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The linear inverse problem

Goal: Recover an unknown signal g € C from noisy measurements
y € CM of the form

. {A : linear measurement operator
y = Axg + w, with ) .
w : AWGN with precision ,,

Typical methodologies:
m Optimization based algorithms

m Simple and robust, but not state-of-the-art in accuracy
m Deep networks that recover « from y

m Accurate but may not generalize well to a different A
m Plug-and-play algorithms that call deep denoisers

m Accurate and handles any A, but its performance can be improved!
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Optimization-based recovery

m The classical approach to recovering xg is through optimization:

g1(x) : data fidelity loss

T ars {o1(@) + g2(@)} with {gg(a:) . regularization

m Common choice for data-fidelity term: g (x) = 2|y — Az

m Common choice for regularization: go(x) = A||®x||; with a suitable
sparsifying transform W (e.g., wavelet or total-variation) and carefully
chosen A >0
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-
Plug-and-play (PnP) image recovery

m A common approach to convex optimization is ADMM: For k =1,2, ...
T = arg min {01(®) + Sll@ — ve1 + upa|?}
— : B 21 &

v = argmin {g2(v) + 5llv — @k + up—1]|*} = proxg, s(zr — up—1)

U = Uk—1 + T — Vg,

m The prox performs denoising (eg, soft-thresholding when ga(x) = ||x]|1)

m Bouman et al. proposed PnP1 ADMM, where the prox is replaced by a
sophisticated image denoiser f(-) like BM3D or a deep image denoiser?

Venkatakrishnan,Bouman ,Wolhberg'13, 2Meinhardt,Moller,Hazirbas,Cremers'17
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-
Challenges in plug-and-play (PnP) image recovery

m In PnP, the denoiser input-error is difficult to characterize. For example,
it is non-white, non-Gaussian, and has iteration-dependent statistics

m PnP algs require careful tuning of parameters (eg, 3) and early stopping

m Also, it's unclear how to optimally train the denoiser in PnP
m Typically the denoiser is trained to remove AWGN

m Gilton et al. recently proposed! to train the denoiser at the PnP equilibrium
point, but the result is A-dependent and thus may not generalize

1GiIton,Ongie,WiIIet’21
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Motivating questions

m Is it possible to design a PnP-style algorithm that presents the denoiser
with known error statistics at every iteration?

m Is it possible to construct a deep denoiser that can efficiently leverage
those error statistics?

Saurav K. Shastri (Ohio State) D-GEC Asilomar 2022 6/20



-
Approximate message passing (AMP) algorithms

m AMP! is a family of autotuning PnP algorithms that have remarkable
properties for large random A:

= The denoiser input-error is AWGN with predictable variance?

m When used with the MMSE denoiser, AMP algorithms converge® to
the MMSE estimate of xg given y

m Challenge: In most image recovery problems, A does not satisfy AMP’s
randomness assumptions!
m Recent work?* has studied AMP with nearly deterministic A under i.i.d. xg,
but our problems of interest have structured xg

'Donoho et al’'09, 2Bayati,Montanari'1l, *Berthier,et al'19, “*Dudeja et al’22
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-
AMP for parallel MRI

In this work, we focus on the Fourier-structured matrix and images
encountered in parallel magnetic resonance imaging (MRI)

M F Diag(s1) M = sampling mask
A= : where F = 2D Fourier transform
M F Diag(sc) s. = ESPIRiT-estimated coil map

For MRI, damped AMP techniques have been proposed:
m Denoising AMP (D-AMP)?
m Damped denoising vector-AMP (DD-VAMP)?

but they are heuristic and don’t appear to follow a state evolution

1Eksioglu,Tanc'18, 2Sarkar,Ahmad,Schniter'21
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-
AMP for MRI with 2D point masks

m For MRI with 2D point masks, modified VAMP algs were proposed:
VDAMP! and P-VDAMP?

m they recover wavelet-domain coefficients, not the image itself
m they use wavelet thresholding instead of deep denoising
m they yield AWGN denoiser input error in each subband

m Later the above approaches were extended to deep image denoising by
D-VDAMP? and PD-VDAMP*

m But 2D point masks are impractical and uncommon in 2D MRI

Point-Masks Line-Masks

R=4 R=8 R=4 R=8

Millard et al’20, 2Millard et al'22, 3Metzler,Wetzstein'21, “*Millard et al’22b
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Why recover wavelet coefficients?

m Suppose ¢y = W are coefficients of an orthogonal wavelet transform
m Can rewrite y = Axg + w as
y = Bey + w with masked Fourier-wavelet matrix B = A®'

m For AMP algorithms, B has desirable behavior:?

m columns of different subbands are relatively decoupled from eachother
m columns of each subband have a randomizing effect on that subband

abs(FW¥T)

abs(F¥ )T abs(F¥T) multi-coil version
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1Schniter,Rangan,FIetcher'17
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|
Proposed algorithm: Denoising GEC (D-GEC)

We build upon the generalized expectation consistency (GEC) algorithm:!

require: fi(-), f2(-), and gdiag(-)

initialize: r1,v;

fort=0,1,2,...
x1 < fi(ri,m) linear estimation
m < Diag(gdiag(V f1(r1,m)))"'m

Y2 N
73 < Diag(y2) ! (Diag(n1)&1 — Diag(y1)r1) Onsager

xz < fo(r2,72) denoising
n2 < Diag(gdiag(V f2(r2,72))) 2
Y12 — )2

71 < Diag(y1) ! (Diag(n2)> — Diag(y2)r2) Onsager

!Fletcher,Sahraee-Ardakan,Rangan,Schniter'16
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|
Proposed algorithm: Denoising GEC (D-GEC)

m GEC is a version of VAMP! that tracks different subsets of coefficients
using distinct variances

m Can be interpreted as Peaceman-Rachford ADMM with adaptive
vector-valued stepsizes <1 and 2

m The GEC linear estimation stage is preconditioned LS:
: -1 .
fi(r,7) = (vwB"B + Diag(v)) " (vwB"y + Diag(7)r)

which can be implemented using the conjugate gradient method
m For f5, we propose to “plug in” a deep denoiser

m For the MRI application, we will show that D-GEC yields per-subband
denoiser input-errors that are AWGN with a predictable variance

Ra ngan,Fletcher,Schniter'16
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|
D-GEC: Jacobian computation

m V f; denotes the Jacobian, and gdiag(-) averages its diagonal across L
wavelet subbands using:

tr{Qu}

Ny
where Ny is the size of the /th subset and Qg € RV*Ne is the (th
diagonal subblock of the matrix input Q

gdiag(Q) £ [di1},,...,dL1},]", de =

m D-GEC approximates the Jacobian using a Monte-Carlo approach?
m For both f; and f5, we approximate the tr{Qgs} using

tr{Qu} ~ 0 'q; [filr +dqu,7) — fi(r,7)]

where the /th coefficient subset in gy is i.i.d. unit-variance Gaussian and the
other coefficient subsets are zero

'Ramani,Blu,Unser'08
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Proposed denoiser: Corr+Corr

m GEC yields denoiser input-error that is AWGN with known iteration- and
subband-dependent precisions « in each wavelet subband

m In the pixel domain, the error is correlated Gaussian with known
covariance matrix ¥ Diag(~)~1®T

m How do we design a deep denoiser to remove this correlated noise?

m We take an arbitrary existing denoiser (e.g., DnCNN) and feed
independent realizations of A'(0, ¥ Diag(~y)~'®") into extra channels
m The denoiser learns to extract the error statistics (¥,~) and use
them productively for denoising!
m In practice, we find that one extra channel suffices
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Parallel-MRI experiments

Setup:

m fastMRI! brain and knee data

m 8 virtual coils

m acceleration R=N/M =4 & 8

m extra AWGN w for noise-robustness study

m variable-density 2D point- and line-masks:

Point-Masks Line-Masks

R=4 R=8 R=4 R=8

1Zbontar et al’18
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Average performance results

2D line-mask results averaged over 16 test images:

Knee Brain
R=4 R=38 R=4 R=38
method PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM
P-VDAMP | 33.84 0.9018 | 20.34 0.5614 | 30.30 0.8847 | 13.51 0.4763
PnP-PDS | 36.28 0.9204 | 32.34 0.8556 | 38.07 0.9501 | 28.97  0.8269
D-GEC 38.82 0.9504 | 33.66 0.8893 | 39.04 0.9631 | 30.61 0.9015

PSNR vs iterations for brain MRI recovery

40

Saurav K. Shastri (Ohio State)

10!
Iteration

D-GEC

with 2D point-mask at R = 4:
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Robustness to measurement noise

Note: PnP-PDS penalty and stopping iteration tuned for every (SNR,R,dataset)

Saurav K. Shastri (Ohio State)

Average PSNR and SSIM versus measurement SNR with 2D point-mask:
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]
Example D-GEC behavior (R = 4, 2D line-mask)

Example wavelet error at iteration 10:
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Standard deviation of D-GEC denoiser-input error vs iteration:
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|
Example behavior of D-GEC vs PnP-PDS

Denoiser input-error QQ plots at iteration 10, demonstrating Gaussianity:
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Summary

m We proposed a GEC-based PnP algorithm for MRI called D-GEC

m Our algorithm yields denoiser-input error that behaves like AWGN with
predictable variance in each wavelet subband

m We proposed a new corr+corr denoiser, which aims to remove the
resulting colored pixel-domain noise

m Empirical results demonstrate that D-GEC yields significantly better
recovery PSNR and SSIM than PnP-PDS and existing AMP-based
algorithms on multicoil fastMRI data
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