
Adaptive compressive noncoherent change detection: An
AMP-based approach

Philip Schniter
Dept. of ECE, The Ohio State University, Columbus, OH 43210, Email: schniter@ece.osu.edu

Abstract—We propose a turbo approximate message passing (AMP)
algorithm to detect spatially clustered changes in signal magnitude,
relative to a reference signal, from compressive linear measurements.
We then show how the Gaussian posterior approximations generated
by this scheme can be used for mutual-information based measurement
kernel adaptation. Numerical simulations show excellent performance.

I. SUMMARY

A. Compressive noncoherent change detection

In change detection, one observes noisy linear measurementsy =
Ax+w ∈ C

M of a signalx ∈ C
N and aims to detect changes inx

relative to a known reference signalr ∈ C
N . Here,A represents a

known measurement kernel andw represents white Gaussian noise.
Our focus is noncoherent change detection, where the phase

difference betweenr andx may be significant even in the absence
of a material change. In this case, the goal is to detectchanges in
magnitude betweenx andr. An example application arises in radar,
where small (e.g., wind-induced) movements in foliage can result in a
large independent phase differences in each pair(xn, rn) even when
the material present in pixeln has not changed.

We are particularly interested in thecompressive case, where the
number of measurements,M , is less than the signal length,N .
Although we assume that the magnitude changes|x|−|r| are sparse,
and possibly even structured-sparse, we do not assume that the signals
x andr themselves are sparse in a known basis, nor is their difference
x− r. Note that, if (an estimate of)x was available, then standard
techniques [1] could be applied to detect changes between|x| and
|r|. However, we do not observex, and the lack of sparsity inx (and
x−r) prevents the use of standard compressed sensing techniques to
recoverx from y. Thus, the problem is somewhat challenging.

Our approach exploits that fact that, under the sparse magnitude-
change assumption,|r| does provide information about|x| that can
aid in compressive recovery ofx and—more importantly—joint
change detection and signal recovery. For this, we model

xn = sncn + (1− sn)(rne
jθn + dn), (1)

where sn ∈ {0, 1} indicates the presence of a change,cn ∈ C

represents the changed pixel value,θn ∈ [0, 2π) represents an
unknown phase rotation, anddn ∈ C represents a small deviation
allowed in an “unchanged” pixel. We then assign the priors

cn ∼ CN (0, νr) i.i.d with νr = 1

N

∑N

n=1
|rn|

2

θn ∼ U [0, 2π) i.i.d
dn ∼ CN (0, νd) i.i.d with νd ≪ νr

sn ∼ Markov,

(2)

where the Markov property on{sn} captures the fact that changes
are often spatially clustered. Finally, we jointly infer the change
pattern s and the signalx using the turbo extension [2] of the
Bayesian approximate message passing (AMP) algorithm [3]. To our
knowledge, the use of AMP with a signal prior of this form is novel.
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B. Measurement adaptation

We now allow the aforementioned approach multipleadaptive
measurement steps, building on the work in [4]. In stept=1, . . . , T ,
the detector collects measurementsyt =Atx +wt ∈ C

Mt using a
kernelAt optimized around the uncertainty ofx (or s) that remains
from inference based on the cumulative previous measurements
y
t−1

, [yT
1
, . . . ,yT

t−1
]T. When optimizingAt for the recovery of

x, [4] suggested to maximize the mutual information (MI) between
Gaussian approximations of the random vectorsx ∼ p(x|y

t−1
) and

y t ∼ p(yt|yt−1
;At). Indeed, whenx andy t are jointly Gaussian,

[4] established that the MI-maximizingAt is computable using
eigendecomposition and waterfilling. Conveniently, the necessary
Gaussian approximation onx is an output of turbo AMP. Fors-
adaptive kernel design, we now propose a similar approach based on
a Gaussian approximation ofs ∼ p(s|y

t−1
).

C. Numerical results

The left plot shows the normalized mean-squared error (NMSE) in
recoveringx∈C

200 versus cumulative number of measurementsM ,
under15 dB SNR andνd=0.001, averaged over1000 realizations.
All quantities were drawn according to (2), with the binary Markov
chain for s activating 10% changes on average, clustered with
an average run-length of10. There, turbo-AMP with MI-x kernel
adaptation performed best, approximately2dB better than turbo-AMP
with i.i.d-GaussianA, while LMMSE estimation ofx with i.i.d-
GaussianA performed significantly worse. The right plot shows the
corresponding normalized detection error rate (NDER), where turbo-
AMP with MI-s kernel adaptation performed best, and significantly
better than Bayes-optimal change detection using LMMSE-x, even
when change clustering was exploited. Although turbo-AMP with
MI-s kernel adaptation did not work well forx-recovery, we did not
expect it to, since it was optimized for change detection.
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