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ABSTRACT

Adaptive blind equalization has gained widespread use in commu-
nication systems that operate without training signals. Inparticu-
lar, the Constant Modulus Algorithm (CMA) has become a favorite
of practitioners due to its LMS-like complexity and desirable ro-
bustness properties. The desire for further reduction in compu-
tational complexity has motivated signed-error versions of CMA,
which have been found to lack the robustness properties of CMA.
Previously we have presented a simple modification of real-valued
signed-error CMA, based on the judicious use of dither, thatresults
in an algorithm with robustness properties nearly identical to those
of real-valued (unsigned) CMA. This paper extends those results
to the complex-valued case.

1. INTRODUCTION

The Constant Modulus Algorithm (CMA) [1, 2, 3, 4] has gained
widespread practical use as a blind adaptive equalization algo-
rithm for digital communications systems operating over inter-
symbol interference channels. Modern receiver implementations
often realize the advantages offered by a fractionally-spaced equal-
izer (FSE), i.e., an equalizer operating at a rate higher than the
baud rate and/or processing data from multiple sensors. Under a
set of perfect blind equalizability (PBE) conditions (listed in Sec-
tion 2.2), CMA adaptation of a FSE is known to converge in mean
to an equalizer setting capable of perfect symbol recovery (see,
e.g., [4]).

Though assumptions of ideality are convenient for the theo-
retical analysis of blind equalization schemes, they are uncondi-
tionally violated in physical implementations of communication
systems. This fact motivates the consideration of algorithm per-
formance under realistic (non-ideal) conditions. We will use the
term robust when referring to a blind algorithm’s ability to per-
form “well” under violations of the PBE conditions. It has been
reasoned that the widespread practical use of fractionally-spaced
CMA bears testament to its superior robustness properties.A size-
able body of theoretical analysis exists to support this claim [3].

Low-cost consumer applications (e.g., HDTV) motivate blind
equalization techniques requiring minimum implementation cost.
Though noted for its LMS-like complexity, CMA may be further
simplified by transforming the bulk of its update multiplications
into sign operations [2, 5]. A recent study suggests, however, that
previously proposed versions of signed-error CMA (SE-CMA)do
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not inherit the desirable robustness properties of CMA. In partic-
ular, it was found that SE-CMA convergence may suffer when the
channel is undermodelled [6].

The search for a computationally efficient algorithm with CMA-
like robustness led us to propose Dithered Signed-Error CMA(DSE-
CMA) [7]. As first introduced, DSE-CMA was a simple mod-
ification of real-valued SE-CMA based on the incorporation of
controlled noise (sometimes referred to as “dither”). Real-valued
DSE-CMA has been shown to possess robustness properties closely
resembling real-valued (unsigned) CMA. In fact, the mean behav-
ior of real-valued DSE-CMA has been shown to beidentical to
real-valued CMA under proper choice of design parameters [7].
The drawback to dithering is a degradation in steady-state mean-
square error (MSE) performance. Hence, an expression for the
excess MSE (EMSE) of DSE-CMA was derived in [7], yielding
straightforward design guidelines. In this paper, we extend DSE-
CMA to the complex-valued case, presenting analogous results on
its transient and steady-state behaviors.

A word on notation: we use lower-case bold-face quantities
(e.g.,

�
) to denote vectors and upper-case bold-face quantities (e.g.,�

) to denote matrices. Conjugation is denoted by����, transposi-
tion by ����, and conjugate transposition by���� .

2. FRACTIONALLY-SPACED CMA

2.1. The Fractionally-Spaced System Model

In this section, we construct a received signal model based on
a single-sensor receiver operating at twice the baud rate1. Note
that an equivalent model results from the use of two sensors,and
that generalization to multiple sensors/oversampling is straightfor-
ward [4]. Consider a baseband communication system operating at
baud interval� . A � -spaced symbol sequence	
� � is transmitted
through a linear time-invariant and finite impulse responsechan-
nel characterized by

�
, a length-
� vector of� ��-spaced impulse

response coefficients	�� �. In addition to inter-symbol interfer-
ence, the� ��-spaced received signal	�� � is also corrupted by an
additive noise process	�� �. The baseband receiver consists of
a � ��-spaced linear equalizer specified by the
� coefficients in
the vector� . At baud time index�, the receiver forms the symbol
estimate�� � � � � �� � from the previous
 � received samples,
as collected in the vector� �� �. Figure 1 shows the linear system
relating transmitted symbols
� to the system outputs�� . We as-
sume that the source symbols
� are drawn from a finite alphabet�

and are zero-mean i.i.d. with variance� �� ��  	 !
� !� �.
1A more tutorial (and more complete) development of the fractionally-

spaced system model can be found in [3].
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allows us to write the received vector as� �� � � � � �� � � � �� �,
where� �� � is a vector containing the previous
� samples of the
channel noise process. The baud-rate linear system relating 
� to
�� is now compactly described by the� -spaced impulse response
vector� �� �� � � ��, so that�� � � �� �� �� � � � �� � with length-

 � source vector
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Figure 1:� ��-spaced baseband communication system model.

Perfect symbol recovery (PSR) occurs when the channel noise
is absent, and when� and

�
are such that�� � �� � 
�
� for all

�, some fixed system delay ! " ! 
 � � �, and some fixed
angle# $ % � �& �. The PSR system responses are characterized
by � � �� � '� (where'� denotes a vector with 1 in the" �� posi-
tion and zeros elsewhere). We refer to PSR-inducing equalizers as
“zero-forcing” and denote a zero-forcing equalizer associated with
system delay" by �� . The goal of blind equalization can be con-
sidered the achievement (or near-achievement) of PSR basedonly
on knowledge of the system output�� and the (marginal) statistics
of the source process	
� �.

2.2. The Constant Modulus Algorithm

The Constant Modulus Algorithm (CMA) is a stochastic gradient
algorithm minimizing the Godard criterion:(cm �� �)  *�!�� !� �+ �� ,. The positive constant+ is referred to as the dispersion con-
stant and is chosen in accordance with the source statistics. Con-
ceived independently in [1] and [2], the Godard criterion penalizes
the dispersion of the squared output modulus!�� !� away from+ .
As a FSE update algorithm, CMA takes the form

� ��� �� � � �� � � -� �� � � �� .+ � !�� !� /0 12 3456 789 : � (1)

where- is a (small) positive step-size. The function; ��� identified
in (1) is referred to as the CMA error function and will appear
many times throughout this paper.

The following perfect blind equalizability (PBE) conditions
are known to be sufficient to guarantee that equalizers minimizing(cm achieve perfect symbol recovery [3].

(A1) Full column-rank
�

.

(A2) No additive channel noise.

(A3) Sub-Gaussian source: the normalized kurtosis< � ��
 	 !
� !

)
���

)� must be less than that of a Gaussian process.

(A4) I.i.d. zero-mean source. When complex-valued, the source
must be circularly symmetric, i.e., 	
�� � �  .

Note that (A1)-(A2) pertain to the channel-equalizer pair’s abil-
ity to achieve PSR, while (A3)-(A4) pertain specifically to blind
adaptive equalization using the Godard criterion.

3. DITHERED SIGNED-ERROR CMA

In an effort to eliminate the
� regressor multiplies required by
(1), we proposed a simple modification to real-valued SE-CMA,
known as dithered signed-error CMA (DSE-CMA) [7], that re-
sulted in an algorithm whose mean behavior closely matched that
of real-valued (unsigned) CMA. The modification was motivated
by a well-known technique known as dithering, whereby a care-
fully chosen random noise is added to a signal before quantization
in an attempt to preserve information that would otherwise be lost
in the quantization process. The focus of this paper is on theprop-
erties of complex-valued DSE-CMA, defined in (2) below:

� ��� �� � � �� � � - � �� � = >?@A .� �� �+ � !�� !� � � =B� /0 12 345CD 789 EF9 : � (2)

Above, >?@A �G � �� ?@A �HI G � � J ?@A �KL G �, and+ is a posi-
tive constant. In addition, (2) includes the complex-valued dither
processB� �� B MN O� � J B MPO� , where 	B MN O� � and 	B MPO� � are real-
valued independent random processes uniformly distributed on (-
1,1]. The positive dither amplitude= appears twice in (2). Equa-
tion (2) also identifies the DSE-CMA error functionQR ��� � B� �,
which is readily decoupled into real and imaginary components:QR ��� � B� � � = ?@A .; N ��� ��=B MN O� /� J = ?@A .; P ��� ��=B MPO� /,
for ;N ��� �� HI ; ��� and; P ��� �� KL ; ���.

4. DSE-CMA TRANSIENT BEHAVIOR

4.1. Quantization Noise Model

At first glance, the complex sign operator in (2) appears to compli-
cate the behavioral analysis of DSE-CMA. Fortunately, the theory
of dithered quantizers allows us to subsume the sign operator by
adopting a quantization-noise model of the DSE-CMA error func-
tion (see Figure 2).

Since the complex sign operation can be decoupled into two
real-valued operations, we consider, for the moment, the real-valued?@A ��� operator. DSE-CMA can be connected to the quantization
literature with the observation that the operator= ?@A ��� is identi-
cal to the two-level uniform quantizerS ���, specified by

S �G � � TU �� G V  ��U �� G W  �
for quantizer spacingU � �= .

+ +X�X� Y
� Z�[

Figure 2: Dithered Quantizer and Quantization noise model.

The quantization noises\ MNO� and \ MPO� arising from the non-
subtractively dithered quantization of information signals ;N ��� �



and; P ��� � are defined\ MN O� �� = ?@A .; N ��� � � =B MN O� / � ;N ��� � � (3)\ MPO� �� = ?@A .; P ��� � � =B MPO� / � ; P ��� � � (4)

For B MN O� uniformly distributed on���� �� and = selected large
enough to satisfy= V L �� * !;N ��� � ! � !; P ��� � !,� (5)

for �� of interest, [8] implies that\ MN O� and and\ MPO� are mutually
uncorrelated random processes whose first moments obey

 *\MN O� ��;N ��� �, �  	\ MN O� � �  � (6)

 *\MPO� ��; P ��� �, �  	\ MPO� � �  � (7)

and whose conditional second moments obey

 *\MN O�� ��;N ��� �, � = � � ; �N ��� � � (8)

 *\MPO�� ��; P ��� �, � = � � ; �P ��� � � (9)

Using (3) and (4), we can write the complex-valued DSE-
CMA error function in terms of the complex-valued quantization
noise\� �� \ MN O� � J \MPO� as followsQR ��� � B� � � ; ��� � � \� � (10)

This leads to the compact DSE-CMA update expression:

� ��� �� � � �� � � -� �� � .; ��� � � \� / � (11)

Finally, (8) and (9) imply the following useful property:

 * !\� !� ��; P ��� � � ; N ��� �, � �= � � !; ��� � !� �
4.2. Properties of Mean Trajectories

The average transient behavior of DSE-CMA is completely de-
termined by the expected DSE-CMA error function,QR ��� � ��
 *QR ��� � B� � ���� ,. Equations (2)–(7) indicate that the real and
imaginary components ofQR ��� are “hard-limited” versions of the
real and imaginary components of the CMA error function,;N ���
and; P ���, i.e.,

Q MNOR �� � �

���
��
= � � ;N �� � � = �; N �� � � � !;N �� � ! ! = ��= � � ;N �� � W �= � (12)

and similarly forQ MPOR �� �.
In the theorems below, the implications of (12) are formalized

in terms of DSE-CMA behavior over specific ranges of= .

Lemma 1. Define =C �� � �+ �	��
� �
The choice of dither amplitude= � =C ensures thatQR �� � �; �� � for all equalizer outputs� satisfying the output amplitude
constraint: !� ! ! �R , where�R denotes the unique real-valued
root2 of the cubic polynomial�G� � + G �= .

2When� � �C, it can be shown that the cubic polynomial
X� �� X � � has a unique real-valued root which is given by the expression�� ������� � 
 ��� � 
 ����� �� � �� ������� � 
 ��� � 
 �����
�� �

Proof. According to (12),QR �� � � ; �� � when !;N �� � ! ! = and
!; P �� � ! ! =. Thus, it is sufficient to show that!; �� � ! ! = if both
!� ! ! �R and= � =C. Noting from the definition of; ��� that
!; �� � ! � !; �!� !� ! and that!; �!� !� ! ! = iff  ! � !� !� � + !� ! �= ! �= , the remainder of the proof follows from Figure 3, where
the roles of�R and=C should become clear.

�� ��R
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Figure 3: Illustration of Lemma 1.

Writing the system output as� � � � �, for a (fixed) received
vector� and arbitrary equalizer� , allows the following equalizer-
space interpretation of Lemma 1:

Theorem 1. Denote the set of possible received vectors by� , and
define�R to be the convex hull formed by the set of hyperplanes�R �� 	� � !� � � ! � �R for � $ � �. Then choice of dither
amplitude= � =C ensures that the expected DSE-CMA update is
identical to the CMA update for equalizers within�R .

Proof. The details mimic those of the real-valued case in [7] after
substituting�R for ; 
� �= �.

Next, we concern ourselves with neighborhoods of the zero-
forcing (ZF) equalizers	�� �  ! " W 
 � �.
Theorem 2. Define=ZF �� L ��� ! E�  "� E�# : !; ��� � 
� !�
Under satisfaction of the PBE conditions, choice of dither ampli-
tude = � =ZF ensures the existence of a neighborhood around
every ZF solution�� within which the expected DSE-CMA update
is identical to the CMA update.

Proof. The details mimic the real-valued case given in [7].

Theorem 2 is of limited practical use since it requires satisfac-
tion of PBE conditions. Fortunately, the concept is easily extended
to the set of “open-eye” equalizers,�OE. Denoting the minimum
distance between any pair of adjacent symbols in

�
by U � ,

�OE �� *� � L $A� L ��% & !�� �� � �� � ! W U � ��,�
The corresponding set of open-eye equalizer outputs is defined by'

OE �� *� � L $A� ! !� � 
 ! W U � ��,�
Theorem 3. Define=OE �� L ��8  (

OE
E�  "� E�# : !; ��� � � � !�

Choice of dither amplitude= � =OE ensures the existence of a
neighborhood around every open-eye equalizer,� $ �OE, within
which the expected DSE-CMA update is identical to the CMA up-
date.



Table 1: Critical values of= for � -QAM.

� 4 16 64 256 1024=C 0.38 0.58 0.62 0.63 0.64=ZF 0 0.64 1.45 2.04 2.38=OE 3.27 2.37 2.43 2.57 2.66

Proof. The details mimic the real-valued case given in [7].

In summary,=C is a lower bound on dither amplitude= for
which the convex set�R exists, while=ZF and=OE are lower bounds
on = for which “CMA-like” local neighborhoods around zero-
forcing and open-eye equalizers exist, respectively. Table 1 quanti-
fies the values of	=C � =ZF � =OE� for � -QAM alphabets. Note that
the constant=ZF may be less than=C, in which case there would
exist isolated“CMA-like” neighborhoods around the ZF solutions
(i.e., ’hoods not contained in any “CMA-like” convex hull).

5. DSE-CMA STEADY-STATE BEHAVIOR

The principle disadvantage of DSE-CMA concerns its steady-state
behavior: the addition of dither leads to an increase in excess
mean-squared error (EMSE), typically defined as the steady-state
MSE above the level attained by a fixed locally minimum MSE so-
lution. The subsections below quantify the EMSE of DSE-CMA
under the satisfaction (or near-satisfaction) of the PBE conditions.

5.1. Small-Error Approximation of ; ���
Defining the output error�� �� �� � 
�
� , the CMA error func-
tion can be written as; ��� � � ��� � 
�
� �� .+ � !��� 
�
� !�/ � (13)

For small output error (i.e.,!�� ! � �), we approximate the er-
ror function by expanding (13) and disregarding all but firstorder
terms in�� and��� :; ��� � � ; �
�
� � � � �� �+ � � !
�
� !� � � �� �
��
� �� � (14)

Without loss of generality, consider a zero-forcing phase offset# �  . Then, in the absence of channel noise, the parameter error
definition

�
� �� � �� � �� � � �� allows us to write�� �

�
� � �� �� �� �.

Since under the PBE assumptions and a reasonably small step-size
we expect asymptotically small�� , (14) can be used to character-
ize the steady-state behavior of DSE-CMA.

5.2. The Excess MSE of DSE-CMA

EMSE at time index� is defined to be the expected squared error
above that achieved by the (local) zero-forcing solution�� . Since,
under satisfaction of the PBE conditions,�� achieves zero error,(ex�� � ��  * !�� �� ��� �� � !� ,�
We are interested in quantifying the steady-state EMSE:(ex ���$L ��� (ex�� �. Our derivation assumes the following:

(B1) The equalizer parameter error vector
�
� �� � is statistically in-

dependent of the equalizer input� �� �.
(B2) The dither amplitude= is chosen sufficiently greater than=ZF so that= � !; ��� � ! for all �� under consideration.

Table 2: EMSE Relative Performance Factor:(ex � �R E! (ex�cma.

� -QAM 4 16 64 256 1024�R E! !R5RZF
- 3.8 13.3 24.0 32.3�R E! !R5ROE
- 51.6 37.2 24.0 38.2

(B3) The PBE conditions (A1)-(A4) are satisfied to the extent
that the zero-forcing solution attains near-zero error, i.e.,
 * !
�
� � � �� � �� � !� , �  .

(B4) The step-size is chosen small enough for the small-error
approximation (14) to hold asymptotically.

Assumption (B2) is needed for the results of the quantization noise
model in Section 4.1 to hold.

Using the properties of the trace operator, the independence
assumption (B1), and the definitions	 �� � ��  *�� �� ��� � �� �,
and
 �� �� �
  *� �� ��� �� �,, it is straightforward to show that(ex�� � � � �� �� .
	 �� �/ � (15)

The quantization noise model of Section 4.1 and the error
function approximation (14) can be used to derive the following
recursion for	 �� �, valid for equalizer lengths
� � �.

	 �� � �� � 	 �� � � - �< � � ��� )� .	 �� �
 � 
	 �� �/� �- �= �� ��
 � (16)

Then, using (15) and (16), one can derive the following approxi-
mation to the steady-state EMSE of DSE-CMA:

(ex � -= �
 � � ��
�� � < � �� �� � (17)

where� �� ��  	 !�� !� � and < � ��  	 !
� !
) ��� )� . The details of

the derivation of (15)–(17) follow the real-valued case [7]closely.
Equation (17) can be compared to an analogous expression for

the EMSE of complex-valued CMA [4]:

(ex�cma � -
� � ��
� ���< � � � 	 !
� !� �

� �� � < ��� �
)� � (18)

It is apparent from (17) and (18) that the EMSE of CMA and DSE-
CMA differ by the multiplicative factor

�R E! �� �= �
 	 !
� !� � � <�� � �� � (19)

via (ex � �R E! (ex�cma. Note the dependence on both the dither
amplitude= and the distribution of	
� �. Table 2 presents values
of �R E! for various� -QAM sources and particular choices of= .

6. SIMULATION RESULTS

6.1. Excess MSE Under PBE Conditions

Table 3 presents simulation results verifying the approximation of
the excess MSE of DSE-CMA given in (17). The simulations were
conducted using length-64 MMSE approximations of three (noise-
less) SPIB3 microwave channels,� ��-spaced length-62 FSEs, and

3The Signal Processing Information Base microwave channel database
resides athttp://spib.rice.edu/spib/microwave.html.



Table 3:(ex Deviation from Predicted Level (17).

� -QAM 4 16 64 256
SPIB #2 -0.76% -0.81% -1.06% -1.62%
SPIB #3 0.33% 0.47% 0.10% -0.04%
SPIB #4 0.24% 0.60% -0.47% -1.16%

various i.i.d.� -QAM sources. This ensured that conditions (A1)-
(A4) were satisfied. The step-sizes were chosen so that (B4) was
satisfied, and the dither amplitude of= � � �� satisfied (B2). Ta-
ble 3 gives percentage deviations from the EMSE levels predicted
by (17) which were obtained by averaging the results of� �� � � �
iterations. Overall, the simulation results closely match(17).

6.2. Average Transient Behavior

Since we have emphasized the importance of performance evalua-
tion in realistic (non-ideal) environments, we now presenta com-
parison of DSE-CMA to CMA in this context. Figure 4 shows
ensemble-averaged MSE trajectories of the two algorithms oper-
ated under identical conditions and initialized at the sameloca-
tions using various SPIB microwave channels. Noise level (SNR
= 40dB) and equalizer length (
� � 	�) were selected to rep-
resent typical applications while providing open-eye performance
(for a 16-QAM source) at convergence. The following “double-
spike” [4] equalizer initialization was used in all simulations: taps
10 and 11 were set to 0.5 and all others were set to zero. As evident
in Figure 4, the DSE-CMA trajectories track the CMA trajectories
closely until the effects of EMSE take over. Figure 4 also suggests
that the EMSE approximation in (17) remains a useful guideline
even under typical violations of the PBE conditions.
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Figure 4: Averaged MSE trajectories for various SPIB channels.

7. CONCLUSIONS

This paper has derived the fundamental properties of the complex-
valued dithered signed-error constant modulus algorithm.In sum-
mary, we have found that, under proper selection of algorithmic
design quantities, the expected transient behavior of DSE-CMA is
identical to that of CMA. Though the steady-state MSE of DSE-
CMA is larger than that of CMA, its value is well characterized
and can be accounted for in the design procedure. Lacking space,

we refer the reader to [7] for advice on the selection of= � + � - � and
� � �; the guidelines mimic those of the real-valued case.

With the exception of computational complexity, the new al-
gorithm has been designed to mimic CMA, rather than “improve”
on its performance. Our primary motivation for this is twofold.
First, CMA is well-regarded by practitioners. It has established
itself over the last 20 years as the most popular practical blind
equalization algorithm, due in large part to its robustnessproper-
ties [3]. It is precisely these robustness properties whichwe have
attempted to preserve. Secondly, CMA has been extensively an-
alyzed by theoreticians [3]. The bulk of these analyses apply di-
rectly to DSE-CMA. As it is often the case that modifications of
classic algorithms have disadvantages that outweigh the proposed
advantages, the spirit of DSE-CMA is a computationally efficient
algorithm that “leaves well enough alone.”

Finally, we mention a potentially useful modification to DSE-
CMA. In the case of SE-LMS, the extension of the sign operator
to a multi-level quantizer has been shown to yield significant per-
formance improvements at the expense of a modest increase in
computational complexity [9]. Perhaps multi-level quantization
would yield similar advantages for DSE-CMA, most importantly
a reduction in EMSE.
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