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Abstract—We propose a turbo approximate message passing (AMP) B. Measurement adaptation

algorithm to detect spatially clustered changes in signal mgnitude, . . .
relative to a reference signal, from compressive linear mesaurements. We now allow the aforementioned approach mult tive

We then show how the Gaussian posterior approximations genated ~Measurement steps, building on the work in [4]. In 91%?17 o T
by this scheme can be used for mutual-information based meagement  the detector collects measuremepgts= A;x + w, € C** using a
kernel adaptation. Numerical simulations show excellent prformance. kernel A, optimized around the uncertainty @f (or s) that remains
|. SUMMARY from inference based on the cumulative previous measurements
2 [yl 7_.]". When optimizing A, for the recovery of
A. Compressive noncoherent change detection Yoy = Wil - P 9 y

x, [4] suggested to maximize the mutual information (MI) between
Gaussian approximations of the random vectors ~ p(z|y, ) and
y, ~ p(yt|gt71;At). Indeed, wherx andy, are jointly Gaussian,

[4] established that the MI-maximizingd: is computable using

In change detection, one observes noisy linear measuremeants
Ax +w € CM of a signalz € CV and aims to detect changesan
relative to a known reference signale CV. Here, A represents a

kngwn ;neasurement Eernel aﬂm repredsents .Wh'te rC];aussE\n nﬂ'seeigendecomposition and waterfilling. Conveniently, the necessary
ur focus Is noncoherent change detection, where the phases, sqian approximation ox is an output of turbo AMP. Fos-

difference petweerr and may be S|gn|f|cant_even in the abs_enc%daptive kernel design, we now propose a similar approach based on
of a material change. In this case, the goal is to dethahges in a Gaussian approximation ef~ p(sly. )
Zi—1/"

magnitude betweenr and». An example application arises in radar, ]
where small (e.g., wind-induced) movements in foliage can result ifa Numerical results
large independent phase differences in each (pairr,) even when  The left plot shows the normalized mean-squared error (NMSE) in
the material present in pixel has not changed. recoveringe € C*°° versus cumulative number of measuremehs
We are particularly interested in thempressive case, where the under15 dB SNR andv?=0.001, averaged ovet000 realizations.
number of measurementd/, is less than the signal lengthly. All quantities were drawn according to (2), with the binary Markov
Although we assume that the magnitude charjgés- || are sparse, chain for s activating 10% changes on average, clustered with
and possibly even structured-sparse, we do not assume that this sigana average run-length af0. There, turbo-AMP with Mix kernel
x andr themselves are sparse in a known basis, nor is their differeregaptation performed best, approximatedd better than turbo-AMP
x — r. Note that, if (an estimate ofy was available, then standardwith i.i.d-GaussianA, while LMMSE estimation ofz with i.i.d-
techniques [1] could be applied to detect changes betyepand GaussianA performed significantly worse. The right plot shows the
|r|. However, we do not observwe and the lack of sparsity i (and corresponding normalized detection error rate (NDER), where turbo-
x—r) prevents the use of standard compressed sensing techniquesi® with MI-s kernel adaptation performed best, and significantly
recoverx from y. Thus, the problem is somewhat challenging.  better than Bayes-optimal change detection using LMMSEven
Our approach exploits that fact that, under the sparse magnitudéren change clustering was exploited. Although turbo-AMP with
change assumptiorr| does provide information aboii| that can MI-s kernel adaptation did not work well fae-recovery, we did not
aid in compressive recovery af and—more importantlyfeint expect it to, since it was optimized for change detection.
change detection and signal recovery. For this, we model

ZTpn = Sncn + (1 — sn)(rneje" +dn), (1)

where s,, € {0,1} indicates the presence of a changg, € C
represents the changed pixel valug, € [0,27) represents an
unknown phase rotation, anél, € C represents a small deviation
allowed in an “unchanged” pixel. We then assign the priors

en ~ CN(0,v7) iid with v = £ SN |2

NMSE [dB]
NDER

071‘ ~ u[07 271-) i'i'd (2) m“ = Z;‘;Umeasurz;ymems A‘;\ﬂ?? = “ * * Z#:‘:nmeasurzg)menls :"}” > ”
dn ~ CN(0,v%) ii.d with v* < " REFERENCES
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