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mmWave Communications

Potential:1

Huge amount of bandwidth available → Huge throughput?

Many antennas fit in a small form-factor → Massive MIMO?

Challenges:

Path-loss/shadowing are ∼ 40dB worse than in microwave bands.

Huge bandwidth leads to serious implementational issues.

1
S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges” Proc.

IEEE, Mar. 2014.

Phil Schniter (OSU) mmW the Sparse Way Asilomar — Nov’14 2 / 18



mmWave Channel Sparsity

Physical measurements in dense urban NLOS environments suggest
that mmW channels are extremely sparse.2

Can expect at most 3-4 clusters, with very little angle/delay-spread
per cluster.

2
M. Akdeniz, Y. Liu, S. Sun, S. Rangan, T. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular

capacity evaluation,” IEEE JSAC, June 2014
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mmW uses Massive Arrays

To counter path-loss, massive arrays are used at both Tx and Rx.

The goal is beamforming gain, not spatial multiplexing gain. (These
systems are power-limited, not bandwidth-limited.)

Narrow beams also reduce fading, multipath, and interference.
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Contributions

We propose...

sparsity-exploiting low-complexity space-time channel estimation,

mutual-information-maximizing beamforming & waterfilling,

aperture shaping to ensure that physical sparsity manifests as MIMO
channel sparsity.
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System Model

N ×Nr matrix of received samples at block t:

Y t =

Nd−1
∑

d=0

JdXtHd +W t

where
Jd : cyclic d-delay matrix

Xt : N ×Nt transmitted signal at block index t

Hd : Nt ×Nr MIMO channel at delay d

W t : AWGN of variance νw
and

Nd : channel delay spread

N : length of block transmission (plus Nd-length cyclic prefix)

Nt : number of transmit antennas

Nr : number of receive antennas.
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MIMO Channel Models

Per-path channel parameters:

(βl, τl, θt,l, θr,l) = (gainl, delayl, transmit-anglel, receive-anglel)

MIMO channel matrix at delay d:

Hd =
L
∑

l=1

βl psrrc(d Tc − τl)fNt
(θt,l)fNr

(θr,l)
H

note : τl, θt,l, θr,l are not discrete!

Virtual3 MIMO channel matrix at delay d:

Gd = FH
Nt
HdFNr

FNt ,FNr : unitary DFT matrices.
Nt

Nr

Nd

3
A. M. Sayeed, “Deconstructing multi-antenna fading channels,” IEEE TSP, Oct. 2002.
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Sparsity of the Virtual MIMO Channel

The elements of Gd are the complex channel gains at discrete transmit
and receive angles and discrete delay d.

Example of virtual
MIMO coefficients
due to a single path
(Nt = 11 = Nr):
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Sparse physical scattering does not yield sparse virtual channel coefs!

Phil Schniter (OSU) mmW the Sparse Way Asilomar — Nov’14 8 / 18



The Shaped Virtual MIMO Channel

We can restore angle-domain sparsity via
aperture shaping,4 i.e., windowing of the
transmit and receive antenna gains:

Ḡd = FH
Nt
diag(wt)Hddiag(w

∗

r )FNr

where max-SINR windows wt,wr are solved
via a generalized-eigenvector problem.

signal

don’t care

interference
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4
P. Schniter and A. M. Sayeed, “A sparseness-preserving virtual MIMO channel model,” Proc. CISS, 2004.
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Training Sequence Design

To facilitate low-complexity channel estimation, we propose to

1 construct the space-time training signal as Xt = FH
NStFNt , where

St has i.i.d entries in {1, j,−1,−j},
2 FFT-process the observations, giving the observation structure

FNY tFNr = AWGN(νw)

+
√
N
[

diag(st,1)FN×Nd
· · · diag(st,Nt)FN×Nd

] [

g1 · · · gNr

]

where gj ∈ C
NdNt×1 contains virtual chan coefs for jth Rx antenna,

3 and, if needed, stack measurements across T blocks, giving a total of
NT scalar measurements per NdNt scalar unknowns.

Note the near isometry & fast implementation of the training operator.
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To Compress or Not To Compress?

Sub-Nyquist regime (NT < NtNd):

Low training overhead.

Requires a sparse reconstruction algorithm.

Super-Nyquist regime (NT ≥ NtNd):

Higher training overhead.

Allows classical linear (e.g., LS, LMMSE) estimation.

Sparse reconstruction can improve performance at very low SNR.

For example, 802.11ad (60GHz) standard uses N = 512 and Nd = 128.
So Nt = 64 Tx antennas ⇒ T ≥ 16 blocks for Nyquist sampling.
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Numerical Examples

System parameters:

N = 512 block length

Nd = 128 channel delay spread

Nt = 64 transmit antennas

Nr = 64 receive antennas (⇒ SNR gain =18dB)

SNR ∼ −8dB (⇒ subcarrier SNR ∼ 10dB)

L = 4 i.i.d Rayleigh paths with uniform delay, Tx angle, Rx angle

Two training lengths considered:

T ∈
{

1 block ⇒ 1

16
Nyquist rate

16 blocks ⇒ Nyquist rate
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Numerical Example: Channel Estimation (without shaping)
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Sparse reconstruction
(via LASSO) shows
significant gain over
LMMSE at both
sub-Nyquist (T = 1)
and Nyquist (T = 16)
sampling rates.

Phil Schniter (OSU) mmW the Sparse Way Asilomar — Nov’14 13 / 18



Numerical Example: Channel Estimation (with shaping)
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Aperture shaping
yields 2-5dB reduction
in LASSO’s channel
estimation error.
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Beamforming and Waterfilling

1 Construct the data matrix as Xt = FH
N diag(

√
p)stb

HFNt with

power allocation p ∈ C
N×1, QAM st, and beamformer b ∈ C

Nt×1.

2 The observations decouple! A sufficient statistic to estimate st,n is

[FNY tFNr ]n,: = st,n
√
pnb

HGn + AWGN(νw)

where Gn ∈ C
Nt×Nr is the MIMO channel at frequency bin n.

3 Can solve for mutual-information maximal beamformer/powers via

argmax
p,b

N
∑

n=1

log2

(

1 + pn
bHGnG

H
nb

νw

)

s.t.

{

∑N−1

n=0
pn=N, pn ≥ 0,

‖b‖2 = 1.

In practice, use estimated channel Ĝn for Rx combining and (p, b) design.
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Numerical Example: Spectral Efficiency (without shaping)
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Beamforming &
waterfilling is
near-optimal at
low SNR.

LASSO performs
nearly as well as
perfect CSI, even
under compressed
pilots (T=1).

LMMSE is
significantly
suboptimal except
at high SNR and
Nyquist-rate pilots
(T=16).
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Numerical Example: Spectral Efficiency (with shaping)
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Aperture shaping
yields 0.5dB SNR gain
in the T=1 case,
closing the gap
between LASSO and
perfect-CSI.
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Summary

Considered mmW systems, which operate at very low SNR using
massive antenna arrays at transmitter and receiver.

Proposed an aperture shaping scheme that promotes sparsity in the
virtual MIMO channel coefficients.

Proposed a low-complexity space-time channel estimation scheme
that exploits the extreme sparsity of mmW channels.

Proposed a beamforming + waterfilling scheme that is near-optimal
at low SNR.

Numerical experiments suggest that LASSO channel estimates yield
near-optimal spectral efficiency over a wide SNR range, even under
significant pilot compression.

Phil Schniter (OSU) mmW the Sparse Way Asilomar — Nov’14 18 / 18


