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Abstract

We analyze a blind channel impulse response identifi-
cation scheme based on the cross-correlation of blind
symbol estimates with the received signal. The sym-
bol estimates specified are those minimizing the Go-
dard (or constant modulus) criterion, for which mean-
squared symbol estimation error bounds have recently
been derived. In this paper, we derive upper bounds for
the average squared parameter estimation error of the
blind identification scheme which depend on the mean-
squared error of Wiener symbol estimator, the kurtoses
of the desired and interfering sources, and the channel
impulse response. All results are derived in a general
multi-user vector-channel context.

1.0 Introduction

Consider the linear system of Fig. 1, where a desired
source sequence {s{”} combines linearly with K in-
terferers through vector channels {h (z), ..., h"9(z)}.
Our goal is to estimate the impulse response coefficients
of the linear channel {h®(z)} knowing only the statis-
tics of the received signal {r, }. The literature refers to
this problem as blind channel identification [1].
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Fig. 1. Multi-source linear system model.

In this paper, we analyze the performance of the
blind channel identification scheme illustrated in Fig. 2,
whereby blind symbol estimates {y,} are cross-
correlated with the received signal {r,} under the pre-
sumption that the source processes {s{@}...{si} are
mutually independent. We focus specifically on the case
of blind linear symbol estimates minimizing the Go-
dard, or constant modulus (CM), criterion [2], [3], [4].

Minimization of the CM criterion has become perhaps
the most studied and implemented means of blind sym-
bol estimation for data communication over dispersive
channels (see, e.g., [4] and the references within). The
popularity of CM methods are usually attributed to

1. the existence of a simple adaptive algorithm
(“CMA” [2], [3]) for estimation and tracking of the
CM-minimizing linear estimator f; ,(z),

2. the typically excellent mean-squared error (MSE)
performance of CM-minimizing estimator [6], and

3. the insensitivity to residual carrier phase/frequency
offsets in received signal r,.

In this paper, we derive upper bounds for the average
squared parameter error (ASPE) of blind channel pa-
rameter estimates generated by the method of Fig. 2.
We also derive the expected ASPE that results when
the correlations in Fig. 2 are estimated from N-length
blocks of data.
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Fig. 2. CM-based blind channel identification.

2.0 Background

The following notation is used throughout: (-)! de-
notes transpose, (-)* conjugation, (-)# hermitian, E{-}
denotes expectation, and ||x||, the p-norm defined by
{/>_; |zi[P. In general, we use boldface lowercase type
to denote vector quantities and boldface uppercase type
to denote matrix quantities.

2.1 Linear System Model

First we formalize the linear time-invariant multi-
channel model illustrated in Fig. 1. Say that the de-
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sired symbol sequence {s{”} and K sources of interfer-
ence {s}, ..., {s} each pass through separate linear
channels before being observed. In addition, say that
the symbol estimator uses a sequence of P-dimensional
vector observations {r, } to estimate (a possibly delayed
version of) the desired source sequence, where the case
P > 1 corresponds to the use of multiple sensors and/or
sampling at an integer multiple of the symbol rate. The
observations can be written r,, = Y 320 h® s
where {h{”} denote the impulse response coefficients
of the linear time-invariant (LTT) channel h®(z). The
only assumptions placed on h®(z) are causality and
bounded-input bounded-output (BIBO) stability.

As shown in Fig. 2, linear estimates {y,,} of {s }, for
fixed estimation delay v, are generated from the vector-
valued observation sequence {r, }. Using {f,} to denote
the impulse response of the linear estimator f(z), the
estimates are written as y, = > .o £fr,_;. We will

assume that the linear system f(z) is BIBO stable with
constraints on the number of adjustable parameters.

Often used in the sequel are the combined channel-plus-
estimator “global” responses ™ (2) = f#(2)h®(z).
The impulse response coefficients of ¢ (z) are

W@ = Y Y, M)

i=—00

allowing the estimates to be written as y, =
S > qsl . Adopting the following vector nota-
tion helps to streamline the remainder of the paper.

q:= (- q(,oi ----- q(fi)wqf()o) ----- q(K),qgo) ----- PR
o= (0@ SO SO0 @) a0 e

For instance, we can concisely write y, = g*s(n).

It is important to recognize that that placing a par-
ticular structure on the channel and/or estimator will
restrict the set of attainable global responses, which we
will denote by Q,. For example, when the estimator is
FIR, (1) implies that ¢ € Q, = row(H), where

(0) (K) (0) (K) (0) (K)
Bo .:.hg ﬁ%m | ﬂzm Sy SO
H = : O 1 1 (2)
0---0 O --- 0 h<°>.h<KJ...

Restricting the estimator to be causal IIR, for example,
would generate a different attainable set Q,. In gen-
eral, we allow any channel/estimator restrictions which
ensure that Q, is a linear subspace of ¢1(C).

Throughout the paper, we make the following assump-
tions on the K + 1 source processes:

S1) For all k, {s®} is zero-mean i.i.d.

S2) {s}..-{sUO} are Jomtly independent.
S3) For all k, E{|s®|?} = o2

S4) K(sl) < 0, where K(-) denotes kurtosis:

2 2

K(sn) = B{lsn"} = 2(E{|sa|*})” — [E{s3}". (3)

S5) If, for any k, ¢*(z) or {s¥} is not real-valued,
then E{s®?} = 0 for all k.

2.2 The Constant Modulus Criterion

The CM (or Godard) criterion, introduced indepen-
dently in [2], [3], is defined as

Je(yn) = E{(lynl> = 7)*}. (4)

v is a positive design parameter. We quantify the MSE
performance of the CM estimator below.

Since both symbol power and channel gain are unknown
in the “blind” scenario, blind estimates suffer from a
gain ambiguity. To ensure that estimator performance
evaluation is meaningful in the face of such ambiguity,
we consider normalized versions of the estimates with
normalization factor ¢{”. Given that the estimate y,
can be decomposed into signal and interference terms

yn = ¢y, +@'5(n), (5)

where ¢ denotes g with the ¢ term removed and 3(n)
denotes s(n) with the s’ , term removed, the normal-
ized estimate y,, /¢ can be referred to as “condition-
ally unbiased” since E{y,/q¢”|s% ,} = s . The con-
ditionally unbiased MSE (UMSE) assomated with yp,
an estimate of s . is then defined

n—v’

Ju,V(yn = E{lyn/qw) (0) | } (6)
Substituting (5) into (6), the UMSE becomes
Efla's(m)?} _ Jal3
Juﬂj(q) = |q(0)|2 |q(0)|2 U (7)

where the second equality invokes assumptions S1)-S3).

Henceforth we use g, , to denote the minimum-MSE
(MMSE) global response associated with symbol delay
v. For the linear channel model of Fig. 1, it is possible
to upper bound the UMSE of CM-minimizing symbol
estimators of delay v directly in terms of the UMSE
of Wiener symbol estimators of the same delay, i.e.,

Juyl’(qm,v)'

Normalized

(3)) is

k) 7E{|S§f)|4} . (8)
’ (E{Js2})”

First we present some useful definitions.
kurtosis k (not to be confused with K(-) in
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Under the following definition of k4 our results will hold
for both real-valued and complex-valued models.

3, Vk,n: h® € RF and s € R,
kg = . (9)
2, otherwise,
Note that, under S1) and S5), k4 represents the nor-

malized kurtosis of a Gaussian source. The following
quantities are also used in the sequel:

min .__ max .__ k
K = mingc,cx £, Kh = MaXecp<x K,
) . K97Km111 o ’{gi’ignax
Pmin = MO Pmax = © -
Kg— KRg—HKs

Theorem 1 ([6]) If Ju,,(qy,,) < Joo3, where

[ 14Ppmin _ 1
Pmin
Jo = 1

Pmint1/ (Pmin+1) (Pmin — Pmax)

Kmax S K’/q

max

(10)

> Kg,

then the UMSE of CM-minimizing estimators associ-
ated! with delay v can be bounded as follows:

Juyl’(qm,u) S Juyl/(qc,v> S Ju,l/‘maxv

c,v

—2
Ju,v (@m,v)
(1+Pmin) (1+T) —Pmin

fu V(qm v) -2
pmin+4 [ (1+pmin) B A —Pmin

max
when K7 < Ky,

— >
Ju,v (9m,v Jd,v (@m,v)
s (102852 ) b Bt

o o

J J2,( )
Pmin+\/(1+Pmin)(l+M) (1+pmx%&)fpm;n
S S

when K3 > K.

It should be noted that Theorem 1 implicitly incorpo-
rates the channel and/or estimator constraints that de-
fine Q, through its use of the MMSE response g, , (€
Q,). For example, if q,,, ,, is the MMSE global response
constrained to the set of causal IIR estimators, then
the UMSE bound pertains to CM-minimizing responses
q., obeying the same causal-IIR constraint.

2.8 Channel Identification

Fig. 2 illustrates the proposed blind channel impulse re-
sponse identification scheme, whereby M-delayed ver-
sions of the CM-minimizing symbol estimates {y,} =~

1A CM-minimizing estimator is said to be associated with
symbol delay v when its global response q satisfies \ql(,o)| >

max . 5)2(0,) 145" | 6]-

{s” } are cross-correlated with the vector received
samples {r,_gq,...,ry}, yielding the channel param-
h{" \/}. The 6" parame-
ter estimate hfjjr M—s can be expressed as a biased ver-
sion of the true parameter corrupted by an error term:

: ©
eter estimates {hVJrM Q1

ﬁ(O)

v+ M—§ E{rn,(;y:LM}

- (S, Y )

_ 2 (k) (k)*
- E :h’LJrM 5 [
q(k)*
_ (0)* (0) (k) [
= 0’ qy < vtM—s T E: hz-‘rM—l? q“”*)'
M (k1) #(0,v) v

error

(12)

bias

The identification scheme in Fig. 2 bears similarity to
the Gooch-Harp method of channel identification [7] il-
lustrated in Fig. 3, whereby the CM-minimizing esti-
mates {y,} are processed by a hard decision device D
before cross-correlation. Due to the nonlinear opera-
tion D, however, performance analysis of the Gooch-
Harp scheme is difficult unless perfect decision-making
(i.e., dp = Sp—,) is assumed. In addition, forming re-
liable decisions requires carrier phase synchronization
(an issue with passband data transmission) which is
not required in the identification scheme of Fig. 2. (See

[5.)

Fig. 3. Gooch & Harps’ blind channel identification.

Many other methods of blind channel identification
have been proposed [1], most of which estimate channel
coeflicients from the observed data directly, i.e., with-
out first forming blind symbol estimates. When P > 1
and the channel satisfies certain conditions, it is pos-
sible to accomplish blind identification using only the
second-order statistics (SOS) of the observed process
Many SOS-based techniques, however, fail catastroph-
ically when the channel order is incorrectly estimated.
The CM-based schemes in Figs. 2 and 3, however, do
not rely on the satisfaction of any channel-identifiability
conditions.
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3.0 Blind Identification Performance
3.1 ASPE with Exact Correlations

We are interested in quantifying the average squared
error of the parameter estimates {h M- Q- ., h?) )
relative to the true parameters {hfferfQ, . h(o) INVER
We tolerate arbitrary scaling of the total estunated
channel response and define our average squared pa-
rameter error (ASPE) criterion as follows.

Q
o1 : 2
&, = ]glelg@ § :Hehngfs _hl(/OlM75H2 (13)
6=0

h(U) h(U) 2

1 v+ M v+ M
= min 0 - (14)
eC Q+1 h(o) oK
vEM—Q vim-q) 12
i (0) (0)
hy hy{m

Note that by choosing M and @ large enough, an arbi-
trarily large subset of the total channel response h® (z)
may be estimated regardless of the symbol estimation
delay v.

Theorem 2: For symbol estimation delay v, the ASPE
generated by the blind channel identification scheme in
Fig. 2 can be upper bounded as

< M l? T [ E{llenll3} Juu| 15
R (Q ez T o 1

when the Wiener symbol estimator satisfies the UMSE
condition Jy ,(q,,,) < Joo in Theorem 1.

Proof: To ensure that our bound applies to both
finite and infinite-dimensional channels and estimators,
we introduce the following operator:

H, - £1(CP) — CP9 sit.

h®  g®
Zkz +qu

Zk Ji thrM 1qik)
Huq =

(k (k)
E zh-HW qu

Recall that g and ¢;(CP) were defined in Section 2.1.
When h®(z) are FIR, H,, reduces to a block Toeplitz
matrix. The operator H,, will also prove useful:

H,y, - 01(CF) - CFQ st

22 (i) £(0,0) h1+Mqik()k)

h{ q;
_ k,i)#(0,v) “i+M—144
H, G = ( ( )

2 (k) £(0) R

H,, is a version of H,, with the components for the oth
source at delay v removed, and q is a version of q with

the ¢f” element extracted.

Using (12) and the definitions of hV+M and h;) ), in
(14), the operators H,, and H,, allow us to write

~ (0) _
_ - © g% g2
hyim = HuGo; +h) 60" 0%

Choosing 0§ = (¢¥*02)~1 in (14),

= Hyuq o?

> (0)

E < L Ry — h — LM . (16)
h Q+1 ql(lo)* v+M Q+1 | (0)|2
The induced norm |[Hy || 1= supgo [|Ha q*[12/]gll2

(which, for finite-dimensional H,,, equals the largest
singular value) allows further bounding of (16):

1 ||Hy|Pl4l3 [ |12
= Juu(q.,) —=1_ (17
Q+1 |q(0)|2 s (q s ) (Q—I—l)af ( )

When {h®(z)}, Qa, and v are such that J, (g, ,) <

Joo? for J, in (10), Theorem 1 allows upper bounding
of Ju.(q.,) and (17) becomes

< uu‘max ”ﬂM ”2 .
R (O

& (18)
Since || M ||* = SUP||q|lo=1 qt’HgHM q >

H o —H - _
sup|\2”2:1; @ =0 thM Hug® = Sup|g||,=1 thZ\/I Hu "
= [|Ha |12, (18) yields

gfl < u,v

2
‘max HHM || (19)

(Q+1)o3

Simplification of (19) is possible using the fact that
1M g 13 < (Q+1) 32y, ; [1hi™]|3 l|qll3 which implies

IHu 1> < (@+1)D [Ih{™[5. (20)
ki

Rewriting (20) using

2 1
X InlE = —E{HZ e

< LLE v, )13}, which leads to

gives || H, |13

1 max
& < —xu| " B {Irall3}. (1)

”cu

Theorem 2 gives an upper bound for the ASPE that is
proportional to the norm of the channel operator and
the UMSE of v-delayed Wiener symbol estimators (via
Juyl,‘injx in (11)), as well as a looser bound that is pro-

portional to the received power and the Wiener UMSE.
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3.2 ASPE with Correlation Approximation

In practice, the expectation operations in Fig. 2 will be
replaced by some sort of block or exponential averages.
In this section, we analyze the effect of block averag-
ing on the parameter estimation error. The §*" block
parameter estimate is defined below for block size N.

1 *
hl(/ojrfw s TN Zrnftsyn—M' (22)

Lemma 1 (See [5] for proof.) The expected ASPE us-
ing N-block correlation estimates can be written

(OH o 0) 2

YL

Os v+ M4 M

E{S;L} = & + Qé—i-l ; Hh(o) | Z
K("Llh(") (k)* I%H R ® m*
i+ M—s%i J+p z+p
2 ka
]\l 8)

Simulations suggest that, for CM- HllIllIIllZlIlg estuna—
tors f.,(z) and typical values of N, the second term
in (23) dominates the first. This implies that the per-
formance of the proposed channel estimation scheme is
in practice limited by the finite-data correlations rather
than by the performance of the blind symbol estimates.
The plots in Section 4 agree with this notion: improve-
ment in symbol estimates gained through quantization
of {yn} gives the Gooch-Harp scheme [7] only minor
advantage in ASPE.

4.0 Numerical Examples

Figs. 4 and 5 each plot bounds (19) and (21) for
the ASPE of the exact CM-minimizing estimator with
exact cross-correlations compared to (i) the average
ASPE achieved using CMA-derived estimates and block
length N = 104, (ii) the average ASPE achieved by the
Gooch-Harp scheme [7] using block length N, (iii) the
expected ASPE for the exact CM-minimizing estima-
tor? using block length N (from (23)), and (iv) the
ASPE for the exact CM-minimizing estimator with ex-
act cross-correlations (13).

Fig. 4 is based on a complex-valued T'/2-spaced (i.e.,
P = 2) SPIB? microwave channel response model #3,
shortened to a 16 symbol duration, in various levels of
AWGN. The impulse response of channel #3 is shown
in Fig. 6(a)-(b) and example channel estimation errors
are plotted in Fig. 6(c)-(d). The complex-valued T'/2-
spaced equalizer f(z) had a time support of 10 symbols.
Fig. 5 is based on SPIB channel #2 and a number of dif-
ferent restrictions on symbol estimator length N¢. The

2The CM-minimizing estimator fc, v(z) was determined numer-
ically using Matlab’s “fminunc” routine.

3The SPIB microwave channel database
http://spib.rice.edu/spib/microwave.html.

resides at

impulse response of channel #2 is shown in Fig. 7(a)-
(b) and example channel estimation errors are plotted

in Fig. 7(c)-(d). The SNR of AWGN was 40 dB.

The following were common to all experiments: the de-
sired source was i.i.d. and drawn from a 64-QAM alpha-
bet; v was the MSE-minimizing symbol delay for the
particular combination of channel, noise, and equalizer
constraints; @ and M were adjusted so that all 32 T'/2-
spaced coefficients of the SPIB channel were estimated;
and CMA was initialized at f.,(z) and adapted with
stepsize u = 1073,

The fact that the upper-bound-(19) trace crosses the
N-block traces in Figs. 4 and 5 should not cause
alarm: (19) bounds the ASPE assuming ezact cross-
correlations, while the CMA, Gooch-Harp, and CM-
N traces assume length-N block approximations of the
cross-correlations.

T
-5 bound (21)
—&— bound (19)
—<— CMAIN

-10F CM:N N

-~ CM:N- inf
—— Gooch:N

-80 L L L L L I I
10 15 20 25 30 35 40 45 50

SNR-AWGN [dB]

Fig. 4. ASPE for 32-tap T/2-spaced SPIB microwave
channel #3 versus SNR w.r.t. AWGN.

5.0 Conclusions

We have analyzed the performance of a blind chan-
nel identification scheme based on the cross-correlation
of CM-minimizing blind symbol estimates with the re-
ceived signal. Leveraging recent bounds on the UMSE
of CM-minimizing symbol estimates, upper bounds on
the average squared channel parameter estimation er-
ror (ASPE) were derived. The ASPE increase due to
finite-data correlator approximation was also examined,
and experiments using SPIB microwave channel models
were presented to verify the results of our analyses.
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—- CM:N - inf
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Fig. 5. ASPE for 32-tap T'/2-spaced SPIB microwave
channel #3 versus symbol estimator length Ny.
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Fig. 6. (a) Real and (b) imaginary components of 32-
tap T/2-spaced SPIB microwave channel #3 im-
pulse response. (c) Real and (d) imaginary com-
ponents of estimation errors for SNR = 50 dB and

Ny = 10.
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Fig. 7. (a) Real and (b) imaginary components of 32-

tap T/2-spaced SPIB microwave channel #2 im-
pulse response. (c) Real and (d) imaginary com-
ponents of estimation errors for SNR = 40 dB and
Ny =10.
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