Bounding Estimation Performance in Inverse Problems via Conformal Prediction

Phil Schniter

(Joint work with Jeffrey Wen and Rizwan Ahmad)

Supported in part by the NIH under grant R01-EB029957

Asilomar Conference on Signals, Systems, and Computers October 2025

Inverse problems

Inverse problems:

- lacksquare Unknown quantity $oldsymbol{x}_0 \in \mathbb{R}^d$
- Masked/noisy/distorted measurements $y = h(x_0)$
 - Communications examples: wireless device localization, CSI estimation, RF tomography
 - Imaging examples: MRI, CT, inpainting, deblurring, super-resolution, phase retrieval
- Estimate $\hat{x} = r(y)$

Challenge:

■ Typically ill-posed: many hypotheses of x_0 form good explanations of y

Subject of this talk:

- lacktriangle We want to quantify the uncertainty of the estimate \widehat{x}
- In particular, we want rigorous probabilistic bounds on the accuracy of \widehat{x}

Example: Wireless transmitter localization

- lacktriangle We'd like to estimate the 2D Tx location $oldsymbol{x}_0$ from a pilot signal and Rx array measurements $oldsymbol{y}$
- Ill-posed due to noise, multipath fading, array ambiguities, non-ideal antenna elements, etc
- The posterior $p(x_0|y)$ is shown on the right:
- For a user-chosen error-rate $\alpha \in (0,1)$ and arbitrary estimator $\widehat{\boldsymbol{x}} = \boldsymbol{r}(\boldsymbol{y})$, can we construct an upper bound $\beta(\boldsymbol{y})$ such that

$$\Pr\{\|\widehat{\boldsymbol{x}} - \boldsymbol{x}_0\| \le \beta(\boldsymbol{y})\} \ge 1 - \alpha ?$$

Beyond Point Estimates: Likelihood-Based Full-Posterior Wireless Localization

Haozhe Lei*¹, Hao Guo^{1,2}, Tommy Svensson², and Sundeep Rangan¹ arXiv:2509.25719

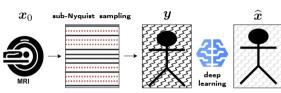


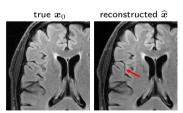
Example: Accelerated MRI

- lacksquare $oldsymbol{x}_0$ is the true image
- y are $\frac{1}{R}$ sub-Nyquist measurements
- $\widehat{x} = r(y)$ is the reconstructed image

Problem: modern recovery methods can hallucinate, i.e., generate clean but inaccurate \hat{x} . For example:¹







¹Muckley et al.'21

Probabilistic bounds on estimation accuracy

- lacktriangle We'd like to know the accuracy of $\widehat{m{x}}_0$ relative to the true $m{x}_0$
 - From now on, subscript "0" indicates "test" quantity vs calibration quantity
- \blacksquare To quantify accuracy, we'll use an arbitrary metric $\boxed{z_0 = m(\widehat{m{x}}_0, m{x}_0)}$, such as
 - $lacksquare m(\widehat{m{x}}_0, m{x}_0) = -\|\widehat{m{x}}_0 m{x}_0\|_p$ for wireless localization
 - $oldsymbol{m}(\widehat{oldsymbol{x}}_0,oldsymbol{x}_0) = ext{ PSNR or SSIM or LPIPS or DISTS for images}$
- lacksquare Is it possible to guarantee the accuracy of $\widehat{m{x}}_0$, i.e., construct a lower bound $\beta_0(m{y}_0)$ such that

$$\Pr\{Z_0 \ge \beta_0(\boldsymbol{Y}_0)\} \ge 1 - \alpha$$

for some chosen error rate α ? (Here, capital letters denote random variables)

What if we had a perfect posterior sampler?

lacksquare Suppose we had a perfect posterior sampler generating n_{post} independent samples $\{\widetilde{m{x}}_0^{(j)}\}_{j=1}^{n_{\mathsf{post}}}$

$$\{\widetilde{m{x}}_0^{(1)},\ldots,\widetilde{m{x}}_0^{(n_{\mathsf{post}})}\} \sim p_{m{X}_0\,|\,m{Y}_0}(\cdot\,|\,m{y}_0)$$

■ Define the corresponding accuracy samples $\widetilde{z}_0^{(j)} \triangleq m(\widehat{x}_0, \widetilde{x}_0^{(j)})$:

$$\{\widetilde{z}_0^{(1)},\ldots,\widetilde{z}_0^{(n_{\mathsf{post}})}\} \sim p_{Z_0\,|\,oldsymbol{Y}_0}(\cdot\,|\,oldsymbol{y}_0)$$

• We can construct a lower bound β_0 that obeys $\Pr\{Z_0 \geq \beta_0 \mid \boldsymbol{Y}_0 = \boldsymbol{y}_0\} = 1 - \alpha$ using an empirical quantile using asymptotically many samples:

$$\beta_0 = \lim_{n_{\mathsf{post}} \to \infty} \widehat{\beta}_{0,n_{\mathsf{post}}} \quad \mathsf{with} \quad \widehat{\beta}_{0,n_{\mathsf{post}}} \triangleq \mathrm{EmpQuant}(\alpha,\{\widetilde{z}_0^{(j)}\}_{j=1}^{n_{\mathsf{post}}})$$

Okay, but can we make this practical?

A useful tool: split conformal prediction

- Given an estimate \widehat{z}_0 of the true $z_0 \in \mathbb{R}$, split conformal prediction¹ can construct a set $\mathcal{C}_{\lambda}(\widehat{z}_0)$ that contains z_0 with high probability. Here, $|\mathcal{C}_{\lambda}(\cdot)|$ grows with $\lambda \in \mathbb{R}$
- Given a user-chosen error rate $\alpha \in (0,1)$, it computes a $\widehat{\lambda}_{\alpha} \in \mathbb{R}$ using calibration data $d_{\mathsf{cal}} = \{(z_i, \widehat{z}_i)\}_{i=1}^{n_{\mathsf{cal}}}$ of size n_{cal}
- The prediction set guarantees marginal coverage

$$\Pr\left\{Z_0 \in \mathcal{C}_{\widehat{\lambda}_{\alpha}(D_{\mathsf{cal}})}(\widehat{Z}_0)\right\} \ge 1 - \alpha$$

when the test & calibration pairs $\{(Z_0,\widehat{Z}_0),(Z_1,\widehat{Z}_1),\dots,(Z_{n_{\mathrm{cal}}},\widehat{Z}_{n_{\mathrm{cal}}})\}$ are statistically exchageable

¹Vovk, Gammerman, Shafer'05, ²Lei, G'Sell, Rinaldo, Tibshirani, Wasserman'18

Approximate posterior sampling & conformal prediction

Recall we want to lower-bound the accuracy $z_0=m(\widehat{m x}_0, {m x}_0)$ of estimate $\widehat{m x}_0={m r}({m y}_0)$ of unknown ${m x}_0$

- lacksquare Assume we have calibration samples $\{(m{x}_i,m{y}_i)\}_{i=1}^{n_{\mathrm{cal}}}$ in addition to the test measurments $m{y}_0$
- lacksquare Generate approximate posterior samples $\{\widetilde{m{x}}_i^{(j)}\}_{j=1}^{n_{\mathsf{post}}}$ from $m{y}_i$ for each $i=0,\dots,n_{\mathsf{cal}}$.
- lacksquare Compute the accuracy samples $\widetilde{z}_i^{(j)}=m(\widehat{m{x}}_i,\widetilde{m{x}}_i^{(j)})$ for all $i=0,\dots,n_{\sf cal}$ and $j=1,\dots,n_{\sf post}$
- Construct approximate bounds $\widehat{\beta}_i = \text{EmpQuant}\left(\alpha, \{\widetilde{z}_i^{(j)}\}_{j=1}^c\right)$ for $i = 0, \dots, n_{\mathsf{cal}}$
- Construct bound-violation scores $s_i = \widehat{\beta}_i z_i$ for $i = 1, \dots, n_{\mathsf{cal}}$ (positive when bound is violated)
- Compute the bound calibration term

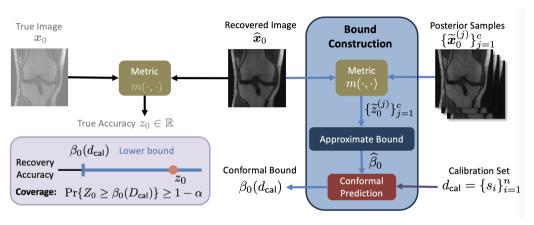
$$\widehat{\lambda}_{\alpha}(d_{\mathsf{cal}}) = \mathrm{EmpQuant}\,\big(\tfrac{\lceil (1-\alpha)(n_{\mathsf{cal}}+1)\rceil}{n_{\mathsf{cal}}}, \{s_i\}_{i=1}^{n_{\mathsf{cal}}}\big), \quad \mathsf{where}\,\, d_{\mathsf{cal}} \triangleq \{s_i\}_{i=1}^{n_{\mathsf{cal}}}$$

lacksquare Finally, form the lower-bound as $eta_0(m{y}_0,d_{\mathsf{cal}})=\widehat{eta}_0(m{y}_0)-\widehat{\lambda}_{lpha}(d_{\mathsf{cal}})$

If $\{S_0, S_1, \dots, S_n\}$ are statistically exchangeable, then we have the marginal coverage guarantee

$$\Pr\left\{Z_0 \ge \beta_0(\boldsymbol{Y}_0, D_{\mathsf{cal}})\right\} \ge 1 - \alpha$$

Illustration of lower-bound procedure (for accelerated MRI)



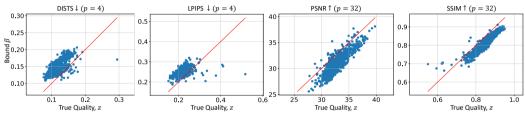
■ This bounding methodology¹ works with any estimation problem, estimator, accuracy metric, and approximate posterior sampler

Phil Schniter (Ohio State)

¹Wen, Ahmad, Schniter' 25a

Example: Bounding recovery accuracy in MRI

■ Scatter plots of (z_0, β_0) from fastMRI knee recovery @ acceleration R = 8 using a conditional normalizing flow¹:



The red line indicates where the bound would be exact

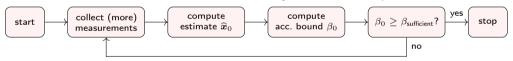
■ Validation of marginal coverage using $10\,000$ Monte-Carlo trials (each with a random 70% test / 30% calibration split):

target coverage $1-\alpha$	average empirical coverage
0.95	0.9504 ± 0.0001

¹Wen, Ahmad, S'23

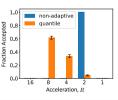
Leveraging the accuracy-bound for multi-round measurements

- lacksquare Often, the estimate \widehat{x}_0 can be improved by gathering more measurements y
 - wireless Tx localization: gather more pilot sequences
 - accelerated MRI: gather more k-space samples
- But often there's a cost to collecting more measurements
- Proposed idea: Collect measurements until the accuracy lower-bound surpasses a threshold



■ Applied to MRI with $1-\alpha = 0.95$:

method	avg acceleration	empirical coverage
single-round	2.000 ± 0.0000	0.9505 ± 0.0001
multi-round	5.422 ± 0.0001	0.9461 ± 0.0001



Back to wireless transmitter localization

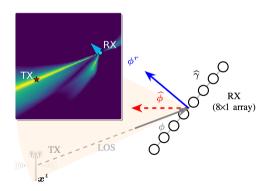
- Given the nature of the posterior, we may want to separately bound the angle and the radius
- This gives multiple accuracies to bound:

$$oldsymbol{z}_0 = egin{bmatrix} -ig| \angle(\widehat{oldsymbol{x}}_0) - \angle(oldsymbol{x}_0) ig| \ -ig| \|\widehat{oldsymbol{x}}_0\| - \|oldsymbol{x}_0\| \end{bmatrix} \in \mathbb{R}^2$$

and requires extending our conformal bounding method to multiple "targets"

Beyond Point Estimates: Likelihood-Based Full-Posterior Wireless Localization

Haozhe Lei*¹, Hao Guo^{1,2}, Tommy Svensson², and Sundeep Rangan¹ arXiv:2509.25719



Multi-target conformal prediction

- Say we have K>1 scalar accuracies $\{z_{0,k}\}_{k=1}^K$ and we want to lower-bound each of them
- Our goal is to compute bounds $\{\beta_{0,k}\}_{k=1}^K$ that guarantee joint marginal coverage:

$$\Pr\left\{\bigcap_{k=1}^{K} Z_{0,k} \ge \beta_{0,k}(\boldsymbol{Y}_0, D_{\mathsf{cal}})\right\} \ge 1 - \alpha,$$

which means that, with probability at least $1-\alpha$, all bounds are simultaneously valid

■ Several existing methods¹ accomplish this task, but they struggle with uniformity across targets: bounds for some targets are too loose while those for other targets are unnecessarily tight

¹Messoudi et al.'20, Sampson&Chan'24, Sun&Yu'24, Park&Cho'25

Proposed multi-target conformal prediction

■ Since looser bounds correspond to larger single-target coverages $\Pr\{Z_{0,k} \geq \beta_{0,k}\}$, we propose to solve

$$\mathop{\arg\min}_{(\beta_{0,1},...,\beta_{0,K})} \max_{k} \Pr\{Z_{0,k} \geq \beta_{0,k}\} \ \text{ s.t. } \Pr\left\{ \; \cap_{k=1}^{K} Z_{0,k} \geq \beta_{0,k} \right\} \geq 1 - \alpha$$

i.e., minimize the maximum single-target coverage subject to the joint-coverage constraint

lacksquare Forming the kth bound as $eta_{0,k}=\widehat{eta}_{0,k}(oldsymbol{y}_0)-\lambda_k$ and bound-violation score as $s_{0,k}=\widehat{eta}_{0,k}(oldsymbol{y}_0)-z_{0,k}$, we have

$$\Pr\{Z_{0,k} \ge \beta_{0,k}\} = \Pr\{S_{0,k} \le \lambda_k\} = F_{S_{0,k}}(\lambda_k) \text{ with CDF } F_{S_{0,k}}(\cdot)$$

$$\{C_{0,k} \le \beta_{0,k}\} = \Pr\{C_{0,k} \le \lambda_k\} = \Pr\{C_{0,k} \le \lambda$$

&
$$\Pr\left\{ \cap_{k=1}^K Z_{0,k} \ge \beta_{0,k} \right\} = \Pr\left\{ \cap_{k=1}^K S_{0,k} \le \lambda_k \right\} = \Pr\left\{ \cap_{k=1}^K F_{S_{0,k}}(S_{0,k}) \le F_{S_{0,k}}(\lambda_k) \right\}$$

■ Thus the minimax design problem can be rephrased as

$$\begin{split} & \min_{(\lambda_1, \dots, \lambda_K)} \max_k F_{S_{0,k}}(\lambda_k) \quad \text{s.t. } \Pr\left\{ \; \cap_{k=1}^K \, F_{S_{0,k}}(S_{0,k}) \leq F_{S_{0,k}}(\lambda_k) \right\} \geq 1 - \alpha \\ \Leftrightarrow & \min_{(\zeta_1, \dots, \zeta_K)} \max_k \zeta_k \quad \text{s.t. } \Pr\left\{ \; \cap_{k=1}^K \, F_{S_{0,k}}(S_{0,k}) \leq \zeta_k \right\} \geq 1 - \alpha \quad \text{via } \zeta_k \triangleq F_{S_{0,k}}(\lambda_k) \\ \Leftrightarrow & \min_k \; \zeta \quad \text{s.t. } \Pr\left\{ \; \cap_{k=1}^K \, F_{S_{0,k}}(S_{0,k}) \leq \zeta \right\} \geq 1 - \alpha \quad \text{via } \zeta \triangleq \max_k \zeta_k \end{split}$$

Proposed multi-target conformal prediction (cont.)

- If we knew the joint statistics of the bound violation scores $S_0 \triangleq [S_{0,1},\dots,S_{0,K}]$, we could solve for $\zeta_* = \arg\min_{\zeta} \ \zeta \ \text{ s.t. } \Pr \big\{ \cap_{k=1}^K F_{S_{0,k}}(S_{0,k}) \leq \zeta \big\} \geq 1 \alpha$ and then form the kth bound as $\beta_{0,k} = \widehat{\beta}_{0,k}(\boldsymbol{y}_0) \lambda_k$ with $\lambda_k = F_{S_{0,k}}^{-1}(\zeta_*)$
- But we don't know the statistics of S_0 . So we propose to compute an empirical CDF $\widehat{F}_{S_k}(\cdot)$ using a tuning set $d_{\mathsf{tune},k} = \{s_{i,k}\}_{i=n_{-i}+1}^{n_{\mathsf{cal}}+n_{\mathsf{tune}}}$ of size n_{tune}
- Next we compute transformed calibration scores $u_{i,k} \triangleq \widehat{F}_{S_k}(s_{i,k})$ from $d_{\mathsf{cal},k} = \{s_{i,k}\}_{i=1}^{n_{\mathsf{cal}}}$, and then $\widehat{\zeta}(d_{\mathsf{cal}}) = \mathrm{EmpQuant}\left(\frac{\lceil (1-\alpha)(n_{\mathsf{cal}}+1)\rceil}{n_{\mathsf{cal}}}; \{u_i\}_{i=1}^{n_{\mathsf{cal}}}\right)$ with $u_i \triangleq \max_{i,k} u_{i,k}$,
 - and finally set the kth bound as $\beta_{0,k}=\widehat{\beta}_{0,k}(\boldsymbol{y}_0)-\widehat{\lambda}_k$ with $\widehat{\lambda}_k=\widehat{F}_{S\iota}^{-1}(\widehat{\zeta}(d_{\mathrm{cal}}))$

Proposed multi-target conformal prediction (cont.)

We prove¹ the following about our proposed scheme:

■ For any chosen error-rate $\alpha \in (0,1)$, it guarantees joint marginal coverage, i.e.,

$$\Pr\left\{\bigcap_{k=1}^{K} Z_{0,k} \geq \beta_{0,k}(\boldsymbol{Y}_0, D_{\mathsf{cal}})\right\} \geq 1 - \alpha,$$

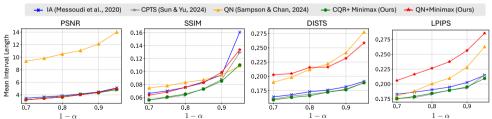
as long as $\{m{S}_0, m{S}_1, \dots, m{S}_{n_{\mathrm{cal}}}\}$ are statistically exchangeable

■ It is asymptotically minimax in that

$$\widehat{\zeta}(d_{\mathsf{cal}}) \xrightarrow{a.s.} \zeta_*$$
 as $n_{\mathsf{cal}}, n_{\mathsf{tune}} o \infty$

Bounding multiple accuracy metrics in accelerated MRI

- Say we want to guarantee the performance of accelerated MRI simultaneously in PSNR, SSIM, LPIPS, and DISTS metrics (i.e., K=4 targets)
- Among existing methods that guarantee joint marginal coverage, ours (green) provides tighter bounds across k:



Conclusion

- Due to the ill-posedness of many inverse problems, there's a need to bound estimator accuracy
- By combining approximate posterior sampling with conformal prediction, we proposed accuracy lower-bounds $\beta(\cdot)$ with probabilistic guarantees of the form

$$\Pr\left\{m(\widehat{\boldsymbol{x}}, \boldsymbol{x}_0) \leq \beta(\boldsymbol{y}, d_{\mathsf{cal}}, \alpha)\right\} \geq 1 - \alpha$$

that allow arbitrary estimators $r(\cdot)$, accuracy metrics $m(\cdot)$, and error-rates $\alpha \in (0,1)$, assuming exchangeabile test & calibration scores

 Although our prior work focused on MRI imaging, the techniques are directly applicable to communications problems like wireless device localization, CSI estimation, and RF tomography

