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ABSTRACT

Adaptive blind equalization has gained widespread userimao-
nication systems that operate without training signalspdricu-
lar, the Constant Modulus Algorithm (CMA) has become a faeor
of practitioners due to its LMS-like complexity and desieao-
bustness properties. The desire for further reduction mpme
tational complexity has motivated signed-error versioh€MA,
which have been found to lack the robustness properties ACM
Previously we have presented a simple modification of rehled
signed-error CMA, based on the judicious use of dither, rbslts
in an algorithm with robustness properties nearly idehtaéhose
of real-valued (unsigned) CMA. This paper extends thoseltes
to the complex-valued case.

1. INTRODUCTION

The Constant Modulus Algorithm (CMA) [1, 2, 3, 4] has gained
widespread practical use as a blind adaptive equalizatigo- a
rithm for digital communications systems operating oveetin
symbol interference channels. Modern receiver implentiemis.
often realize the advantages offered by a fractionallycegaqual-
izer (FSE), i.e., an equalizer operating at a rate highem tha
baud rate and/or processing data from multiple sensors.etad
set of perfect blind equalizability (PBE) conditions (&dtin Sec-
tion 2.2), CMA adaptation of a FSE is known to converge in mean
to an equalizer setting capable of perfect symbol recoveeg,(
e.g., [4]).

Though assumptions of ideality are convenient for the theo-
retical analysis of blind equalization schemes, they aondi-
tionally violated in physical implementations of commuation
systems. This fact motivates the consideration of algariger-
formance under realistic (non-ideal) conditions. We wgkuthe
term robustwhen referring to a blind algorithm’s ability to per-
form “well” under violations of the PBE conditions. It hasdre
reasoned that the widespread practical use of fractiosahced
CMA bears testament to its superior robustness propeAisize-
able body of theoretical analysis exists to support thigrc[&].

Low-cost consumer applications (e.g., HDTV) motivate dlin
equalization techniques requiring minimum implementatost.
Though noted for its LMS-like complexity, CMA may be further
simplified by transforming the bulk of its update multiplicans
into sign operations [2, 5]. A recent study suggests, howehat
previously proposed versions of signed-error CMA (SE-CMA)
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not inherit the desirable robustness properties of CMA.drtip-
ular, it was found that SE-CMA convergence may suffer when th
channel is undermodelled [6].

The search for a computationally efficient algorithm with &M
like robustness led us to propose Dithered Signed-Error ¢DRE-
CMA) [7]. As first introduced, DSE-CMA was a simple mod-
ification of real-valued SE-CMA based on the incorporatidn o
controlled noise (sometimes referred to as “dither”). Redlied
DSE-CMA has been shown to possess robustness properise$yclo
resembling real-valued (unsigned) CMA. In fact, the medmale
ior of real-valued DSE-CMA has been shown toildentical to
real-valued CMA under proper choice of design parametdrs [7
The drawback to dithering is a degradation in steady-staanm
square error (MSE) performance. Hence, an expression éor th
excess MSE (EMSE) of DSE-CMA was derived in [7], yielding
straightforward design guidelines. In this paper, we extBSE-
CMA to the complex-valued case, presenting analogousteesnl
its transient and steady-state behaviors.

A word on notation: we use lower-case bold-face quantities
(e.g.,h) to denote vectors and upper-case bold-face quantitigs (e.
H) to denote matrices. Conjugation is denoted 9y, transposi-
tion by (-)t, and conjugate transposition k).

2. FRACTIONALLY-SPACED CMA

2.1. TheFractionally-Spaced System M odel

In this section, we construct a received signal model based o
a single-sensor receiver operating at twice the baud.ratete
that an equivalent model results from the use of two sensois,
that generalization to multiple sensors/oversamplingr&ghtfor-
ward [4]. Consider a baseband communication system opgrati
baud intervall'. A T-spaced symbol sequen{s, } is transmitted
through a linear time-invariant and finite impulse respocisan-
nel characterized blg, a length&V;, vector ofT’/2-spaced impulse
response coefficientfh,}. In addition to inter-symbol interfer-
ence, thel'/2-spaced received signfty } is also corrupted by an
additive noise procesfv,}. The baseband receiver consists of
aT/2-spaced linear equalizer specified by tNe coefficients in
the vectorf. At baud time index:, the receiver forms the symbol
estimatey, = fZr(n) from the previousV; received samples,
as collected in the vectaf(n). Figure 1 shows the linear system
relating transmitted symbols, to the system outputg,. We as-
sume that the source symbals are drawn from a finite alphabet
S and are zero-mean i.i.d. with variangg := E{|s,|*}.

1A more tutorial (and more complete) development of the foaetly-
spaced system model can be found in [3].



Defining theN; x N, fractionally-spaced convolution matrix

t
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allows us to write the received vector 6&) = Hs(n) + v(n),
wherer (n) is a vector containing the previow$; samples of the
channel noise process. The baud-rate linear system iglgtito
yn IS Now compactly described by tléspaced impulse response
vectorq := (FPH)?, so thaty, = q’s(n) + £ v(n) with length-
N, source vectos(n) := (Sn, Sn—1,-..,Sn—N,+1)". The struc-
ture ofH implies thatNV, = | (N, + Ny — 1)/2].

e
P

Figure 1.7 /2-spaced baseband communication system model.

Perfect symbol recovery (PSR) occurs when the channel noise

is absent, and whefhandH are such thay, = e’?s, _s for all

n, some fixed system delay < § < N, — 1, and some fixed
angled € [0,2r). The PSR system responses are characterized
by q = e’°e; (Wheree;s denotes a vector with 1 in thE” posi-

tion and zeros elsewhere). We refer to PSR-inducing earalis
“zero-forcing” and denote a zero-forcing equalizer assteci with
system delay by f5. The goal of blind equalization can be con-
sidered the achievement (or near-achievement) of PSR labed

on knowledge of the system outpyt and the (marginal) statistics

of the source process.,, }.

2.2. The Constant ModulusAlgorithm

The Constant Modulus Algorithm (CMA) is a stochastic gradie
algorithm minimizing the Godard criteriofem := X E{(|yn|” —
7)2}. The positive constanj is referred to as the dispersion con-
stant and is chosen in accordance with the source stati€ms-
ceived independently in [1] and [2], the Godard criteriongl&es
the dispersion of the squared output modulyg® away from-y.
As a FSE update algorithm, CMA takes the form

f(n+1) £(n) + pr(n) o (v = lyal*), @
—_———

=9 (yn)

wherey is a (small) positive step-size. The functigi) identified
in (1) is referred to as the CMA error function and will appear
many times throughout this paper.

The following perfect blind equalizability (PBE) conditis
are known to be sufficient to guarantee that equalizers nizimig
Jem achieve perfect symbol recovery [3].

(A1) Full column-rankH.
(A2) No additive channel noise.

(A3) Sub-Gaussian source: the normalized kurtosis :=
E{|sn|*}/os must be less than that of a Gaussian process.

(A4) li.d. zero-mean source. When complex-valued, thecou
must be circularly symmetric, i.e5{s2} = 0.

Note that (Al)-(A2) pertain to the channel-equalizer gaabil-
ity to achieve PSR, while (A3)-(A4) pertain specifically tbnil
adaptive equalization using the Godard criterion.

3. DITHERED SIGNED-ERROR CMA

In an effort to eliminate theV; regressor multiplies required by
(1), we proposed a simple modification to real-valued SE-CMA
known as dithered signed-error CMA (DSE-CMA) [7], that re-
sulted in an algorithm whose mean behavior closely matchad t
of real-valued (unsigned) CMA. The modification was moteht
by a well-known technique known as dithering, whereby a-care
fully chosen random noise is added to a signal before quatitiz

in an attempt to preserve information that would otherwiséost

in the quantization process. The focus of this paper is opitbe-
erties of complex-valued DSE-CMA, defined in (2) below:

f(n+1) = f(n) + pr(n) a csgn (yn (Y — lynl”) + adnl- 2

=¢a(Yn,dn)

Above, csgn(z) = sgn(Rez) + jsgn(Imz), and+y is a posi-
tive constant. In addition, (2) includes the complex-vdluaither
processd, = d& + jd$, where{d{’} and {d{’} are real-
valued independent random processes uniformly distribaie(-
1,1]. The positive dither amplitude appears twice in (2). Equa-
tion (2) also identifies the DSE-CMA error functign, (yn, d»),
which is readily decoupled into real and imaginary compdsien
PalYn, dn) = asgn (v, (yn)+ad?’) +jasgn (i (yn) +ady),
for ¢..(-) := Re#(-) andy; () := Ime(-).

4. DSE-CMA TRANSIENT BEHAVIOR

4.1. Quantization Noise M odel

At first glance, the complex sign operator in (2) appears topid
cate the behavioral analysis of DSE-CMA. Fortunately, testy
of dithered quantizers allows us to subsume the sign opeogto
adopting a quantization-noise model of the DSE-CMA errocfu
tion (see Figure 2).

Since the complex sign operation can be decoupled into two
real-valued operations, we consider, for the moment, thlevaued
sgn(-) operator. DSE-CMA can be connected to the quantization
literature with the observation that the operataign(-) is identi-
cal to the two-level uniform quantizé)(-), specified by

A2 x>0,
Q=) {—A/Z z <0,
for quantizer spacings = 2a.
Cdn | e
O e LI S SR

Figure 2: Dithered Quantizer and Quantization noise model.

The quantization noises” and¢(’ arising from the non-
subtractively dithered quantization of information sitgn@.. (y»)



andq; (y») are defined

e’ = asgn(y.(yn) +ady’) = ¥.(yn), ®3)
€ = asgn(¢i(yn) + ady’) — 1hi(yn). ©

For d$ uniformly distributed on(—1,1] and o selected large
enough to satisfy

a > max{|¢.(ya)l, [¥:(yn)l}, ®)

for y, of interest, [8] implies that{’ and ande$’ are mutually
uncorrelated random processes whose first moments obey

E{e)’ [ (yn)} = E{e’}=0, (6)
Blen [i(yn)} = E{e’}=0, (7)
and whose conditional second moments obey
E{e7? [0 (yn)} = o —1l(yn), (8)
E{e”|vi(yn)} = o —9(yn). ©)

Using (3) and (4), we can write the complex-valued DSE-

CMA error function in terms of the complex-valued quantiaat
noisee,, := €\ + je as follows

ba(Yn:dn) = P(Yn) +e€n. (10)
This leads to the compact DSE-CMA update expression:
f(nt+1) = £(n)+pr(n)(Y(yn) +en). (11)

Finally, (8) and (9) imply the following useful property:
E{lenl”|9:(yn) 9 (yn)} = 207 — [(yn)[”.

4.2. Propertiesof Mean Trajectories

The average transient behavior of DSE-CMA is completely de-

termined by the expected DSE-CMA error functigrn, (y,) :=

E{@a(yn,dn)|yn }. Equations (2)—(7) indicate that the real and

imaginary components @f, (-) are “hard-limited” versions of the
real and imaginary components of the CMA error functign(-)
andy;(-), i.e.,

o y:e(y) > o,
W) = (-9 vl <a, 12
—a  y:(y) < -
and similarly fore( (y).

In the theorems below, the implications of (12) are fornediz
in terms of DSE-CMA behavior over specific rangesxof

Lemma 1. Define
ac = 2(v/3)*7

The choice of dither amplituda > «ac ensures thatp, (y) =

1 (y) for all equalizer outputg satisfying the output amplitude
constraint: |y| < ya, Wherey, denotes the unique real-valued
root? of the cubic polynomiak-z3 + vz +a.

2Whena > ac, it can be shown that the cubic polynomiatz® +
vz + a has a unique real-valued root which is given by the exprassio

1 1 _
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Proof. According to (12)¢a(y) = ¥(y) when|¢.(y)| < « and
[+:(y)| < a. Thus, itis sufficient to show tha#(y)| < « if both
ly]| < yo anda > ac. Noting from the definition of)(-) that

l¥(y)| = 4 (lyl)| and thafe(lyl)| < aiff 0 < —[y|*> + ]yl +
a < 2a, the remainder of the proof follows from Figure 3, where

the roles ofy, andac should become clear. |
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Figure 3: Illustration of Lemma 1.

Writing the system output ag = f¥r, for a (fixed) received
vectorr and arbitrary equalizef, allows the following equalizer-
space interpretation of Lemma 1:

Theorem 1. Denote the set of possible received vector®bwand
defineF,, to be the convex hull formed by the set of hyperplanes
Bo = {f : |f¥r| = y, for r € R}. Then choice of dither
amplitudea > ac ensures that the expected DSE-CMA update is
identical to the CMA update for equalizers withfy, .

Proof. The details mimic those of the real-valued case in [7] after
substitutingy,, for = (a). O

Next, we concern ourselves with neighborhoods of the zero-
forcing (ZF) equalizergfs : 0 < § < Ny}.

Theorem 2. Define

— jo
Q= sesfgg[}é,zﬂ) [ (e™s)l.
Under satisfaction of the PBE conditions, choice of dithepdi-
tudea > az ensures the existence of a neighborhood around
every ZF solutiorfs within which the expected DSE-CMA update
is identical to the CMA update.

Proof. The details mimic the real-valued case given in [7]. O

Theorem 2 is of limited practical use since it requires fatis
tion of PBE conditions. Fortunately, the concept is easitgrded
to the set of “open-eye” equalizerpoe. Denoting the minimum
distance between any pair of adjacent symbolS oy A,

Foe = {f: Irllsinrzle%%c e (£ — £5)| < A /2}.
The corresponding set of open-eye equalizer outputs isaedebip
Yoe := {y: rsrélg1|y —s| < Ag/2}.

Theorem 3. Define

j6
QOB T e Yorbeto,2m) (™)l

Choice of dither amplitude: > aoe ensures the existence of a
neighborhood around every open-eye equalifeg Foe, Within
which the expected DSE-CMA update is identical to the CMA up-

date.



Table 1: Critical values of for M-QAM.

M 4 16 64 | 256 | 1024
ac || 0.38| 0.58 | 0.62 | 0.63 | 0.64
Qzr 0 0.64| 1.45| 2.04 | 2.38
ace || 3.27 | 2.37| 243 | 2.57 | 2.66

Proof. The details mimic the real-valued case given in [7]. O

In summary,ac is a lower bound on dither amplitude for
which the convex sef,, exists, whilenz: andaoe are lower bounds
on «a for which “CMA-like” local neighborhoods around zero-
forcing and open-eye equalizers exist, respectively.elalguanti-
fies the values of ac, azr, aoe} for M-QAM alphabets. Note that
the constantyz may be less thanc, in which case there would
existisolated“CMA-like” neighborhoods around the ZF solutions
(i.e., 'hoods not contained in any “CMA-like” convex hull).

5. DSE-CMA STEADY-STATE BEHAVIOR

The principle disadvantage of DSE-CMA concerns its stestdje
behavior: the addition of dither leads to an increase in gxce
mean-squared error (EMSE), typically defined as the ststate-
MSE above the level attained by a fixed locally minimum MSE so-
lution. The subsections below quantify the EMSE of DSE-CMA
under the satisfaction (or near-satisfaction) of the PBtlitmns.

5.1. Small-Error Approximation of +(-)

Defining the output erro¢,, := yn, — sn—s, the CMA error func-
tion can be written as

P(yn)

For small output error (i.ele,| < 1), we approximate the er-
ror function by expanding (13) and disregarding all but finster
terms ine,, ande,,:

P(yn) R P(sn—s) +en(y = 2lsn—s]’) —

Without loss of generality, consider a zero-forcing phafsed

= (6n+3n76)*(’)’_ |en+5n*5|2)- (13)

en(sn-s)”.  (14)

Table 2: EMSE Relative Performance Factéy; = K.

a,SJex|cma-

M-QAM_[[4] 16 | 64 [ 256 | 1024
Ko,Slo—o, || - | 38 [ 133]240] 323
Ko,Slgeaoe || - | 51.6] 372 24.0] 38.2

(B3) The PBE conditions (Al)-(A4) are satisfied to the extent
that the zero-forcing solution attains near-zero errer, i.
E{|sn—s —f5'r(n)|’} = 0.

(B4) The step-size is chosen small enough for the small-erro
approximation (14) to hold asymptotically.

Assumption (B2) is needed for the results of the quantinatimise
model in Section 4.1 to hold.

Using the properties of the trace operator, the indeperadenc
assumption (B1), and the definitio®(n) := E{f(n)f”(n)}
andR := J5 E{r(n)r” (n)}, itis straightforward to show that

Jex(n)

The quantization noise model of Section 4.1 and the error
function approximation (14) can be used to derive the falhgw
recursion forF'(n), valid for equalizer lengthd/y > 1.

F(n+1) F(n) + p(ks—2)os (F(n)R + RF(n))
+ 2p*a’olR. (16)

ol tr(RF(n)). (15)

Then, using (15) and (16), one can derive the following agppro
mation to the steady-state EMSE of DSE-CMA:

po? Ny o?

(N O P

(17

whereo? := E{|rc|*} andks := E{|sn|*}/os. The details of
the derivation of (15)—(17) follow the real-valued casedifsely.

Equation (17) can be compared to an analogous expression for
the EMSE of complex-valued CMA [4]:

2 () oo

~
~

Jex|cma

6 = 0. Then, in the absence of channel noise, the parameter errolt js apparent from (17) and (18) that the EMSE of CMA and DSE-

definitionf (n) := f(n) — 5 allows us to writee, = £ (n)r(n).
Since under the PBE assumptions and a reasonably smaBigtp-
we expect asymptotically smad),, (14) can be used to character-
ize the steady-state behavior of DSE-CMA.

5.2. The Excess M SE of DSE-CMA

EMSE at time index: is defined to be the expected squared error
above that achieved by the (local) zero-forcing solufignSince,
under satisfaction of the PBE conditioffig,achieves zero error,

Jex(m) )I*}-

We are interested in quantifying the steady-state EM&E::=
lim, o Jex(n). Our derivation assumes the following:

E{|r (n)f(n

(B1) The equalizer parameter error veci()n) is statistically in-
dependent of the equalizer inpt(n).

(B2) The dither amplitudex is chosen sufficiently greater than
azr SO thata > [1(y»)| for all y, under consideration.

CMA differ by the multiplicative factor

2

2a
Ka S

S [P (19)

via Jex = Ka,5Jeyemar NoOte the dependence on both the dither
amplitudea and the distribution ofs, }. Table 2 presents values
of K,,s for variousM-QAM sources and particular choicesd®f

6. SSIMULATION RESULTS

6.1. Excess M SE Under PBE Conditions

Table 3 presents simulation results verifying the apprexiom of

the excess MSE of DSE-CMA given in (17). The simulations were
conducted using length-64 MMSE approximations of threés@:o
less) SPIB microwave channeld;/2-spaced length-62 FSEs, and

3The Signal Processing Information Base microwave charetebdse
resides ahtt p: //spib.rice. edu/ spi b/ m crowave. htni .



Table 3:Jex Deviation from Predicted Level (17).

M-QAM 4 16 64 256

SPIB#2 || -0.76% | -0.81% | -1.06% | -1.62%
SPIB#3 || 0.33% | 0.47% | 0.10% | -0.04%
SPIB#4 || 0.24% | 0.60% | -0.47% | -1.16%

various i.i.d.M-QAM sources. This ensured that conditions (Al)-
(A4) were satisfied. The step-sizes were chosen so that (B4) w
satisfied, and the dither amplitude @f= 2.5 satisfied (B2). Ta-
ble 3 gives percentage deviations from the EMSE levels predii
by (17) which were obtained by averaging the results.bfx 108
iterations. Overall, the simulation results closely match).

6.2. Average Transient Behavior

Since we have emphasized the importance of performancazeval
tion in realistic (non-ideal) environments, we now preseebm-
parison of DSE-CMA to CMA in this context. Figure 4 shows
ensemble-averaged MSE trajectories of the two algorithpes-o
ated under identical conditions and initialized at the sdoce-
tions using various SPIB microwave channels. Noise levBIRS
= 40dB) and equalizer lengtiMy = 32) were selected to rep-
resent typical applications while providing open-eye perfance
(for a 16-QAM source) at convergence. The following “double
spike” [4] equalizer initialization was used in all simutats: taps
10 and 11 were set to 0.5 and all others were set to zero. Asravid
in Figure 4, the DSE-CMA trajectories track the CMA trajeats
closely until the effects of EMSE take over. Figure 4 alsogasgs
that the EMSE approximation in (17) remains a useful gundeli
even under typical violations of the PBE conditions.

T T
—_— DSE-CMA
CMA
- EMSE bound | 4

3
iterations < 10°

Figure 4: Averaged MSE trajectories for various SPIB chésine

7. CONCLUSIONS

This paper has derived the fundamental properties of thelsom
valued dithered signed-error constant modulus algoritinnrsum-
mary, we have found that, under proper selection of algmiith
design quantities, the expected transient behavior of B8R is
identical to that of CMA. Though the steady-state MSE of DSE-
CMA is larger than that of CMA, its value is well charactedze
and can be accounted for in the design procedure. Lackingespa

we refer the reader to [7] for advice on the selectionpf, i1, and
£(0); the guidelines mimic those of the real-valued case.

With the exception of computational complexity, the new al-
gorithm has been designed to mimic CMA, rather than “imptove
on its performance. Our primary motivation for this is twidfo
First, CMA is well-regarded by practitioners. It has esistid
itself over the last 20 years as the most popular practidgatibl
equalization algorithm, due in large part to its robustn@sper-
ties [3]. It is precisely these robustness properties whiethave
attempted to preserve. Secondly, CMA has been extensively a
alyzed by theoreticians [3]. The bulk of these analysesyagpl
rectly to DSE-CMA. As it is often the case that modificatioris o
classic algorithms have disadvantages that outweigh thygoged
advantages, the spirit of DSE-CMA is a computationally effic
algorithm that “leaves well enough alone.”

Finally, we mention a potentially useful modification to DSE
CMA. In the case of SE-LMS, the extension of the sign operator
to a multi-level quantizer has been shown to yield signifiqzer-
formance improvements at the expense of a modest increase in
computational complexity [9]. Perhaps multi-level quaation
would yield similar advantages for DSE-CMA, most importgnt
a reduction in EMSE.
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