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Signal Recovery

We consider problems where we want to

recover a “structured” signal x ∈ C
N

from “corrupted” measurements y ∈ C
M

of hidden linear-transform outputs z = Ax ∈ C
M .

The measurement corruption mechanism might be

additive: yi = zi + wi, but possibly non-Gaussian
quantized: yi = sgn(zi + wi), such as in classification & one-bit CS
phase-less: yi = |zi + wi|, such as in phase retrieval
Poisson, such as in photon-limited imaging, etc...

The signal x might be

(approximately) sparse, such as in compressive sensing
finite alphabet, such as in communications
constant modulus, etc...
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Generalized Linear Model (GLM)

We take a statistical approach to signal recovery:

corruption modeled using a likelihood fxn p(y|z) with z = Ax

signal modeled using a prior distribution p(x)

The posterior tells all we can learn about x, but it’s not computable:

p(x|y) =
p(x) p(y|Ax)

p(y)
.

Instead, we usually settle for point estimates of x like the

MAP estimate: x̂MAP = argmaxx p(x|y)

MMSE estimate: x̂MMSE = E{x|y} =
∫
CN x p(x|y)dx

and perhaps marginal uncertainty information like var{xj |y}.
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Assumptions

In this talk, we assume a

separable prior: p(x) =
∏N

j=1
p(xj)

separable likelihood: p(y|z) =
∏M

i=1
p(yi|zi)

Then MAP estimation reduces to a familiar optimization problem:

x̂MAP = argmax
x

p(x|y)

= argmax
x

ln p(x|y)

= argmax
x

∑M
i=1

ln p
(
yi
∣∣ [Ax]i

)
︸ ︷︷ ︸

data fidelity

+
∑N

j=1
ln p(xj)︸ ︷︷ ︸

regularization

.

E.g., AWGN & Laplace ⇒ x̂MAP = argminx ‖Ax− y‖2
2
+ λ‖x‖1.

But often the prior and/or likelihood are not log-concave!
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Existing Methods

1 Convex optimization

MAP only ©..⌢
need log-concave prior & likelihood ©..⌢

2 Sparse Bayesian Learning (SBL) & Expectation Propagation (EP)

posterior must be log-concave ©..⌢
additional constraints on prior & likelihood ©..⌢
per-iteration matrix inverse (slow) ©..⌢

3 MCMC

slow, convergence difficult to assess ©..⌢

4 Generalized Approximate Message Passing (GAMP)

any prior & likelihood ©..⌣
no matrix inverses (fast) ©..⌣
guaranteed only under large, i.i.d. Gaussian A ©..⌢
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Proposed Method

We propose to . . .

1 Rewrite z = Ax as 0 =
[
A −I

] [x
z

]
, Ax, thereby converting

the GLM problem to a standard linear regression problem:

Recover x from y = Ax+w with w ∼ N (0, ǫI),
where now y = 0 and ǫ → 0.

2 Apply the recently proposed “Vector AMP” algorithm,1 tracking
separate divergences on x and z.

1Rangan,Schniter,Fletcher—arXiv:1610.03082
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Vector AMP for Standard Linear Regression

To recover x from y = Ax+w with w ∼ N (0, σ2
wI) and i.i.d. xj ∼ p(xj) . . .

Initialize r̃1 = 0 and σ̃1 = ∞.

Repeat for t = 1, 2, 3, . . .

x̃t = η̃
(
r̃t; σ̃t

)
LMMSE estimation (1a)

τ̃t =
〈
η̃
′
(
r̃t; σ̃t

)〉
divergence (1b)

rt = (x̃t − τ̃tr̃t)/(1− τ̃t) Onsager correction (1c)

σ2
t = σ̃2

t τ̃t/(1− τ̃t) variance update (1d)

x̂t = η (rt;σt) denoising (2a)
τt =

〈
η
′(rt;σt)

〉
divergence (2b)

r̃t+1 = (x̂t − τtrt)/(1− τt) Onsager correction (2c)

σ̃2
t+1 = σ2

t τt/(1− τt) variance update (2d)

where

[η
(
rt;σt

)
]
j
=

{∫
xjp(xj |rtj)dxj MMSE

argmaxxj
p(xj |rtj) MAP

with p(xj |rtj) ∝ p(xj)N (xj ; rtj , σ
2
t )

η̃
(
r̃t; σ̃t

)
= V

(
Diag(s)2 +

σ2

w

σ̃2

t

IR

)
−1 (

Diag(s)UTy +
σ2

w

σ̃2

t

V Tr̃t

)

with SVD A = U Diag(s)V H
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Why call this “Vector AMP”?

1) Can be derived using an approximation of message passing on a factor
graph, now with vector-valued variable nodes.

2) Performance rigorously characterized by a scalar state-evolution2 under
certain large random A:

SVD A = USV T

U is deterministic

S is deterministic

V is uniformly distributed on the group of orthogonal matrices

“A is right rotationally invariant.”

Thus the VAMP state evolution holds for “almost any A.”

2
Rangan,Fletcher,Schniter–16
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Connections to the Replica Prediction

The replica method from statistical physics is often used to characterize
the average behavior of large disordered systems.

Although not fully rigorous, replica predictions are usually correct.

For estimation of i.i.d. x from measurements y = Ax+N (0;σ2

wI)
under large right-rotationally invariant A:

The MMSE E(σ2

t ) should satisfy the fixed-point equation3

1/σ2

t = R
A

T
A/σ2

w
(−E(σ2

t )),

where RC(·) denotes the R-transform of matrix C and

E(σ2

t ) , E
{[

η
(
xj +N (0, σ2

t );σ
2

t

)
− xj

]
2
}
.

It can be shown that VAMP’s SE fixed-points obey the above equation.

Thus, assuming that the replica prediction is correct, VAMP will
generate MMSE estimates whenever these fixed-points are unique.
3Tulino,Caire,Verdu,Shamai—TIT’13
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Numerical Results: 1-Bit Compressive Sensing
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N = 512
M/N = 4

A = U Diag(s)V T

U ,V drawn uniform
si/si−1 = ρ ∀i
ρ determines κ(A)

xj ∼Bernoulli-Gaussian
Pr{xj 6= 0} = 1/32

SNR= 40dB

VAMP is robust to ill-conditioned A; GAMP is not.
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Numerical Results: 1-Bit Compressive Sensing
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U ,V drawn uniform
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ρ determines κ(A)

xj ∼Bernoulli-Gaussian
Pr{xj 6= 0} = 1/32

SNR= 40dB

VAMP is much faster than damped GAMP.
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Non-parametric Estimation

So far we have considered estimating x from

y ∼ p(y|z;θz) where z = Ax and x ∼ p(x;θx),

where θz and θx are parameters of the likelihood and prior.

What if θz and θz are unknown? Can we learn them from y?

Yes! The “EM-VAMP” approach4 can be directly applied.

4Fletcher,Schniter—arXiv:1602.08207
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Numerical Results: Nonparametric 1-Bit CS

Learning both σ2

w and BG parameters:
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EM-VAMP performs near oracle VAMP even with ill-conditioned A.
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Numerical Results: Nonparametric 1-Bit CS

Learning both σ2

w and BG parameters:
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A = U Diag(s)V T

U ,V drawn uniform
si/si−1 = ρ ∀i
ρ determines κ(A)

xj ∼Bernoulli-Gaussian
Pr{xj 6= 0} = 1/32

SNR= 40dB

EM-VAMP slightly slower than VAMP but much faster than EM-GAMP.
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Conclusions

We proposed a new approach for inference under generalized linear
models (GLMs).

Applications include 1-bit compressive sensing, binary classification,
(compressive) phase retrieval, photon-limited imaging, etc.

Our approach builds on the recently proposed “vector AMP” algorithm,
which (unlike AMP) is robust to the choice of measurement operator A.

After an initial SVD, our approach consumes only two matrix-vector
multiplications per iteration and converges in ∼ 10 iterations.

Our approach can be easily extended to the nonparametric case, where
the likelihood and/or prior have unknown parameters, via EM-VAMP.

In the future, we hope to rigorously prove the state evolution of
VAMP-GLM and analyze the performance of EM-VAMP-GLM.
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