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Signal Recovery

m We consider problems where we want to

m recover a “structured” signal € CV
m from “corrupted’ measurements y € CM
m of hidden linear-transform outputs z = Az € CM.

m The measurement corruption mechanism might be
m additive: y; = z; + w;, but possibly non-Gaussian
m quantized: y; = sgn(z; + w;), such as in classification & one-bit CS
m phase-less: y; = |z; + w;|, such as in phase retrieval
m Poisson, such as in photon-limited imaging, etc...

m The signal & might be

m (approximately) sparse, such as in compressive sensing
m finite alphabet, such as in communications
m constant modulus, etc...
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I
Generalized Linear Model (GLM)

We take a statistical approach to signal recovery:
m corruption modeled using a likelihood fxn p(y|z) with z = Ax
m signal modeled using a prior distribution p(x)

The posterior tells all we can learn about @, but it's not computable:

p(z) p(y|Az)

p(zly) = o)

Instead, we usually settle for point estimates of x like the

m MAP estimate: Zmyap = arg maxy p(x|y)

m MMSE estimate: Zymse = E{z|y} = f(CN x p(x|y)de
and perhaps marginal uncertainty information like var{z;|y}.
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Assumptions

In this talk, we assume a
m separable prior: p(x) = [T, p(z;)
m separable likelihood: p(y|z) = Hf\il p(Yilz)

Then MAP estimation reduces to a familiar optimization problem:
Tmap = arg mgxp(m]y)
= argmax Inp(x|y)
xr

= argmax Zf\il Inp(y; ‘ [Ax];) + Z;V:1 Inp(z;).

~
data fidelity regularization

E.g., AWGN & Laplace = Zyap = argming ||Az — y||3 + ||z

But often the prior and/or likelihood are not log-concave!

Phil Schniter (Ohio State & Duke iiD) VAMP for the GLM Asilomar'16 4 /15



-]
Existing Methods

Convex optimization

m MAP only
m need log-concave prior & likelihood

Sparse Bayesian Learning (SBL) & Expectation Propagation (EP)
m posterior must be log-concave ()
m additional constraints on prior & likelihood
m per-iteration matrix inverse (slow) &

MCMC

m slow, convergence difficult to assess ()

B Generalized Approximate Message Passing (GAMP)
m any prior & likelihood ©
® no matrix inverses (fast) ©
m guaranteed only under large, i.i.d. Gaussian A
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Proposed Method

We propose to ...

Rewrite z = Ax as 0= [A —I] E] £ AT, thereby converting
the GLM problem to a standard linear regression problem:
Recover T fromy = AT + w with w ~ N(0,¢€l),

where now y = 0 and € — 0.

Apply the recently proposed “Vector AMP" algorithm,! tracking
separate divergences on « and z.

1Rangan,Schniter,FIetcher—arXiv:1610.03082
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Vector AMP for Standard Linear Regression

To recover x from y = Ax + w with w ~ N(0,021) and i.id. z; ~ p(z;)...

(1a)
(1b)
(1)
(1d)
(22)
(2b)
(2¢)
(2d)

Initialize 71 = 0 and o1 = oco.
Repeat for t =1,2,3,...
@, =1(71;01) LMMSE estimation
T = <7~7’ (?t; Et)> divergence
re = (T — Te7) /(1 — T2) Onsager correction
o7 =577)(1 —71) variance update
Ty =n(re;o1) denoising
Tt = <77/(”’t; Ut)> divergence
Tip1 = (@ —mere) /(1 — 72) Onsager correction
Gro1 = oimi/(1 —7) variance update
where
x;p(xj|re;)dz; MMSE
in(ri )], = {1 EPE I
arg max,; p(z;|ri;) MAP

1
W(F5) =V (Diag(s)2 n %IR) (Diag(s)UTy n %VT%)

with SVD A = U Diag(s)V"
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Why call this “Vector AMP" ?

1) Can be derived using an approximation of message passing on a factor
graph, now with vector-valued variable nodes.

2) Performance rigorously characterized by a scalar state-evolution? under
certain large random A:

SVDA=USV"T

m U is deterministic
m S is deterministic

m V is uniformly distributed on the group of orthogonal matrices
“A is right rotationally invariant.”

Thus the VAMP state evolution holds for “almost any A."

2 Rangan,Fletcher,Schniter-16
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Connections to the Replica Prediction

m The replica method from statistical physics is often used to characterize
the average behavior of large disordered systems.

m Although not fully rigorous, replica predictions are usually correct.

m For estimation of i.i.d. & from measurements y = Ax + N(0;021)
under large right-rotationally invariant A:

The MMSE &(o?) should satisfy the fixed-point equation’
/o7 = RATA/afu(_S(UtQ))a
where Rc () denotes the R-transform of matrix C' and
2
E(of) = E{[n(z; + N(0,09);07) — 2;]"}.
m It can be shown that VAMP's SE fixed-points obey the above equation.

m Thus, assuming that the replica prediction is correct, VAMP will
generate MMSE estimates whenever these fixed-points are unique.

3Tulino,Caire,Verdu,Shamai—TIT'13
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Numerical Results: 1-Bit Compressive Sensing
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VAMP is robust to ill-conditioned A; GAMP is not.
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Numerical Results: 1-Bit Compressive Sensing
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VAMP is much faster than damped GAMP.
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Non-parametric Estimation

m So far we have considered estimating @ from
y ~p(y|z;0,) where z=Ax and z ~ p(x;0,),

where @, and 6, are parameters of the likelihood and prior.

m What if 8, and @, are unknown? Can we learn them from y?

m Yes! The “EM-VAMP" approach* can be directly applied.

*Fletcher,Schniter—arXiv:1602.08207
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Numerical Results: Nonparametric 1-Bit CS

Learning both o2 and BG parameters:
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EM-VAMP performs near oracle VAMP even with ill-conditioned A.
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Numerical Results: Nonparametric 1-Bit CS

Learning both o2 and BG parameters:
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EM-VAMP slightly slower than VAMP but much faster than EM-GAMP.
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Conclusions

m We proposed a new approach for inference under generalized linear
models (GLMs).

m Applications include 1-bit compressive sensing, binary classification,
(compressive) phase retrieval, photon-limited imaging, etc.

m Our approach builds on the recently proposed “vector AMP" algorithm,
which (unlike AMP) is robust to the choice of measurement operator A.

m After an initial SVD, our approach consumes only two matrix-vector
multiplications per iteration and converges in ~ 10 iterations.

m QOur approach can be easily extended to the nonparametric case, where
the likelihood and/or prior have unknown parameters, via EM-VAMP.

m In the future, we hope to rigorously prove the state evolution of
VAMP-GLM and analyze the performance of EM-VAMP-GLM.
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