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ABSTRACT

We consider synthetic aperture radar (SAR) image recovery

and classification from sub-Nyquist samples, i.e., compres-

sive SAR. Our approach is to first apply back-projection and

then use a deep convolutional neural network (CNN) to de-

alias the result. Importantly, our CNN is trained to be agnostic

to the subsampling pattern. Relative to the basis pursuit (i.e.,

sparsity-based) approach to compressive SAR recovery, our

CNN-based approach is faster and more accurate, in terms of

both image recovery MSE and downstream classification ac-

curay, on the MSTAR dataset.

1. INTRODUCTION

Synthetic aperture radar (SAR) uses a moving radar platform

to transmit electromagnetic pulses and then uses the received

echoes to estimate the scene reflectivity. We focus on spot-

light SAR [1], where the radar continuously points at a given

ground patch while transmitting and receiving pulses.

After demodulation, the sampled radar returns r ∈ C
M

can be expressed as [1]

r = Ag +w,

where g ∈ C
N is a vector of 2D scene reflectivity samples

that we aim to recover, A ∈ C
M×N is a linear operator, and

w contains additive noise and clutter. With linear FM chirps,

a uniform pulse repetition interval, and uniform sampling, A

generates uniformly spaced samples along equi-spaced radial

lines in 2D Fourier space, i.e., “polar format” samples [1].

When the samples r are taken at the Nyquist rate or above,

A has full column rank, and thus g can be recovered using the

least-squares approach

ĝ = (AHA)−1AHr. (1)

In fact, ĝ from (1) would perfectly estimate g in the absence

of noise. In practice, it is common to approximate (1) by

interpolating the polar-format samples r onto a Cartesian grid

and then applying a 2D IFFT to the result.
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Recently, it has been proposed to sample r below the

Nyquist rate (i.e., use M < N ), which is known as compres-

sive SAR [2,3]. For example, one may choose to transmit and

receive only a (possibly random) subset of the usual pulses,

known as “slow-time subsampling.” There are several motiva-

tions for doing this. For one, there is less information to store

and/or transmit back to the ground station. Another is that the

radar could simultaneously image multiple targets. Several

other applications, include increased robustness to jamming,

are discussed in [2].

In the compressive case, A is a fat matrix, in which case

SAR image recovery is more challenging. In particular, A

has a non-trivial nullspace, and all components of g in that

nullspace are lost when collecting the measurements r. Like-

wise, the inverse in (1) does not exist.

The traditional approach to compressive SAR recovery

exploits image sparsity in an appropriate basis [2, 3], i.e., ap-

plies compressive sensing [4, 5]. For example, if g is sparse

in the canonical basis (i.e., g is itself sparse), then one may

attempt to recover g from r by solving the convex problem

ĝ = argmin
g

‖g‖1 s.t. ‖r −Ag‖2 ≤ Mσ2, (2)

which is known as basis pursuit (BP) denoising [6]. This opti-

mization problem (2) is convex and first-order algorithms like

SPGL1 [7] can efficiently solve it. Still, these methods are

computationally intensive for practical image sizes, and the

sparsity model on which they are based may not fully exploit

the structure of SAR images. Thus, one may wonder whether

compressive SAR recovery can be performed using methods

that are faster and/or more accurate.

2. CNN-BASED SAR IMAGE RECOVERY

We propose a convolutional neural network (CNN)-based ap-

proach to compressive SAR image recovery. In particular, we

propose to first back-project the radar returns, yielding

z , AHr. (3)

With sub-Nyquist sampling, the back-projected scene z will

be heavily aliased. We propose to then de-alias z using a



CNN. Among the plethora of CNN architectures, we chose

a U-Net [8], because of its excellent performance in other

image-recovery tasks [9].

For simplicity, we input only the magnitudes of the ele-

ments in z to the CNN. We do this because, in our experience,

image phase information in z does not improve classification

accuracy, at least with the MSTAR dataset that we used for

our experiments. Altogether, our image-recovery approach

can be summarized as

ĝ = f(|z|; θ̂), (4)

where f(·; θ̂) is the CNN, θ̂ is a vector of trained CNN pa-

rameters, and |z| denotes the vector composed of the elemen-

twise magnitudes of z. The output ĝ of our CNN is also

non-negative, and thus should be considered as estimate of

|g| rather than of complex-valued g.

A similar approach was proposed for compressive mag-

netic resonance imaging (MRI) in [10], but—to the best of

our knowledge—no CNN-based methods have been proposed

for compressive SAR image recovery. However, CNNs have

previously been proposed for other SAR tasks, such as image

segmentation [11], image de-speckling [12], and automatic

target recognition (ATR) [13, 14].

By training our CNN to de-alias the results of many

different slow-time sub-sampling patterns (for a given sam-

pling rate δ = M/N ), it learns to be agnostic to the spe-

cific choice of the sub-sampling pattern. This way, we do

not need to retrain the CNN when the sub-sampling pattern

changes. We did train a different CNN for each sampling rate

δ ∈ {1/2, 1/3, 1/4, 1/5, 1/10}, however. To learn the CNN

parameters θ̂, we minimized ℓ1 loss in the image space, i.e.,

θ̂ = argmin
θ

T1∑

t1=1

T2∑

t2=1

∥∥f
(
|AH

t1
At1

g
t2
|;θ

)
− |g

t2
|
∥∥
1
, (5)

using stochastic gradient descent. In (5), {g
t
} are scene re-

flectivities from a training database and {At} are slow-time

randomly sub-sampled Fourier matrices. We used the ℓ1 loss,

as opposed to the ℓ2 loss, because it is a more typical choice

when training CNNs to perform image recovery tasks [15].

3. CNN-BASED AUTOMATIC TARGET

RECOGNITION

In the previous section, our goal was to recover the SAR im-

age g. Often, the recovered image is subsequently fed to an

image classifier for automatic target recognition (ATR). In

this case, the resulting classification performance is the pri-

mary metric of interest.

To evaluate our compressive SAR image recovery method

from the perspective of ATR, we trained a ResNet-18 im-

age classifier [16] to perform classification. Our choice of

ResNet-18 was inspired by the excellent performance previ-

ously reported in [14]. For example, we found that a ResNet-

18 gave 99.06 % classification accuracy with noiseless, fully

sampled MSTAR images.

We experimented with two different approaches to train-

ing the ResNet classifier. We used either

1. noiseless, fully sampled MSTAR images, or

2. reconstructed MSTAR images produced by either BP

or the U-Net, as described in Section 2, at a given value

of δ = M/N .

In both cases, we used the standard cross-entropy loss when

training the classifier. As we will see in the next section, clas-

sification from compressive samples is much more accurate

when the classifier is trained on compressively recovered im-

ages.

4. NUMERICAL RESULTS

For our numerical results, we assumed noiseless measure-

ments, i.e.,

r = Ag. (6)

with images g taken from the 10-class MSTAR dataset [17].

We used the 17◦-inclination subset for training, which had

3 671 images and the 15◦-inclination subset for testing, which

had 3 203 images. Because the images are of various sizes, we

first center-cropped them to size 128×128. To implement the

polar-format Fourier operator A, we quantized each point on

each radial line to the nearest point on the 128×128 Cartesian

grid. This allows us to approximate A ≈ MF , where M is

a random masking operator and F is the 2D FFT operator.

Various sampling ratios

δ ,
M

N
(7)

were tested. Figure 1 shows an example of a mask at δ = 1/3.

Note the random subset of radial lines, with dense sampling

across each line.

4.1. Image Recovery

As a baseline, we compare the proposed CNN-based method

to BP recovery (i.e., equation (2) with σ2 = 0) implemented

using the SPGL1 algorithm [7]. We used the public MATLAB

implementation of SPGL11 with default parameters.

Figure 1 shows an example of a Fourier-domain sub-

sampling mask at sampling ratio δ = 1/3, and Figure 2

shows an example of an MSTAR image. Figure 3 shows the

result of backprojection, Figure 4 shows the SPGL1 recovery,

1MATLAB implementation of SPGL1 was downloaded from

https://www.cs.ubc.ca/˜mpf/spgl1/index.html

https://www.cs.ubc.ca/~mpf/spgl1/index.html


Fig. 1. Fourier-domain sampling mask at δ = 1/3.

Fig. 2. Example of original MSTAR image |g|.

Fig. 3. Back-projection image z at δ = 1/3.

Fig. 4. SPGL1 reconstruction ĝ at δ = 1/3. Note that a lot of

detail in the target has been lost relative to Fig. 2.

Fig. 5. U-Net reconstruction ĝ at δ = 1/3. Note that target

details have been preserved relative to Fig. 2 while speckle

artifacts have been suppressed.



Table 1. Average NMSE

δ SPGL1 U-Net

1/2 −7.04 dB −10.63 dB

1/3 −4.68 dB −10.12 dB

1/4 −3.46 dB −8.43 dB

1/5 −2.69 dB −8.11 dB

1/10 −1.01 dB −6.92 dB

Table 2. Reconstruction time
δ SPGL1 U-Net

1/2 2.64 sec 0.00451 sec

1/3 2.76 sec 0.00496 sec

1/4 2.94 sec 0.00460 sec

1/5 2.96 sec 0.00445 sec

1/10 3.25 sec 0.00472 sec

and Figure 5 shows the U-Net recovery. The SPGL1 recovery

loses many details in the target that are visible in Figure 2,

while the U-Net recovery preserves those details. It is in-

teresting to observe that the U-Net recovery has suppressed

most of the speckle artifacts that are present in the original

MSTAR image Figure 2.

Table 1 shows the normalized mean squared error (NMSE)

on the recovered image magnitudes, averaged over the test

data {g
t
}T
t=1

, i.e.,

NMSE =
1

T

T∑

t=1

∥∥ĝ
t
− |g

t
|
∥∥2
2

‖g
t
‖2
2

, (8)

where a different random subsampling mask was used for

every test image. The table shows that the proposed U-Net

recovery method greatly outperformed SPGL1 for all tested

sub-sampling rates δ. We attribute the relatively poor perfor-

mance of SPGL1 to the large amounts of speckle present in

the original MSTAR images (see, e.g., Figure 2), which de-

tract from the sparsity of the image.

Table 2 shows the reconstruction time on a Linux server

with 24 Intel Xeon(R) Gold 5118 CPUs and a single Tesla

V-100 GPU. The table shows that the proposed method ran

more than 500 times faster than SPGL1.

4.2. Automatic Target Recognition

Table 3 shows test classification accuracy at different sub-

sampling ratios δ for the ResNet classifier that was trained on

noiseless, fully sampled MSTAR images. This table shows

that the U-Net-reconstructed images lead to much better clas-

sification accuracy than the SPGL1-reconstructed images, but

in both cases the classification accuracy is far from the 99%
achieved by the ResNet on fully sampled test images (i.e.,

non-compressive SAR).

Table 3. Average test classification accuracy using the

ResNet classifier trained on fully sampled images

δ SPGL1 Proposed

1/2 86.11 % 87.42 %

1/3 76.58 % 88.29 %

1/4 65.41 % 86.73 %

1/5 54.70 % 85.76 %

1/10 32.19 % 74.37 %

Table 4. Average test classification accuracy using the

ResNet classifier trained on reconstructed images

δ SPGL1 U-Net

1/2 96.85 % 99.38 %

1/3 94.01 % 98.38 %

1/4 90.67 % 97.80 %

1/5 86.58 % 97.00 %

1/10 70.12 % 91.10 %

Table 4 shows classification accuracy at different sub-

sampling ratios δ for the ResNet classifiers trained on recon-

structed images. Note that a different classifier was trained

for SPGL1 and for the U-Net at each sub-sampling rate δ.

This table shows that, as before, U-Net image reconstruction

leads to much better classification accuracy than SPGL1 im-

age reconstruction. However, differently from before, Table 4

shows that the U-Net recoveries from compressive SAR lead

to classification accuracies on par with fully sampled SAR.

In fact, at a sampling rate of δ = 1/2, U-Net recovery yields

a classification accuracy of 99.38%, which is slightly better

than that achieved in the fully sampled case.

5. CONCLUSION

In this paper, we proposed a novel approach to compressive

SAR image recovery that used a convolutional neural net-

work (CNN) to de-alias the back-projection image estimate.

Numerical experiments with the MSTAR dataset showed that

our approach significantly outperformed BP—the standard

compressed sensing approach—in both runtime and mean-

squared error. To evaluate the quality of image recovery for

subsequent use in automatic target recognition, we trained a

second CNN to classify the reconstructed images. There we

found that the accuracy of classifying compressively sampled

images with with CNN-based image reconstruction and sam-

pling rate δ = 1/2 was on par with the accuracy of classifying

fully sampled images.
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