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Adaptive Detection of Structured Signals

s
Y

N interferers

Goal: Test for presence of temporal signal s ∈ C
L using M antennas.

Challenges (typical):

unknown steering vector h ∈ C
M (e.g., multipath propagation)

additive noise with unknown variance ν > 0

N additive interferers with unknown steering vectors (and unknown N)

Challenges (new):

Signal s is known only in probability (i.e., p(s) known)

Application: detect/synchronize using both pilots and unknown QAM symbols.
Traditionally, unknown symbols are ignored when synchronizing.1

1D. W. Bliss and P. A. Parker, “Temporal synchronization of MIMO wireless communication in the
presence of interference,” IEEE Trans. Signal Process., 2010.
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Binary Hypothesis Test

We consider the binary hypothesis test

H1 : Y = hsH +BΦ
H +W ∈ C

M×L

H0 : Y = BΦ
H +W ∈ C

M×L

Assumptions:

s ∼ p(s)

unknown steering vector h ∈ C
M

unknown white Gaussian noise W with unknown variance ν > 0

unknown low-rank interference B ∈ C
M×N , Φ ∈ C

L×N , N < M

unknown interference rank N
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Prior Work on Known-s Case

Many prior works have considered the case of known s. For example. . .

Kelly2 modeled the noise-plus-interference N , BΦ
H +W as

vec(N) ∼ CN (0, IL ⊗Σ) with unknown spatial covariance Σ > 0

and formulated the generalized likelihood ratio test (GLRT), i.e.,

maxh,Σ>0 p(Y |H1;h,Σ)

maxΣ>0 p(Y |H0;Σ)
R η.

Using P⊥
s

to denote orthogonal projection away from s, the GLRT reduces to
∏M

m=1 λ0,m∏M
m=1 λ1,m

R η where

{
{λ0,m} = evals

(
1
LY Y H

)

{λ1,m} = evals
(
1
LY P⊥

s
Y H

)

2E. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp. Electron. Syst., 1986.
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Prior Work on Known-s Case (cont.)

Kang, Monga, and Rangaswamy3 (KMR) modeled the noise-plus-interference
N = BΦ

H +W as

vec(N) ∼ CN (0, IL ⊗Σ) with unknown Σ ∈ SN

SN , {R+ νIM : rank(R)=N, R ≥ 0, ν > 0} (note N assumed known)

and formulated the GLRT, i.e.,

maxh,Σ∈SN
p(Y |H1;h,Σ)

maxΣ∈SN
p(Y |H0;Σ)

R η.

This GLRT reduces to
∏M

m=1 λ̂0,m∏M
m=1 λ̂1,m

R η, where {λ̂i,m}
M
m=1 are “smoothed”.

That is, λ̂i,m =

{
λi,m m ≤ N

ν̂i , 1
M−N

∑M
m=N+1 λi,m m > N

for decreasing {λi,m}.

3B. Kang, V. Monga, and M. Rangaswamy, “Rank-constrained maximum likelihood estimation of
structured covariance matrices,” IEEE Trans. Aerosp. Electron. Syst., 2014.
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Prior Work on Known-s Case (cont.)

McWhorter4 treated temporal interference Φ as deterministic (not as AWGN)
in his GLRT formulation:

maxh,B,Φ,ν>0 p(Y |H1;h,B,Φ, ν)

maxB,Φ,ν>0 p(Y |H0;B,Φ, ν)
R η. (note N assumed known)

This GLRT reduces to

ν̂0
ν̂1

=
1
M

∑M
m=N+1 λ0,m

1
M

∑M
m=N+1 λ1,m

R η′,

where the eigenvalues {λi,m} are the same as defined earlier.

Essentially, McWhorter uses interference cancellation, whereas Kelly and KMR
use interference nulling.

4L. T. McWhorter, “A high resolution detector in multi-path environments,” in Proc. Workshop ASAP
(Lexington, MA), 2004.
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Probabilistic s and Gaussian Interference

We now return to the case where s ∼ p(s) with known p(·).

Treating the interference as Gaussian (like KMR) gives the GLRT numerator

max
h,Σ∈SN

p(Y |H1; ĥ,Σ) = max
h,Σ∈SN

∫
exp(− tr{(Y −hs

H)HΣ−1(Y −hs
H)})

πML|Σ|L
p(s) ds

which is, in general, intractable.

Thus we propose to iteratively maximize this likelihood via EM:
(
ĥ
(t+1)

, Σ̂
(t+1)

1

)
= argmax

h∈CM ,Σ∈SN

E

{
ln p(Y , s|H1;h,Σ)

∣∣∣Y ; ĥ
(t)
, Σ̂

(t)

1

}
.

After t EM iterations, the GLRT becomes
∏

M
m=1 λ̂0,m∏
M
m=1 λ̂

(t)
1,m

R η, where {λ̂
(t)
1,m} are

the smoothed evals of Σ̂
(t)

1 and {λ̂0,m} are the smoothed evals of 1
LY Y H.
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EM Details for Gaussian Interference (cont.)

We show5 that

ĥ
(t+1)

= Y ŝ
(t)/E(t) for

{
ŝ
(t) , E

{
s
∣∣Y ; ĥ

(t)
, Σ̂

(t)

1

}

E(t) , E
{
‖s‖2

∣∣Y ; ĥ
(t)
, Σ̂

(t)

1

}

and that minimizing Σ ∈ SN is equivalent to maximizing

exp(− tr{Y P̃
⊥

ŝ
(t)Y H

Σ
−1})

πML|Σ|L
with P̃

⊥

ŝ
(t) , IL −

ŝ
(t)
ŝ
(t)H

E(t)

which (via Anderson’63) leads to the solution

Σ̂
(t+1)

1 = V
(t+1)
1 Diag(λ̂

(t+1)
1,1 , . . . , λ̂

(t+1)
1,M )V

(t+1)H
1

λ̂
(t+1)
1,m =

{
λ
(t+1)
1,m m = 1, . . . , N

ν̂
(t+1)
1 , 1

M−N

∑M
m=N+1 λ

(t+1)
1,m m = N + 1, . . . ,M

where {λ
(t+1)
1,m } are the decreasing-ordered eigenvalues of Y P̃

⊥

ŝ
(t)Y H.

5E. Byrne and P. Schniter, “Adaptive Detection of Structured Signals in Low-Rank Interference,”
arXiv:1808.05650.
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EM Details for Gaussian Interference (cont.)

To compute ŝ
(t) and E

(t), we focus on independent priors p(s) =
∏L

l=1 pl(sl).
Then. . .

Under h = ĥ
(t)

and Σ = Σ̂
(t)

1 , the model becomes

yl = ĥ
(t)
s∗l + CN (0, Σ̂

(t)

1 ) ∀l.

The whitened matched filter gives a sufficient statistic for estimating sl:

r̃
(t)
l , ĥ

(t)H
(Σ̂

(t)

1 )−1yl = ξ(t)sl + CN (0, ξ(t)) for ξ(t) , ĥ
(t)H

(Σ̂
(t)

1 )−1ĥ
(t)
.

The WMF outputs can be scaled to give an unbiased estimate

r
(t)
l ,

[
r̃
(t)
l /ξ(t)

]∗
= sl + CN (0, 1/ξ(t)).

Computation of ŝ
(t)
l = E{sl|r

(t)
l } is scalar MMSE denoising: easy to do.

Likewise, E(t) = ‖ŝ(t)‖2 +
∑

l Cov{sl|r
(t)
l }.
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EM Details for Gaussian Interference (cont.)

Algorithm 1 EM update for the interference-nulling GLRT

Require: Data Y ∈ CM×L, signal prior p(s) =
∏L

l=1
pl(sl).

1: Initialize ŝ ∈ CL and E > 0.

2: repeat

3: ĥ← 1

E
Y ŝ steering-vector estimate

4: Σ̂1 ←
1

L
Y Y H − E

L
ĥĥ

H
estimate of interference+noise covariance Σ

5: N̂ ← rank estimate(Σ̂1)

6:
{
V 1,Λ1

}
← principal eigs(Σ̂1, N̂)

7: ν̂1 ←
1

M−N̂

(
tr(Σ̂1)− tr{Λ1}

)
estimate of noise variance

8: g ← 1

ν̂1
ĥ+ V 1

(
Λ

−1

1 − 1

ν̂1
I
N̂

)
V

H
1 ĥ Σ̂

−1

1 ĥ

9: ξ ← ĥ
H
g precision of error on r

10: r ← Y Hg/ξ where r ∼ CN (s, I/ξ) AWGN-corrupted pseudo-measurement of s
11: ŝl ← E{sl|rl; ξ} ∀l = 1, . . . , L

12: E ←
∑L

l=1
E{|sl|

2|rl; ξ}

13: until Terminated
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Estimation of Interference Rank N

Although the previous approaches assumed known interference rank N , standard
model-order selection methods6 can be used to estimate N :

N̂ = argmax
N∈{0,...,Nmax}

ln p(Y |H1, Θ̂N )− J(N)

where

Θ̂N = ML parameter estimate under rank hypothesis N , i.e.,

ΘN =

{
{h,Σ ∈ SN} KMR

{h,B ∈ C
M×N ,Φ ∈ C

Q×N , ν} McWhorter

J(N) = penalty with respect to the degrees-of-freedom “DoF(N),” e.g.,

J(N) =





DoF(N) Akaike’s Information Criterion (AIC)
2MQ

2MQ−DoF(N)−1DoF(N) corrected AIC (AICC)

0.5DoF(N) ln(2MQ) Bayesian Information Criterion (BIC)

GDoF(N) Generalized Info Criterion (GIC)

6M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Trans. Acoust.
Speech & Signal Process., 1986.
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EM Initialization for Gaussian Interference

The EM algorithm benefits from a good initialization of ŝ.

Let’s focus on sH =
[
sHt sHd

]
with known training st ∈ C

Q.

Our goal is then to MMSE-estimate ŝd = E{sd|Y d; ĥ, Σ̂} for some (ĥ, Σ̂).

One option is training-based ML estimation. With full rank N = M , we’d get

ĥt , Y tst/‖st‖
2 and Σ̂t , Y tP

⊥
st
Y H

t /Q.

When N < M , could try to estimate N via model-order selection, but this
leads to problems in estimating the bias of the WMF outputs.

We instead suggest to use “diagonal loading”

Σ̂
(α)

t = (1− α)Σ̂t + α tr{Σ̂t}
M I, α ∈ (0, 1],

where α is chosen via leave-one-out cross-validation (LOOCV).7

7J. Tong, P. J. Schreier, Q. Guo, S. Tong, J. Xi, and Y. Yu, “Shrinkage of covariance matrices for linear
signal estimation using cross-validation,” IEEE Trans. Signal Process., 2016.
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Relation to Forsythe’s Iterative Method

When p(s) =
∏L

l=1 pl(sl) and rank N=M , our EM algorithm becomes

w ← (Y Y H)−1Y ŝ
‖ŝ‖2

‖P Y H ŝ‖2

r ← Y Hw

ŝ← E{s|r} where r = s+ CN (0, ξ−1I)

where w plays the role of a beamformer.

The above becomes equivalent to Forsythe’s Iterative ML scheme8 if our
MMSE signal estimate is replaced with the “hard” ML estimate

ŝML ← arg min
s∈AL

‖s− r‖2.

Thus our EM scheme is the “soft” and low-rank (N < M) counterpart of
Forsythe’s scheme.

8K. W. Forsythe, “Utilizing waveform features for adaptive beamforming and direction finding
with narrowband signals,” Lincoln Lab. J., 1997.
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Probabilistic s and Deterministic Interference

Now let’s treat Φ as deterministic interference (like McWhorter). In this case,
the GLRT numerator becomes

max
Θ

p(Y |H1;Θ) = max
Θ

∫
exp(−‖Y −BΦ

H−hs
H‖2

F /ν)
(πν)ML p(s) ds

for Θ , {h,B,Φ, ν}

which, is in general, intractable.

Again we propose to iteratively maximize via EM:

Θ̂
(t+1)

= argmax
Θ

E
{
ln p(Y , s|H1;Θ)

∣∣Y ; Θ̂
(t)}

After t EM iterations, the resulting GLRT becomes

ν̂0

ν̂
(t)
1

=
1
M

∑M
m=N+1 λ0,m

1
M

∑M
m=N+1 λ

(t)
1,m

R η′,
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EM Details for Deterministic Interference

Similar to before, {λ
(t+1)
1,m } are the eigenvalues of Y P̃

⊥

ŝ
(t)Y H/L with

P̃
⊥

ŝ
(t) = IL −

ŝ
(t)
ŝ
(t)H

E(t)

ŝ
(t) = E

{
s
∣∣Y ; Θ̂

(t)}

E(t) = E
{
‖s‖2

∣∣Y ; Θ̂
(t)}

Can initialize ŝ as before, using diagonal loading of Σ̂t and LOOCV.

Can estimate rank N as before, but now with a different DoF(N).
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EM Details for Deterministic Interference

Algorithm 2 EM update for the interference-canceling GLRT

Require: Data Y ∈ CM×L, signal prior p(s) =
∏L

l=1
p(sl).

1: Initialize ŝ ∈ CL and E > 0.

2: repeat

3: ζ ←
√

1− ‖ŝ‖2/E softness factor; ζ = 0 for hard estimate ŝ

4: g ← Y ŝ/‖ŝ‖2 steering-vector estimate before IC

5: Y ← Y + (ζ − 1)gŝH estimate of noise+interference samples

6: N̂ ← rank estimate(Y )

7:
{
V ,D1,U

H}
← principal svd

(
Y , N̂

)

8: ν̂1 ←
1

ML

(
‖Y ‖2

F
− tr

{
D

2

1

})
estimate of noise variance

9: ĥ← 1

E

(
‖ŝ‖2g − 1

ζ
V D1 U

H
ŝ
)

steering-vector estimate after IC

10: ξ ← ‖ĥ‖2

ν̂
precision of error on r

11: r ← 1

‖ĥ‖2

(
Y

H
ĥ−U D1V

H
ĥ
)
+ 1

1+ζ
ŝ

where r ∼ CN (s, 1

ξ
I)

AWGN-corrupted pseudo-measurement of s

12: ŝl ← E{sl|rl; ξ} ∀l = 1, . . . , L

13: E ←
∑L

l=1
E{|sl|

2|rl; ξ}

14: until Terminated
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Setup for Numerical Experiments

Model |H1: Y = hsH +BΦ
H +W ∈ C

M×L

sH = [sHt , s
H
d ], rank(BΦ

H) = N

Dimensions: M = 64 antennas
Q = 32 training symbols in st (QPSK)
L = 1024 total symbols in s (QPSK)
N = 5 interferers

Monte-Carlo:

s : i.i.d. QPSK E{|sl|
2} = 1

h : random on 2D-UPA manifold E{|hm|
2} = 1

B : 2D-UPA sidelobe peaks E{|[BΦ]ml|2} = σ2
i

W : AWGN E{|wml|
2} = σ2

w ∝ Q

Performance: Pr{detection} under Pr{false-alarm} = 10−4
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Pr(detection) versus SNR — EM & Training-only
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4 training-only full-rank: +
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Pr(detection) versus SNR — Iterative Hard Estimation
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counterparts in the previous
figure.
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Pr(detection) versus SIR at fixed SNR
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Dip in ++ results from
mis-estimating N .
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Pr(detection) versus training length Q for fixed L=1024
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Pr(detection) versus # Interferers N
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Ranking:

1 EM-based low-rank: oo
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N̂ versus # Interferers N

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

kmr-tr

mcw-tr

kmr-em

mcw-em

es
ti
m
at
ed

in
te
rf
er
en
ce

ra
n
k
N̂

u
n
d
er
H

1

true interference rank N
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and σ2

i = QN

Rank-estimation successful
in all cases.
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Conclusions

For adaptive detection of known signals in unknown-interference/noise
environments, prior work includes:

Kelly’86: full-rank interference
Kang-Monga-Rangaswamy’14: low-rank interference nulling
McWhorter’04: low-rank interference cancellation

For detection/synchronization of wireless communications signals, the common
approach is to ignore the unknown data symbols, as in Bliss-Parker’10.

For probabilistic signals s ∼ p(s) we proposed three EM-based schemes:

full-rank interference (inspired by Kelly)
low-rank interference nulling (inspired by KMR)
low-rank interference cancellation (inspired by McWhorter)

Numerical experiments suggest that

the EM-based methods outperform training-only methods
low-rank methods outperform full-rank methods
soft/EM-iterative methods outperform hard-iterative methods
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