
@ Ongoing related work:
@ Extensions beyond AWGN (e.g., phase retrieval, binary classification).
@ Universal learning/exploitation of structured sparsity.
@ Extensions to matrix completion, dict learning, robust PCA, NNMF.

@ EM-AMP Theory:

@ Asymptotic consistency under a matched prior with certain
identifiability conditions:

Kamilov, Rangan, Fletcher, Unser, “Approximate message passing with consistent
parameter estimation and applications to sparse learning,” NIPS 2012.
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EM-GM-AMP is integrated into GAMPmatlab:
http://sourceforge.net/projects/gampmatlab/

Interface and examples at
http://ece.osu.edu/~vilaj/EMGMAMP/EMGMAMP . html

Thanks!
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