Deep Neural Networks for Radar Waveform Classification
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Abstract DNN Architectures Evaluated Multi-label DNNs for Multi-Waveform Classification
We consider the problem of classifying phase-modulated radar pulses given raw |/Q waveforms in the ResNet [2] ResNeXt[3] DenseNet[4] Motivation

presence of noise and the absence of synchronization. We also consider the problem of classifying multiple m The electromagnetic spectrum is very crowded!
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Radar Waveform Classification
m Minimize the sum of K binary-cross-entropy (BCE) losses

256-d out

= No assumption on the number of waveforms present
= Network outputs “present” or “absent” for each class

m Re-train the fine-tuned Complex-ResNet-30 with this BCE loss

Goal: Classify one or more radar waveforms that are present in a time-domain signal.

Application: Important task for cognitive radars Experimental Setup
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m ResNet outperformed other architectures

Simulating L-label waveforms:
Sample L uniformly from {1,2,3,4}

ResNets for Asynchronous Waveforms

Classification Analysis: SNR vs Pulse Width .
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m Noise padding reduces effective SNR E
Our Approach 30-layer ResNet results
Train a Deep Neural Network (DNN) using raw time-domain samples Optimizing the Input D.|men5|on _ _ _ _
m We have only considered an input dimension of D = 11000 time samples
Dataset: m To handle arbitrary values of D, we must truncate or noise-pad waveforms as needed | | | |
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SIDLE dataset from AFRL = Smaller D: reduced noise padding will improve effective SNR Time Samples
m 23 classes of phase-modulated radar waveforms = Smaller D: long-pulse truncation will discard information Multi-Waveform Results
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Designed a Convolutional Neural Network (CNN) using time-domain samples = Note: smaller D also speeds up training/processing = m L = 4 absolute error only 4.0%
m b convolutional and 4 dense layers 2
m Only processes real part of waveform (discards imaginary) Complex-Valued Deep Networks S m L. =1 BCE subset error > CE subset
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m Noise pads each radar waveform with white Gaussian noise, up to 11000 time samples There are two approaches to linearly processing a complex-valued feature, x = x, + 1x; € C: . -
_ m CE-trained network was optimized for
m Considers only single-waveform classification this case

Approach 1: 2-channel, real-valued DNN Experiment Setup

m Assumes waveforms are synchronous
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Only two learnable parameters! _ _ _
_ _ m We trained a DNN to simultaneously classify up to 4 waveforms
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03 03 Fine-Tuning m Train a deep network to classify and localize each overlapping waveform
~1.01 -1.01 Fine-Tuning Complex-ResNet Parameters Results of Network Fine Tuning = Object detection using a 1D version of YOLO
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