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Traditional Clustering Problem Statement

m Given a dataset of T" N-dimensional feature vectors X = |xq,...,x7] € RVXL estimate K

N-dimensional cluster centers C = [cq, ..., cx| € RYV*H that minimize sum of squared errors (SSE):

T
SSE = > min |12 — e} (1
t=1

m However, finding C' to minimize the SSE in (1) is NP-hard.
m K-means is a commonly applied heuristic approach.

m K-means generally works well wrt minimizing the SSE, except its complexity is O(NKT), where [ is
the number of iterations, which is prohibitive for large T.

Sketched Clustering

m Sketched clustering [Kerivan 16] is an alternate approach possibly more efficient than K-means.

m Let y € CM be the “sketch” of X, where .

1
Um = 7 ; exp(jwp, 1) 2)
for some set of N-dimensional frequency vectors W = |wq, ...w .
m The sketch in (2) can be interpreted as the empirical characteristic function of the dataset X.
m CLOMPR [Kerivan 17] is the state-of-the-art Sketched Clustering algorithm, which solves

M K
~ 2
(€&} =argmin Y |y — Y apexpliwg,cp) (3)
C’,a m=1 k=1
via a greedy optimization approach.

m In practice, Cc ompr Works well wrt SSE compared to 6’K_means, despite no link between (3) and (1).

m CLOMPR'’s complexity is (’)(MNK2Z + M NT), which includes the cost of computing y.

m Note that once y is computed, X is not stored during CLOMPR, so the memory requirement is
significantly reduced.

m CLOMPR's authors have developed several approaches for randomly generating the frequencies w,;, and
have observed around M ~ 10K N frequencies necessary for accurate performance.

Sketched Clustering via Approximate Message Passing

m We choose to model the feature vectors x; with a Gaussian Mixture where the mixture centers are the
“true’ cluster centers, i.e. ,

K
m Then, for large T, o ;_:1 N (g, ). )
T - K
1 T T T T
Ym = 7 Z exp(jw,,xt) =~ E{exp(jw,,,x¢)} = Z g exp (Jw, e — W, Xpwm /2), (5)
t=1 k=1 Ly A
and so =Zmk =Tmk
K
pyalvn | 2n) =0 (s = 3 cwexp (s = 7nt/2) ) Q
k=1

where {7,,1.} and {«a;.} are treated as hyperparameters.

m |f we assume py|,(ym | Zm) are independent across m and assume pc(C) = H,,],Y:lpc(cn), we obtain

M N
T
pyac;(y’ C)= H py\z<ym |w,,C) H pe(cn). (7)
m=1 n=1
m With (7), we treat sketched clustering as an inference problem rather than an optimization problem.

C=E{rc|y(Cly)}, (8)
using the Simplified-Hybrid-GAMP (SHyGAMP) algorithm [Byrne 16].
m The SHyGAMP algorithm is based on the more general HyGAMP algorithm [Rangan 17]. The only

difference between the two is SHyGAMP restricts the messages that are passed to have diagonal
covariance matrices, which drastically reduces computational complexity.

m In particular, we approximate
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Description of SHyGAMP

m SHYGAMP approximates sum-product loopy belief propagation on factor graphs of the form:
Cn DPc

Ym Py|z

O—
(O—

(—

m SHyGAMP iteratively passes messages back and forth between the p¢ and Py|z nodes until convergence.
m Messages are approximated as K-dimensional Gaussian pdfs with diagonal covariance structure.

m This iterative message passing allows an [NV K-dimensional inference problem is broken into many
K -dimensional inference problems.

m SHYyGAMP's complexity for sketched clustering is (’)(K(M + N)I + MNT).
m The SHYGAMP algorithm can be divided into “linear” and “non-linear” steps.

m At each iteration the non-linear steps require computing the mean and covariance of the estimands using
the following approximate posterior distributions:

pc‘r(cn‘?n; Q;‘z) X pC(cTL)N(Cn; ?717 Q:z) (9)
and
pz|y7p(zm‘ym7 ﬁma Q?n) X py\z(ym’Zm)N(zm; ﬁmv Q?El)a (10)

where the quantities p,,,, QV,, 7, and QY are computed during the linear steps.

The SHyGAMP Algorithm

Require: frequency matrix W, sketch y, pdfs p¢|, and p,, , from (9)-(10), initializations 7,(0), Q7 (0).
Ensure: t<0; s,,(0)<0.

1. repeat

2 Vn:ép(t) « Ef{cy|r =7n(t—1); QN (t—1)}

3 Vn o QF(t) < cov {cn ’ rn="rnp(t—1); Q,,rl(t—l)}

w Vm: QR(t) s Witn Q1

5.V Pry(t) < S0 Wamén(t) — QP(t)8m(t—1)

AN

6: Vm: Zm(t) < E{zm | ym, P = Din(t); Q1) }

7. Vm o QZ(t) + cov{zm | Ym, P = Pr(t); QM(1) }

s Vm: Q1) + [QR(D)] 7 — [QR(H)] T QR1)QR(#)]
0. Vm : Sp(t) « QL) LEm®) — Pp(d))

0. Vn: Q) (1) + [Z%zl Wf;%vasn(t)}_l

1 Vo Pa(t) < En(t) + QL) M WhmEm(t)
122 t+—t+1

13: until Terminated
Computation of SHYGAMP Non-linear Steps

m The key technical challenge in applying SHyGAMP to sketched clustering is computing Lines 6-7 of the
SHyGAMP algorithm when Py|z has the form in (6).

m We have developed a method based on approximating py’Z(ym|zm) with a Generalized von Mises
distribution and evaluating the necessary integrals with the Laplace Approximation.

Parameter Tuning

m Our Gaussian Mixture model in (4) requires properly selecting a;. and 7,,,;. in (6).
m Currently, we assume 7,,;. is invariant to m.

m Allowing 7,,;. to vary with m increases the generalizability of the model, but is more difficult to learn.
Exploring this is one avenue for future work.

m One approach to tuning oy and 7. is via approximate EM:

M

{a, T} = arg max N (zm; Zm, Q%)) 1og p(ym|zm) dzm, (11)

a>0.aT1=170>0, | /RY
which can be optimized at every SHyGAMP iteration (immediately after Line 7) using
gradient-projection.
m An alternate approach based on Bethe Free Energy Minimization [Schniter 15] is currently in
development.
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Comparison Between SHYyGAMP, CLOMPR++ and K-means++

Data generation model

m True It Zi(:l ozk./\/'(ck, IN) for C ~ N(ON, (1.5 W)QIN), and X = % vV k.

Simulation: SSE vs M

m For each N € {50,100} and K € {5,10}, we tested several sketch lengths M € |[K N, 10K N].

m We report the Median SSE and Median Runtime for SHYyGAMP, CLOMPR++ and K-means++ over 10
trials. For SHyGAMP and CLOMPR-++, we report runtime only when SSE < 2xSSE(K-means++).

m Compared to CLOMPR++, SHyGAMP has lower SSE and is faster at all tested M.
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Simulation: Classification Error vs Runtime

m Dimensions N = 20 and K = 30. Training set with 7' = 10* samples.

m Recovered cluster-centers used for classification on a test set with 7' = 5 x 100 samples.

m SHYGAMP and CLOMPR++ traces vary sketch size M logarithmically within [K' N, 100K N].

m K-means traces vary training subset size, in {%, 2—7;, ..., T'}, for a fixed # replicates in {256, ...,4096}.
m Results are the median of 5 trials (each trial used the same true centroids, but random train/test sets).
m SHyGAMP converged to the Bayes' Error Rate (BER) faster than K-means and CLOMPR+-+.
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