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Abstract

We consider the problem of classifying phase-modulated radar pulses given raw I/Q waveforms in the
presence of noise and the absence of synchronization. We also consider the problem of classifying multiple
superimposed radar pulses. To tackle these problems, we design deep neural networks (DNNs) that yield
more than 100x reduction in error-rate over the current state-of-the-art.

Radar Waveform Classification

Goal: Classify one or more radar waveforms that are present in a time-domain signal.

Application: Important task for cognitive radars
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raw signal data
class 1,  snr=7.1 dB

High-SNR radar waveform, centered around white noise.

Specifics:
1 We consider a passive sensing scenario

Waveforms will be subject to unknown time delays (i.e., asynchronous) and carrier shifts

2 We expect SNRs well below 0 dB

3 We have no physical model for the classes, only a dataset containing examples

Our Approach

Train a Deep Neural Network (DNN) using raw time-domain samples

Dataset:

SIDLE dataset from AFRL

23 classes of phase-modulated radar waveforms

10 000 waveforms per class

SNRs ∈ [−12, +12] dB

Pulse widths ∈ [181, 8925] time samples

Existing Work [1]:
Designed a Convolutional Neural Network (CNN) using time-domain samples

5 convolutional and 4 dense layers

Only processes real part of waveform (discards imaginary)

Noise pads each radar waveform with white Gaussian noise, up to 11 000 time samples

Considers only single-waveform classification

Assumes waveforms are synchronous

Synchronous performance [1]

Test error: 3.6%

Train error: 0% (overfitting)

Asynchronous performance

Test error: 18.4%

Train error: 18.2%
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Synchronous Waveform (snr=10.8dB)
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Asynchronous Waveform (snr=10.8dB)

DNN Architectures Evaluated

ResNet [2] ResNeXt[3] DenseNet[4]

Experimental Setup

We used asynchronous SIDLE waveforms

Noise padded to 11 000 samples

Input I/Q samples to DNNs

Results

ResNet outperformed other architectures

DNN Architecture Test Error
ResNet 1.6 %

ResNeXt 10.5 %
DenseNet 2.8 %

ResNets for Asynchronous Waveforms

Experimental Setup

Noise padded to 11 000 samples

Input real channel only (baseline approach)

Results

ResNet: 2.1% error

Baseline: 18.4% error

Plot shows SNR before noise padding

Noise padding reduces effective SNR
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Classification Analysis: SNR vs Pulse Width
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30-layer ResNet results

Optimizing the Input Dimension

We have only considered an input dimension of D = 11 000 time samples
To handle arbitrary values of D, we must truncate or noise-pad waveforms as needed

Smaller D: reduced noise padding will improve effective SNR
Smaller D: long-pulse truncation will discard information

Results

Input Dimension 11 000 6040 3317 1178 1000
Test Error 2.1% 1.4% 1.3% 2.2% 8.5%

Among the tested values of D, we found 3317 to be best

Note: smaller D also speeds up training/processing

Complex-Valued Deep Networks

There are two approaches to linearly processing a complex-valued feature, x = xr + ixi ∈ C:

Approach 1: 2-channel, real-valued DNN

y1 = k11xr + k12xi ∈ R
y2 = k21xr + k22xi ∈ R
Four learnable parameters:

k11, k12, k21, k22 ∈ R

Approach 2: 1-channel, complex-valued DNN

kx = (krxr − kixi) + j(kixr + krxi) ∈ C
Only two learnable parameters!

kr, ki ∈ R

Experiment Setup

30-layer ResNet

D = 3317

Real-valued vs. Complex-valued DNNs
Data Operations Test Error

In-phase Real 1.52%
Complex Real 0.39%

Complex Complex 0.36%

Fine-Tuning

Fine-Tuning Complex-ResNet Parameters

# layers (network depth)

# of channels (network width)

kernel size in convolutional layers

Batch size

Learning rate

Results of Network Fine Tuning
# Layers Test Error # Parameters # Channels Kernel

22 0.16% 7 721 041 32 11
26 0.16% 1 818 161 16 7
30 0.14% 659 233 8 9
34 0.15% 670 945 8 9
38 0.16% 2 228 913 16 7

Multi-label DNNs for Multi-Waveform Classification

Motivation
The electromagnetic spectrum is very crowded!

Often there are multiple radar transmitting simultaneously

The # of waveforms present in the signal will be unknown

Our Approach
Minimize the sum of K binary-cross-entropy (BCE) losses

No assumption on the number of waveforms present
Network outputs “present” or “absent” for each class

Re-train the fine-tuned Complex-ResNet-30 with this BCE loss

Metrics

Absolute error: Error averaged over the K binary predictions

Subset error: Error on the prediction vector ∈ {0, 1}K

Esub ≈ KEabs for i.i.d. binary errors

Simulating L-label waveforms:

1 Sample L uniformly from {1, 2, 3, 4}
2 Generate one asynchronous, noise-padded waveform (as before)

3 Generate L−1 asynchronous, zero-padded waveforms

4 Sum all waveforms
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L=2 Asynchronous Waveforms

raw signal data
class 1,  snr=9.2 dB
class 2,  snr=8.1 dB

Multi-Waveform Results

Error rates vs. Number of Overlapping Waveforms
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Errors grow linearly with logL

L = 4 absolute error only 4.0%

L = 1 BCE subset error > CE subset
error

CE-trained network was optimized for
this case

Conclusion and Contributions

Single-Waveform Classification
We improved the state-of-the-art error rate from 18.4% to 0.14% on asynchronous SIDLE data

Residual networks and optimizing the input dimension
Complex-valued operations & fine-tuning network parameters

Multi-Waveform Classification
We trained a DNN to simultaneously classify up to 4 waveforms

Absolute error rate of only 4.0% in the case of 4 overlapping waveforms

Future Work
Train a deep network to classify and localize each overlapping waveform

Object detection using a 1D version of YOLO

Handle multiple radars operating in different frequency bands
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