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The linear inverse problem

Goal: Recover an unknown signal x0 ∈ CN from noisy measurements
y ∈ CM of the form

y = Ax0 +w, with

{
A : linear measurement operator

w : AWGN with precision γw

Typical methodologies:

Optimization based algorithms

Simple and robust, but not state-of-the-art in accuracy

Deep networks that recover x from y

Accurate but may not generalize well to a different A

Plug-and-play algorithms that call deep denoisers

Accurate and handles any A, but its performance can be improved!
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Optimization-based recovery

The classical approach to recovering x0 is through optimization:

x̂ = argmin
x

{
g1(x) + g2(x)

}
with

{
g1(x) : data fidelity loss
g2(x) : regularization

Common choice for data-fidelity term: g1(x) =
γw
2 ‖y −Ax‖

2

Common choice for regularization: g2(x) = λ‖Ψx‖1 with a suitable
sparsifying transform Ψ (e.g., wavelet or total-variation) and carefully
chosen λ > 0
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Plug-and-play (PnP) image recovery

A common approach to convex optimization is ADMM: For k = 1, 2, ...

xk = argmin
x

{
g1(x) +

β
2 ‖x− vk−1 + uk−1‖2

}
vk = argmin

v

{
g2(v) +

β
2 ‖v − xk + uk−1‖2

}
, proxg2/β(xk − uk−1)

uk = uk−1 + xk − vk

The prox performs denoising (eg, soft-thresholding when g2(x) = ‖x‖1)

Bouman et al. proposed PnP1 ADMM, where the prox is replaced by a
sophisticated image denoiser f(·) like BM3D or a deep image denoiser2

1Venkatakrishnan,Bouman,Wolhberg’13, 2Meinhardt,Moller,Hazirbas,Cremers’17
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Challenges in plug-and-play (PnP) image recovery

In PnP, the denoiser input-error is difficult to characterize. For example,
it is non-white, non-Gaussian, and has iteration-dependent statistics

PnP algs require careful tuning of parameters (eg, β) and early stopping

Also, it’s unclear how to optimally train the denoiser in PnP

Typically the denoiser is trained to remove AWGN
Gilton et al. recently proposed1 to train the denoiser at the PnP equilibrium
point, but the result is A-dependent and thus may not generalize

1Gilton,Ongie,Willet’21
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Motivating questions

Is it possible to design a PnP-style algorithm that presents the denoiser
with known error statistics at every iteration?

Is it possible to construct a deep denoiser that can efficiently leverage
those error statistics?
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Approximate message passing (AMP) algorithms

AMP1 is a family of autotuning PnP algorithms that have remarkable
properties for large random A:

The denoiser input-error is AWGN with predictable variance2

When used with the MMSE denoiser, AMP algorithms converge3 to
the MMSE estimate of x0 given y

Challenge: In most image recovery problems, A does not satisfy AMP’s
randomness assumptions!

Recent work4 has studied AMP with nearly deterministic A under i.i.d. x0,
but our problems of interest have structured x0

1Donoho et al’09, 2Bayati,Montanari’11, 3Berthier,et al’19, 4Dudeja et al’22
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AMP for parallel MRI

In this work, we focus on the Fourier-structured matrix and images
encountered in parallel magnetic resonance imaging (MRI)

A =

MF Diag(s1)...
MF Diag(sC)

 where


M = sampling mask

F = 2D Fourier transform

sc = ESPIRiT-estimated coil map

For MRI, damped AMP techniques have been proposed:

Denoising AMP (D-AMP)1

Damped denoising vector-AMP (DD-VAMP)2

but they are heuristic and don’t appear to follow a state evolution

1Eksioglu,Tanc’18, 2Sarkar,Ahmad,Schniter’21
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AMP for MRI with 2D point masks

For MRI with 2D point masks, modified VAMP algs were proposed:
VDAMP1 and P-VDAMP2

they recover wavelet-domain coefficients, not the image itself
they use wavelet thresholding instead of deep denoising
they yield AWGN denoiser input error in each subband

Later the above approaches were extended to deep image denoising by
D-VDAMP3 and PD-VDAMP4

But 2D point masks are impractical and uncommon in 2D MRI

1Millard et al’20, 2Millard et al’22, 3Metzler,Wetzstein’21, 4Millard et al’22b
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Why recover wavelet coefficients?

Suppose c0 = Ψx0 are coefficients of an orthogonal wavelet transform

Can rewrite y = Ax0 +w as

y = Bc0 +w with masked Fourier-wavelet matrix B = AΨT

For AMP algorithms, B has desirable behavior:1

columns of different subbands are relatively decoupled from eachother
columns of each subband have a randomizing effect on that subband

abs(FΨT) abs(FΨT)T abs(FΨT) multi-coil version

1Schniter,Rangan,Fletcher’17
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Proposed algorithm: Denoising GEC (D-GEC)

We build upon the generalized expectation consistency (GEC) algorithm:1

require: f1(·), f2(·), and gdiag(·)
initialize: r1,γ1

for t = 0, 1, 2, . . .

x̂1 ← f1(r1,γ1) linear estimation
η1 ← Diag(gdiag(∇f1(r1,γ1)))−1γ1
γ2 ← η1 − γ1
r2 ← Diag(γ2)

−1(Diag(η1)x̂1 −Diag(γ1)r1) Onsager

x̂2 ← f2(r2,γ2) denoising
η2 ← Diag(gdiag(∇f2(r2,γ2)))−1γ2
γ1 ← η2 − γ2
r1 ← Diag(γ1)

−1(Diag(η2)x̂2 −Diag(γ2)r2) Onsager

1Fletcher,Sahraee-Ardakan,Rangan,Schniter’16
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Proposed algorithm: Denoising GEC (D-GEC)

GEC is a version of VAMP1 that tracks different subsets of coefficients
using distinct variances

Can be interpreted as Peaceman-Rachford ADMM with adaptive
vector-valued stepsizes γ1 and γ2

The GEC linear estimation stage is preconditioned LS:

f1(r,γ) =
(
γwB

HB +Diag(γ)
)−1(

γwB
Hy +Diag(γ)r

)
which can be implemented using the conjugate gradient method

For f2, we propose to “plug in” a deep denoiser

For the MRI application, we will show that D-GEC yields per-subband
denoiser input-errors that are AWGN with a predictable variance

1Rangan,Fletcher,Schniter’16
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D-GEC: Jacobian computation

∇fi denotes the Jacobian, and gdiag(·) averages its diagonal across L
wavelet subbands using:

gdiag(Q) , [d11
T
N1
, . . . , dL1T

NL
]T, d` =

tr{Q``}
N`

,

where N` is the size of the `th subset and Q`` ∈ RN`×N` is the `th
diagonal subblock of the matrix input Q

D-GEC approximates the Jacobian using a Monte-Carlo approach1

For both f1 and f2, we approximate the tr{Q``} using

tr{Q``} ≈ δ−1qH`
[
fi(r + δq`,γ)− fi(r,γ)

]
where the `th coefficient subset in q` is i.i.d. unit-variance Gaussian and the
other coefficient subsets are zero

1Ramani,Blu,Unser’08
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Proposed denoiser: Corr+Corr

GEC yields denoiser input-error that is AWGN with known iteration- and
subband-dependent precisions γ in each wavelet subband

In the pixel domain, the error is correlated Gaussian with known
covariance matrix ΨDiag(γ)−1ΨT

How do we design a deep denoiser to remove this correlated noise?

We take an arbitrary existing denoiser (e.g., DnCNN) and feed
independent realizations of N (0,ΨDiag(γ)−1ΨT) into extra channels

The denoiser learns to extract the error statistics (Ψ,γ) and use
them productively for denoising!
In practice, we find that one extra channel suffices
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Parallel-MRI experiments

Setup:

fastMRI1 brain and knee data

8 virtual coils

acceleration R = N/M = 4 & 8

extra AWGN w for noise-robustness study

variable-density 2D point- and line-masks:

1Zbontar et al’18
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Average performance results

2D line-mask results averaged over 16 test images:

Knee Brain

R = 4 R = 8 R = 4 R = 8
method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

P-VDAMP 33.84 0.9018 20.34 0.5614 30.30 0.8847 13.51 0.4763
PnP-PDS 36.28 0.9204 32.34 0.8556 38.07 0.9501 28.97 0.8269
D-GEC 38.82 0.9504 33.66 0.8893 39.04 0.9631 30.61 0.9015

PSNR vs iterations for brain MRI recovery with 2D point-mask at R = 4:
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Robustness to measurement noise

Average PSNR and SSIM versus measurement SNR with 2D point-mask:

Note: PnP-PDS penalty and stopping iteration tuned for every (SNR,R,dataset)
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Example D-GEC behavior (R = 4, 2D line-mask)

Example wavelet error at iteration 10:

Standard deviation of D-GEC denoiser-input error vs iteration:
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Example behavior of D-GEC vs PnP-PDS

Denoiser input-error QQ plots at iteration 10, demonstrating Gaussianity:

D-GEC PnP-PDS
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Summary

We proposed a GEC-based PnP algorithm for MRI called D-GEC

Our algorithm yields denoiser-input error that behaves like AWGN with
predictable variance in each wavelet subband

We proposed a new corr+corr denoiser, which aims to remove the
resulting colored pixel-domain noise

Empirical results demonstrate that D-GEC yields significantly better
recovery PSNR and SSIM than PnP-PDS and existing AMP-based
algorithms on multicoil fastMRI data
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