pcaGAN: Improving posterior-sampling cGANs via principal component regularization

Matthew Bendel*, Rizwan Ahmad[‡], and Philip Schniter*

*Dept. ECE, The Ohio State University, {bendel.8,schniter.1}@osu.edu

[‡]Dept. BME, The Ohio State University, ahmad.46@osu.edu

Supported in part by the NIH under grant R01-EB029957

Asilomar Conference on Signals, Systems, and Computers October 2024

Motivation: Imaging inverse problems

Goal: Recover image x from measurements $y = \mathcal{M}(x)$:

- \blacksquare $\mathcal{M}(\cdot)$ masks, distorts, and/or corrupts x with noise.
- Applications: inpainting, super-resolution, deblurring, computed tomography, magnetic resonance imaging (MRI), etc.
- lacktriangle Solution typically posed as point estimation: find the single "best" \widehat{x}

Challenges with point-estimation:

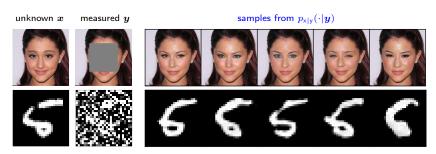
- Doesn't provide uncertainty quantification
- Doesn't navigate the perception-distortion tradeoff¹

$$\text{Solution: Sample from posterior distribution } p_{\textbf{x}|\textbf{y}}(\boldsymbol{x}|\boldsymbol{y}) = \frac{p_{\textbf{y}|\textbf{x}}(\boldsymbol{y}|\boldsymbol{x})p_{\textbf{x}}(\boldsymbol{x})}{\int p_{\textbf{y}|\textbf{x}}(\boldsymbol{y}|\boldsymbol{x})p_{\textbf{x}}(\boldsymbol{x})\,\mathrm{d}\boldsymbol{x}}$$

¹Blau.Michaeli'18

Posterior sampling

The posterior distribution $p_{\mathbf{x}|\mathbf{y}}(\cdot|\mathbf{y})$ represents all knowledge about the image \mathbf{x} given the corrupted measurements \mathbf{y}



Typical posterior-sampling methods in imaging:

- cVAEs. cNFs. cGANs: Fast but inaccurate?
- Diffusion methods: Slow but accurate?

Our approach

We build on rcGAN¹, a type of Wasserstein cGAN:

- Generator G_{θ} : outputs $\widehat{m{x}}_i = G_{m{\theta}}(m{z}_i, m{y})$ for code realization $m{z}_i \sim \mathcal{N}(\mathbf{0}, m{I})$
- Discriminator D_{ϕ} : aims to distinguish true (x,y) from fake (\widehat{x}_i,y)
- Training:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left\{ \mathbb{E}_{\mathbf{x},\mathbf{z},\mathbf{y}} \{ D_{\boldsymbol{\phi}}(\boldsymbol{x},\boldsymbol{y}) - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\boldsymbol{z},\boldsymbol{y}),\boldsymbol{y}) \} + \mathcal{R}(\boldsymbol{\theta}) - \mathcal{L}_{\mathsf{gp}}(\boldsymbol{\phi}) \right\}$$

■ rcGAN's regularization $\mathcal{R}(\theta)$ rewards correctness in conditional mean and conditional trace-covariance

Contributions:

- A new $\mathcal{R}(\theta)$ that **also** enforces correctness in the K principal components of the conditional covariance matrix
- We call our approach pcaGAN

¹Bendel, Ahmad, Schniter'22

Background on rcGAN

rcGAN¹ regularizes using an L1 penalty and a standard-deviation reward:

$$\mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) \triangleq \underbrace{\mathbb{E}_{\mathsf{x},\mathsf{z}_{1},...,\mathsf{z}_{\mathsf{P}},\mathsf{y}} \left\{ \|\boldsymbol{x} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{1,P}(\boldsymbol{\theta})} - \beta_{\mathsf{std}} \underbrace{\sum_{i=1}^{P} \mathbb{E}_{\mathsf{z}_{1},...,\mathsf{z}_{\mathsf{P}},\mathsf{y}} \left\{ \|\widehat{\boldsymbol{x}}_{i} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{\mathsf{std},P}(\boldsymbol{\theta})}$$

where $\hat{x}_{(P)} \triangleq \frac{1}{P} \sum_{i=1}^{P} \hat{x}_i$ is the average of P posterior samples.

Key points:

- lacksquare $eta_{
 m std}$ controls diversity, and is optimized during training
- Can prove¹ $\mathcal{R}_{rc}(\theta)$ yields $\mathbb{E}\{\hat{x}_i|y\} = \mathbb{E}\{x|y\}$ and $\operatorname{tr}\operatorname{Cov}\{\hat{x}_i|y\} = \operatorname{tr}\operatorname{Cov}\{x|y\}$ with Gaussian p(x|y)
- lacksquare Can prove 1 $\mathcal{R}(m{ heta}) = \mathcal{L}_{2,P}(m{ heta}) eta_{\mathsf{var}} \mathcal{L}_{\mathsf{var},P}(m{ heta})$ does not, for any eta_{var}

¹Bendel.Ahmad.Schniter'22

The proposed pcaGAN

Goal: Ensure that $\widehat{\boldsymbol{v}}_k = \boldsymbol{v}_k$ and $\widehat{\lambda}_k = \lambda_k$ for $k = 1, \dots, K$

- $\{(\widehat{m{v}}_k,\widehat{\lambda}_k)\}_{k=1}^K$ are the principal evecs/evals of $\mathrm{Cov}\{\widehat{m{x}}_i|m{y}\}$
- $lackbox{0.5}\{(oldsymbol{v}_k,\lambda_k)\}_{k=1}^K$ are the principal evecs/evals of $\mathrm{Cov}\{oldsymbol{x}|oldsymbol{y}\}$
- $lue{K}$ is user-specified

We propose

$$\mathcal{R}_{\mathsf{pca}}(\boldsymbol{\theta}) \triangleq \mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{evec}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{eval}}(\boldsymbol{\theta}),$$

where

$$\begin{split} & \mathcal{L}_{\text{evel}}(\boldsymbol{\theta}) \triangleq - \operatorname{\mathbb{E}_{y}} \left\{ \operatorname{\mathbb{E}_{x, \mathbf{z}_{1}, \dots, \mathbf{z}_{\text{P}} \mid \mathbf{y}}} \left\{ \operatorname{\sum}_{k=1}^{K} [\widehat{\boldsymbol{v}}_{k}(\boldsymbol{\theta})^{\mathsf{T}} (\boldsymbol{x} - \boldsymbol{\mu}_{\mathbf{x} \mid \mathbf{y}})]^{2} \middle| \boldsymbol{y} \right\} \right\} \\ & \mathcal{L}_{\text{eval}}(\boldsymbol{\theta}) \triangleq \operatorname{\mathbb{E}_{y}} \left\{ \operatorname{\mathbb{E}_{x, \mathbf{z}_{1}, \dots, \mathbf{z}_{\text{P}} \mid \mathbf{y}}} \left\{ \operatorname{\sum}_{k=1}^{K} \left(1 - \lambda_{k} / \widehat{\lambda}_{k}(\boldsymbol{\theta})\right)^{2} \middle| \boldsymbol{y} \right\} \right\} \end{split}$$

and

we approximate the unknown $\{(m{v}_k, \lambda_k)\}_{k=1}^K$ and $m{\mu}_{\mathsf{x}|\mathsf{y}} \triangleq \mathbb{E}\{m{x}|m{y}\}$

Understanding pcaGAN

Eigenvector regularization:

$$\textstyle \mathcal{L}_{\text{evec}}(\boldsymbol{\theta}) = - \operatorname{\mathbb{E}_{y}} \left\{ \operatorname{\mathbb{E}_{x, \mathbf{z}_{1}, \dots, \mathbf{z}_{\text{P}} \mid \mathbf{y}}} \left\{ \sum_{k=1}^{K} [\widehat{\boldsymbol{v}}_{k}^{\mathsf{T}}(\boldsymbol{x} - \boldsymbol{\mu}_{\mathbf{x} \mid \mathbf{y}})]^{2} \middle| \boldsymbol{y} \right\} \right\}$$

- \blacksquare If $\pmb{\mu}_{\mathsf{x}|\mathsf{y}} = \mathbb{E}\{\pmb{x}|\pmb{y}\}$ was known, minimizing over $\pmb{ heta}$ would force $\{\widehat{\pmb{v}}_k = \pmb{v}_k\}_{k=1}^K$
- lacktriangle We set $\mu_{ exttt{x|y}}pprox\widehat{\mu_{ exttt{x|y}}}= exttt{StopGrad}(\widehat{m{x}}_{(P_{ exttt{pca}})})$ after $\widehat{m{x}}_{(P_{ exttt{pca}})}$ stabilizes
- \blacksquare We compute $\{\widehat{v}_k\}_{k=1}^K$ using an SVD of $\{\widehat{x}_i\}_{i=1}^{P_{\rm pca}},$ where $P_{\rm pca}\approx 10K$

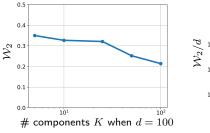
Eigenvalue regularization:

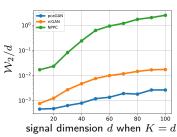
$$\mathcal{L}_{\mathsf{eval}}(oldsymbol{ heta}) = \mathbb{E}_{\mathsf{y}}\left\{\left.\mathbb{E}_{\mathsf{x},\mathsf{z}_1,\dots,\mathsf{z}_{\mathsf{P}}|\mathsf{y}}\left\{\left.\sum_{k=1}^{K}\left(1-\lambda_k/\widehat{\lambda}_k\right)^2\middle|oldsymbol{y}
ight.
ight\}
ight\}$$

- \blacksquare If λ_k was known, minimizing over $m{ heta}$ would force $\{\widehat{\lambda}_k = \lambda_k\}_{k=1}^K$
- We set $\lambda_k \approx \mathtt{StopGrad}(\frac{1}{P_{\mathsf{pca}}+1} \big\| \widehat{\boldsymbol{v}}_k^\mathsf{T} \big[\boldsymbol{x} \widehat{\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}}}, \widehat{\boldsymbol{x}}_1 \widehat{\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}}}, \dots, \widehat{\boldsymbol{x}}_{P_{\mathsf{pca}}} \widehat{\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}}} \big] \big\|_2^2)$ after $\{\widehat{\boldsymbol{v}}_k\}$ stabilize, which is correct in expectation when $\widehat{\boldsymbol{v}}_k$ and $\widehat{\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}}}$ are correct
- We compute $\{\widehat{\lambda}_k\}_{k=1}^K$ using the same SVD as above

Gaussian toy experiments

- Here we recover $x \sim \mathcal{N}(\mu_{\mathsf{x}}, \Sigma_{\mathsf{x}})$ from y = Ax + w with inpainting $A \in \mathbb{R}^{\frac{d}{2} \times d}$ and $w \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$. Both μ_{x} and Σ_{x} are random
- Performance measured via Wasserstein-2 distance $W_2(p_{x|y}, p_{\widehat{x}|y})$





- $lackbox{}{}$ \mathcal{W}_2 decreases with K, and pcaGAN beats both rcGAN and NPPC 1 in \mathcal{W}_2
 - lacktriangle NPPC trains a neural net to directly estimate $\{(\lambda_k, oldsymbol{v}_k)\}_{k=1}^K$ from $oldsymbol{y}$

MNIST denoising experiments

We recovered MNIST digits $m{x}$ from measurements $m{y} = m{x} + m{w}$ with $m{w} \sim \mathcal{N}(m{0}, m{I})$

■ We measured by rMSE, residual error magnitude (REM) at K=5:

$$\mathsf{REM}_5 \triangleq \mathbb{E}_{\mathsf{x},\mathsf{y}}\left\{\|(\boldsymbol{I} - \widehat{\boldsymbol{V}}_5 \widehat{\boldsymbol{V}}_5^\mathsf{T})(\boldsymbol{x} - \widehat{\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}}})\|_2\right\} \text{ where } \widehat{\boldsymbol{V}}_5 \triangleq [\widehat{\boldsymbol{v}}_1, \dots, \widehat{\boldsymbol{v}}_5]$$

- We also measured Conditional FID (CFID)¹, which is similar to FID but measures the discrepancy between $p_{\widehat{x}|y}$ and $p_{x|y}$ (not between $p_{\widehat{x}}$ and p_x)
- Results (128 test images):

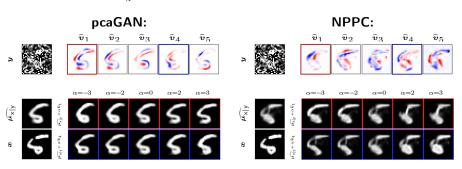
Model	rMSE↓	$REM_5\!\downarrow$	CFID↓	Time (128 samples) \downarrow
NPPC $(K=5)$	3.94	3.63	_	112 ms
rcGAN	4.04	3.41	63.44	<u>118</u> ms
pcaGAN (ours, $K=5$)	<u>4.02</u>	3.31	61.48	<u>118</u> ms

pcaGAN wins in both REM and CFID (note NPPC is not generative)

¹Soloveitchik'21

MNIST: visualizing the principal uncertainty components

- \blacksquare Principal eigenvectors $\{\boldsymbol{v}_k\}_{k=1}^K$ are shown below for K=5
- Also shown are $\widehat{\mu_{\mathsf{x}|\mathsf{v}}} \pm \alpha \widehat{\pmb{v}}_k$ for $k \in \{1,4\}$ and $\alpha \in \{-3,-2,0,2,3\}$



pcaGAN's eigenvectors show much more meaningful structure

Large-scale image completion/inpainting

We inpainted large random masks on 256x256 FFHQ face images

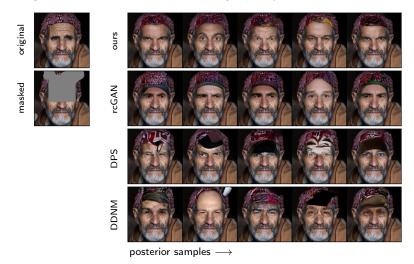
Results (20k test images):

Model	CFID↓	FID↓	LPIPS↓	Time (40 samples)↓
DPS ¹ (1000 NFEs)	7.26	2.00	0.1245	14 min
DDNM ² (100 NFEs)	11.30	3.63	0.1409	30 s
DDRM ³ (20 NFEs)	13.17	5.36	0.1587	5 s
pscGAN ⁴	18.44	8.40	0.1716	325 ms
CoModGAN ⁵	7.85	2.23	0.1290	325 ms
rcGAN	7.51	2.12	0.1262	325 ms
pcaGAN (ours, $K=2$)	7.08	1.98	0.1230	325 ms

- pcaGAN outperformed all diffusion and cGAN competitors!
- cGANs are 15x to 2500x faster than the diffusion methods

Example FFHQ inpainting

pcaGAN generates samples that are both high quality and diverse



Results on accelerated MR image recovery

We reconstructed multicoil fastMRI¹ T2 brain images at acceleration R=8

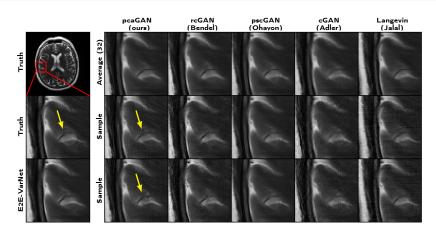
Results (74 test images):

Model	CFID↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	DISTS↓	Time (4 samples)↓
E2E-VarNet ²	36.86	44.04	36.49	0.9220	0.0575	0.1253	316ms
Langevin (Jalal ³)	48.59	52.62	33.90	0.9137	0.0579	0.1086	14 min
cGAN (Adler ⁴)	59.94	31.81	33.51	0.9111	0.0614	0.1252	217 ms
pscGAN	39.67	43.39	34.92	0.9222	0.0532	0.1128	217 ms
rcGAN	24.04	28.43	35.42	0.9257	0.0379	0.0877	217 ms
$pcaGAN \; (ours, K = 1)$	21.65	28.35	<u>35.94</u>	0.9283	0.0344	0.0799	217 ms

- pcaGAN won in all metrics but PSNR!
- The cGANs generated samples 3800x faster than the Langevin method
- \blacksquare Note: PSNR, SSIM, LPIPS, DISTS computed using $\widehat{\boldsymbol{x}}_{(P)}$ for the optimal P

¹Zbontar et al'18, ²Sriram et al'19, ³Jalal et al'21, ⁴Adler,Öktem'18

Example MRI recoveries



- posterior samples from pcaGAN show meaningful variations (see arrows)
- posterior samples from pscGAN show no variation
- posterior samples from cGAN (Adler) and Langevin (Jalal) show unwanted artifacts

Summary

Goal:

■ Fast and accurate posterior sampling for imaging inverse problems

Contribution:

lacktriangle A cGAN with a regularization that encourages correctness in the y-conditional mean, trace-covariance, and K principal covariance components

Experimental results

- Considered MNIST denoising, FFHQ inpainting, and multicoil MRI
- Outperforms existing cGANs and diffusion methods (DPS, DDRM, DDNM, Langevin) in PSNR, SSIM, LPIPS, DISTS, FID, and CFID
- Runs 10x to 4000x faster than diffusion methods
- Outperforms NNPC (direct estimation of principal covariance components)