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Inverse problems

Inverse problems:
m Unknown quantity =, € R?
m Masked/noisy/distorted measurements y = h(xg)
m Communications examples: wireless device localization, CSI estimation, RF tomography

m Imaging examples: MRI, CT, inpainting, deblurring, super-resolution, phase retrieval
m Estimate & = r(y)

Challenge:

m Typically ill-posed: many hypotheses of x form good explanations of y

Subject of this talk:

m We want to quantify the uncertainty of the estimate &

m In particular, we want rigorous probabilistic bounds on the accuracy of &

Phil Schniter (Ohio State) Conformal Prediction for Inverse Problems

Asilomar'25 2/18



Example: Wireless transmitter localization

Beyond Point Estimates: Likelihood-Based
m We'd like to estimate the 2D Tx location @ from Full-Posterior Wireless Localization

a p||0t signal and RX array measurements Yy Haozhe Lei*', Hao Guo'?2, Tommy Svensson?, and Sundeep Rangan'
arXiv:2509.25719

m lll-posed due to noise, multipath fading, array
ambiguities, non-ideal antenna elements, etc

m The posterior p(xo|y) is shown on the right:

m For a user-chosen error-rate o € (0,1) and
arbitrary estimator & = r(y), can we construct
an upper bound S(y) such that

Pr{|2 -z <B(y)} >1-a?
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Example: Accelerated MR

m x is the true image

) sub-Nyquist sampling y a
1 .
m y are 1; sub-Nyquist measurements é
~ . . ™ oo deey
m & = r(y) is the reconstructed image MRI 5] learning

true xg reconstructed reconstructed

Problem: modern recovery
methods can hallucinate,
i.e., generate clean but in-
accurate . For example:?

1Muckley et al.’21
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Probabilistic bounds on estimation accuracy

m We'd like to know the accuracy of & relative to the true x
m From now on, subscript “0" indicates “test” quantity vs calibration quantity

m To quantify accuracy, we'll use an arbitrary metric ‘ z0 = m(Zo, xo) ‘ such as

m m(Zo, o) = —||To — @o|[p for wireless localization
m m(Zo, o) = PSNR or SSIM or LPIPS or DISTS for images

m Is it possible to guarantee the accuracy of &y, i.e., construct a lower bound | 3y (y,) | such that
PI‘{ZO Z 50(Y0)} Z 1 —

for some chosen error rate a? (Here, capital letters denote random variables)
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What if we had a perfect posterior sampler?

m Suppose we had a perfect posterior sampler generating np0s: independent samples {5éj)}?§i‘
-~ 1 -~ ost
{$(() )7' . . ’m(()’ﬂp )} NpXO\Yo(' |y0)
m Define the corresponding accuracy samples Ef)j) £ m(Zo, iéj)):

1 Mpost
(2,2 ~ 2y v (1 9o)

m We can construct a lower bound 8y that obeys Pr{Z; > 5y |Yo=vy,} = 1 — « using an empirical
quantile using asymptotically many samples:
Bo= lm By, Wwith Bon.. £ EmpQuant(a, {Eé])}?z’i‘)

Npost —> OO

m Okay, but can we make this practical?
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A useful tool: split conformal prediction

m Given an estimate 2 of the true zg € R, split conformal prediction® can construct a set Cy(Zp) that
contains zo with high probability. Here, |Cy(-)| grows with A € R

m Given a user-chosen error rate o € (0,1), it computes a A, € R using calibration data
deal = {(Zu %\7,) zn;all of size neal

m The prediction set guarantees marginal coverage

Pr{Zy € Cs p)(Z0)} = 1-a

when the test & calibration pairs {(Zo, Zo), (Z1, Z1), -, (Zn.,, Zn.,)} are statistically exchageable

1Vovk,Gammerman,Shal"er'O5, 2| ei,G'Sell,Rinaldo, Tibshirani,Wasserman'18
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Approximate posterior sampling & conformal prediction

Recall we want to lower-bound the accuracy zy = m(Zg, o) of estimate Zo = 7(y,) of unknown x

Thcal

m Assume we have calibration samples {(x;,y;)};< in addition to the test measurments y,

(J)}

TMpost
m Generate approximate posterior samples {Z 1 from y, for each i =0, ..., ncal.

m Compute the accuracy samples z; 70

= m(;, ac )forallz:O yMcal and § =1,..., Npost
m Construct approximate bounds 3; = EmpQuant (o { } ) fori=0,...,Ncal

Construct bound-violation scores s; = @ —z; fori=1,...,ncy (positive when bound is violated)

Compute the bound calibration term

Xa(dcal) = EmpQuant (f(l @) (neat1)] s ’I’Lcal) where dgy £ {s;}7

Neal
m Finally, form the lower-bound as Sy(yg, deal) = 5O(y0) Xa(dm)
If {So,S1,...,S,} are statistically exchangeable, then we have the marginal coverage guarantee
Pr{Zy > o(Yo,Deal) } > 1 — «x
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lllustration of lower-bound procedure (for accelerated MRI)

True Image
Zo

True Accuracy 29 € R

ﬁo (dca|) Lower bound
Recovery a

-
Accuracy L] 20

Coverage: Pr{Zp > fo(Dea)} 21—«

Recovered Image
Zo

(" Bound )

Construction

Posteri(qr) Samples
~»Ue
{Z"}5-1

Conformal Bound

ﬁo(dcal) D

Calibration Set

— deal = {8i}ie1

Conformal

Prediction

m This bounding methodology® works with any estimation problem, estimator, accuracy metric, and

approximate posterior sampler

1Wen,Ahmad,Schniter'25a
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Example: Bounding recovery accuracy in MRI

m Scatter plots of (zg, 8y) from fastMRI knee recovery @ acceleration R = 8 using a conditional
normalizing flow!:

DISTS ! (p = 4) LPIPS L (p = 4) PSNRT (p = 32) SSIMT (p = 32)
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The red line indicates where the bound would be exact

m Validation of marginal coverage using 10000 Monte-Carlo trials (each with a random 70% test / 30%
calibration split):

target coverage 1 — « | average empirical coverage
0.95 0.9504 + 0.0001

1Wen,Ahmad,5'23
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|
Leveraging the accuracy-bound for multi-round measurements

m Often, the estimate T can be improved by gathering more measurements y
m wireless Tx localization: gather more pilot sequences
m accelerated MRI: gather more k-space samples

m But often there's a cost to collecting more measurements

m Proposed idea: Collect measurements until the accuracy lower-bound surpasses a threshold

collect (more) compute compute yes
i z 2 icient 7 sto|
[ start H measurements estimate g acc. bound g Bo = Beufficient p
no

= non-adaptive
08 quantile

m App“ed to MRI with 1—a = 0.95: method avg acceleration  empirical coverage
single-round | 2.000 £ 0.0000 0.9505 £ 0.0001

multi-round | 5.422 £ 0.0001 0.9461 £ 0.0001

0.6 I

Fraction Accepted

16 8 4 2 1
Acceleration, R
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Back to wireless transmitter localization

Beyond Point Estimates: Likelihood-Based
Full-Posterior Wireless Localization
m Given the nature of the posterior, we may want Haorhe Lei®, Hao Guo', Tommy Svensson?, and Sundecp Rangn'
to separately bound the angle and the radius arXiv:2509.25719

m This gives multiple accuracies to bound:
—M(EO) — 4(3:0)’

2 R2
—[[|@oll — llwoll] |

zo = O
Y O
O rx

O (81 array)

)

and requires extending our conformal bounding
method to multiple “targets”
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Multi-target conformal prediction

m Say we have K > 1 scalar accuracies {2}, and we want to lower-bound each of them

m Our goal is to compute bounds {8y ; }&_, that guarantee joint marginal coverage:

K
Pr{ () Zox > Bo,k(Ychal)} >1-aq,
k=1

which means that, with probability at least 1—q, all bounds are simultaneously valid

m Several existing methods! accomplish this task, but they struggle with uniformity across targets:
bounds for some targets are too loose while those for other targets are unnecessarily tight

IMessoudi et al.’20, Sampson&Chan’'24,  Sun&Yu'24, Park&Cho'25
Conformal Prediction for Inverse Problems Asilomar’'25 13 /18



Proposed multi-target conformal prediction

m Since looser bounds correspond to larger single-target coverages Pr{Zy r > Lok}, we propose to solve

argmin  maxPr{Zox > Box} st Pr{ ﬂle Zok > ﬁoyk} >1—-«
(Bo,1,--B0,) F
i.e., minimize the maximum single-target coverage subject to the joint-coverage constraint

m Forming the kth bound as Bo,x = Bo,k(yo) — Ax and bound-violation score as sg x = Eo,k(yo) — 20,5, We have
PI‘{Z()’]c > BO,k} = PI‘{S’O,]C < )\k} = Fso,k(Ak) with CDF Fsok()
& Pr{ Nie1 Zo > Bok} =Pr{ Nrey Sok < A} =Pr{ Ni—1 Fs,,.(Sok) < Fsy o (Ak)}

m Thus the minimax design problem can be rephrased as
min max Fs, , (Ax) s.t. Pr{ Ni—y Fs,  (Sok) < Fs, L) >1-a
(Moori) K ; , ,
= miré )m}?xck s.t. Pr{ ﬁi(:l Fsoyk(Sch) < Ck} >l—a viaG = FSo,k()‘k)
& mCin ¢ s.t. Pr{ Ne_, Fsy 1, (Sox) < C} >1l—a viac2 mgxgk

Phil Schniter (Ohio State) Conformal Prediction for Inverse Problems Asilomar'25 14 /18



Proposed multi-target conformal prediction (cont.)

m If we knew the joint statistics of the bound violation scores Sy = [So.15---,50,K], we could solve for

(e = argmcin ¢ st Pr{ ne_, Fs,,,(Sox) < C} >1—«

and then form the kth bound as g, = Bo,k(’yo) — A\ with A\, = Fgolk(c*)

m But we don't know the statistics of Sy. So we propose to compute an empirical CDF ﬁsk() using a

tuning set dynekx = {si’k}?;ﬂi:ﬂe of size Nune

m Next we compute transformed calibration scores u; = Fs, (six) from dearr = {s:.1}1<}, and then

((dcat) = EmpQuant (w7 {ui}p=) with u; £ MAX Ui,

Tcal

~

and finally set the kth bound as 8y ; = Bo7k(yo) — X with A, = ﬁs_kl(é(dca|))
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Proposed multi-target conformal prediction (cont.)

We prove! the following about our proposed scheme:
m For any chosen error-rate « € (0, 1), it guarantees joint marginal coverage, i.e.,

K
Pr{ () Zox > Bo,k(Ychal)} >1-aq,
k=1

as long as {Sq, S1,...,Sn,} are statistically exchangeable

m It is asymptotically minimax in that

C(dcal) L2y C* as Ncal, Ntune —7 OO

1Wen,Ahmad,Schniter'25b
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Bounding multiple accuracy metrics in accelerated MRI

m Say we want to guarantee the performance of accelerated MRI simultaneously in PSNR, SSIM, LPIPS,
and DISTS metrics (i.e., K = 4 targets)

m Among existing methods that guarantee joint marginal coverage, ours (green) provides tighter bounds

across k:
—% |A (Messoudietal., 2020) - CPTS (Sun & Yu, 2024) QN (Sampson & Chan, 2024) —e— CQR+ Minimax (Ours) % QN+Minimax (Ours)
PSNR SSIM DISTS LPIPS
14 0.16 0.275
£ 0.275
g 12 0.14 0.250
0.250
Z 10
T 0.12 0235
g 8 0.10 0.225
= 0.200
s 6 0.08 0200
3 0.175 —
=4 M 0.06 0.175] 86—
0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9
l-a l-a 1-a 11—«
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Conclusion

m Due to the ill-posedness of many inverse problems, there's a need to bound estimator accuracy

m By combining approximate posterior sampling with conformal prediction, we proposed accuracy
lower-bounds /(+) with probabilistic guarantees of the form

Pr {m(ﬁamo) < 5(yadcalaa)} >1-a

that allow arbitrary estimators (-), accuracy metrics m(-), and error-rates o € (0, 1), assuming
exchangeabile test & calibration scores

m Although our prior work focused on MRI imaging, the techniques are E E
directly applicable to communications problems like wireless device . -
localization, CSI estimation, and RF tomography
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