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Abstract—We propose strategies for mmWave communications that

exploit the inherent sparsity of mmWave channels in the angle and delay

domains. In particular, we propose the use of aperture shaping to ensure

a sparse virtual-domain MIMO channel representation; fast FFT-based

modulation and demodulation schemes to expose the virtual-channel

coefficients; a pilot design that facilitates fast LASSO-based sparse-

channel estimation; and spectrally efficient precoding and decoding,

via the Lanczos algorithm and waterfilling over both frequency and

angle. Numerical experiments suggest that our approach comes close

to achieving the perfect-CSI capacity of the mmWave channel.

I. INTRODUCTION

The vast majority of today’s wireless communications systems

operate in the microwave spectrum (i.e., <3 GHz), which is by

now a crowded, limited resource. Yet 200× more bandwidth is

available in the millimeter-wave (mmWave) spectrum from 30-300
GHz, offering the potential for huge increases in throughput [1].

However, communicating in the mmWave spectrum is challenging for

several reasons. For one, mmWave signal propagation is impaired by

severe path-loss and shadowing (e.g., recent urban experiments show

that path losses are 40 dB worse at 28 GHz compared to 2.8 GHz [2]).

Furthermore, Gb/sec throughput is fundamentally challenging from a

signal-processing perspective, if billions of bits are to be processed

and decoded each second.

A natural approach to counteracting this severe mmWave path-

loss is to use many (e.g., ≥ 32) antennas at both the transmit and

receive sides. With many antennas, the transmitter (and receiver) can

exploit the angle domain, e.g., by focusing energy (and attention) on

the dominant propagation paths. In this regard, an important property

of mmWave channels is their extreme sparsity in both the angle

and delay domains [2]–[5]. For example, measurement campaigns

in dense-urban NLOS environments have revealed that mmWave

channels typically exhibit only 3-4 scattering clusters, with relatively

little delay/angle spreading within each cluster [5].

In this paper, we investigate whether angle and delay-domain

sparsity can be exploited for the design of computationally and spec-

trally efficient many-antenna (i.e., “massive”) multiple-input multiple-

output (MIMO) systems. To this end, we propose the use of aperture

shaping to ensure a sparse virtual-domain MIMO channel repre-

sentation; fast FFT-based modulation and demodulation schemes to

expose the virtual-channel coefficients; a pilot design that facilitates

fast LASSO-based sparse-channel estimation; and spectrally efficient

precoding and decoding, via the Lanczos algorithm and waterfilling

over both frequency and angle. Numerical experiments suggest that

our approach comes close to achieving the perfect-CSI capacity of

the mmWave channel.

Our work is preliminary in that assumes the use of high-precision

analog-to-digital converters (ADCs) at each receive-antenna output,
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which is impractical due to the high cost and power consumption of

multi-Gb/sec ADCs. However, we believe that the sparsity-leveraging

ideas proposed in this work can be extended (with minor modification)

in two practical directions: continuous aperture phased (CAP) MIMO

[6] and digital beamforming using one-bit ADCs [7]. For example,

in [6], a discrete lens array is used to enable beamspace MIMO [8],

whereas in our work FFTs are used for this purpose.

II. SYSTEM MODEL

We consider a communication system that uses Nt transmit anten-

nas, Nr receive antennas, and cyclic-prefix (CP) block-transmission

with N channel uses per block and a CP length of Nd. As an example,

the 802.11ad 60 GHz standard [9] uses N = 512 and Nd = 128.

Suppose that, after discarding the CP, the received complex-

baseband samples for block t ∈ Z are collected into the matrix

Y t ∈ C
N×Nr , where the jth column represents the samples collected

by the jth receive antenna. Assuming linear propagation, we can write

Y t =

Nd−1∑

d=0

JdXtHd +W t, (1)

where Jd is the d-circulant-delay matrix, Xt ∈ C
N×Nt contains

the transmitted samples of block t, Hd ∈ C
Nt×Nr is the MIMO

channel response at delay d, and W t is additive white Gaussian

noise (AWGN) of variance νw.

The delay-d MIMO channel matrix can be written as

Hd =
L∑

l=1

βl prc(d Ts − τl)fNt
(θt,l)fNr

(θr,l)
H, (2)

where L is the number of scattering clusters, prc(τ) is the raised

cosine (RC) pulse for Ts-spaced signaling evaluated at τ seconds,

βl ∈ C is the gain of the lth cluster, τl ∈ R is the delay of the

lth cluster, θt,l ∈ [0, 2π) and θr,l ∈ [0, 2π) are the transmit and

receive angles associated with the lth cluster, and fNt
(θt,l) ∈ C

Nt×1

and fNr
(θr,l) ∈ C

Nr×1 are the transmit and receive array response

vectors. With half-wavelength space uniform linear arrays (ULA),

they become (using j ,
√
−1)

fNt
(θt,l) =

[
1 ejθt,l · ejθt,l(Nt−1)

]H
/
√
Nt (3)

fNr
(θr,l) =

[
1 ejθr,l · ejθr,l(Nr−1)

]H
/
√
Nr. (4)

Under the same ULA assumption, the corresponding virtual

channel [8] matrix Gd ∈ C
Nt×Nr is defined as

Gd , F
H
Nt
HdFNr (5)

where FNt and FNr denote unitary DFT matrices of sizes Nt and Nr,

respectively. We can then rewrite (1) in terms of the virtual channel



coefficients as

Y t =

Nd−1∑

d=0

JdXtFNtGdF
H
Nr

+W t. (6)

Note that, if the angles associated with the lth scattering cluster

were of the form (θt,l, θr,l) = (il
2π
Nt

, jl
2π
Nr

) with il ∈ {0, . . . , Nt −1}
and jl ∈ {0, . . . , Nr − 1}, then the contribution from this cluster

would manifest exclusively in the single virtual channel coefficient

[Gd]il,jl . This can be seen from the fact that

Gd =

L∑

l=1

βl prc(d Ts − τl)F
H
Nt

fNt
(θt,l)fNr

(θr,l)
H
FNr , (7)

which implies

[Gd]i,j =
L∑

l=1

e
j
Nt−1

2
(θt,l−

2π
Nt

i)
sin(Nt

2
(θt,l − 2π

Nt
i))

Nt sin(
1
2
(θt,l − 2π

Nt
i))

(8)

×
e

j
Nr−1

2
(θr,l−

2π
Nr

j)
sin(Nr

2
(θr,l − 2π

Nr
j))

Nr sin(
1
2
(θr,l − 2π

Nr
j))

βl prc(d Ts − τl)

Furthermore, if all L scattering clusters had this property, then the

matrix Gd would be sparse with ≤ L non-zero coefficients.

In practice, however, the scattering angles do not lie on these

uniform grids. Rather, they have the form (θt,l, θr,l) for non-integer

θt,lNt/(2π) and/or θr,lNr/(2π). In this case, while the scattering

energy is most concentrated in the element [Gd]il,jl , where il =
⌊θt,lNt/(2π)⌉ and jl = ⌊θr,lNr/(2π)⌉, it “leaks” out to all other

elements in Gd. As a result, the virtual channel matrix Gd is generally

non-sparse. A similar leakage phenomenon is well-known in the

context of spectral analysis [10, §10.2].

With these considerations in mind, the model (6) can be inter-

preted as performing a critical sampling of the transmit and receive

angle spaces (uniformly over Nt and Nr locations, respectively). In

addition, (6) explicitly accounts for delay spreading. In contrast, the

recent mmWave beamforming papers [6], [11], [12] used oversam-

pling in the angular domain and/or ignored delay-spread.

III. APERTURE SHAPING

Consider the previously described MIMO system, but where the

transmitter applies a fixed gain of αt,i to the ith antenna and the

receiver applies a fixed gain of αr,j to the jth antenna. In the sequel,

we will refer to this practice as aperture shaping. The system model

(1) then generalizes to

Y t =

(Nd−1∑

d=0

JdXt D(αt)Hd +W t

)
D(αr), (9)

where D(w) is the matrix obtained by diagonalizing the vector w.

If we define the shaped virtual MIMO channel matrix as

Gd , F
H
Nt

D(αt)Hd D(αr)FNr , (10)

then we can rewrite (9) as

Y t =

Nd−1∑

d=0

JdXtFNtGdF
H
Nr

+W t D(αr). (11)

In [13], it was proposed to design αt and αr so that the sparsity

in Gd is enhanced. We now briefly summarize this approach. For

the lth scattering cluster, recall that the dominant angle bins are il ,
⌊θt,lNt/(2π)⌉ and jl , ⌊θr,lNr/(2π)⌉. We are thus interested in

suppressing the contributions of the lth cluster to the bin pairs outside

of (il, jl). For this purpose, let us define the “signal” energy

Es(αt,αr) , E

{∣∣∣∣
L∑

l=1

Nd−1∑

d=0

[Gd]il,jl

∣∣∣∣
2}

(12)

and the “interference” energy

Ei(αt,αr) , E

{∣∣∣∣
L∑

l=1

∑

i/∈Il

∑

j /∈Jl

Nd−1∑

d=0

[Gd]i,j

∣∣∣∣
2}

, (13)

where Il is a small neighborhood about il, Jl is a small neighborhood

about jl, and the expectations are with respect to the scattering

parameters βl, θt,l, θr,l and τl. In [13], it was proposed to maximize

the signal-to-interference ratio (SIR), i.e., to design the shaping

coefficients as

arg max
αt,αr

Es(αt,αr)

Ei(αt,αr)
(14)

under the assumption of i.i.d. scattering with angles θt,l and θr,l

uniformly distributed over [0, 2π) and delays τl sufficiently far from

the endpoints of the interval [0, NdTs) to prevent edge effects. In

the latter case, the effects of delay spreading can be ignored in

shaping design. The optimal windows αt,αr can then be computed

as the solutions to a generalized eigenvalue problem. Due to space

limitations, we refer the reader to [13] for additional details.

With aperture shaping, the lth scattering cluster is expected to

contribute to only a small neighborhood of transmit-angle bins Il and

receive-angle bins Jl. (See Fig. 1 for an example.) Similarly, due to

RC temporal shaping, each scattering cluster is expected to contribute

to only a small neighborhood of delay bins. For example, if the

neighborhood size was 3 along each dimension, then each scattering

cluster would contribute significantly to only 3×3×3 = 27 bins out

of a total of NdNtNr bins in {Gd}Nd−1
d=0 . In this case, the sparsity

rate of the shaped virtual channel would be at most 27L/(NdNtNr).
So, if L = 4 (as suggested by [5]), Nd = 128 (as in 802.11ad), and

Nt = Nr = 64, then the sparsity rate would be < 0.00021.
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Fig. 1. Virtual-channel coefficient matrix Gd without aperture shaping (left)
and with SIR-optimal aperture-domain windowing (right), for L = 2 scattering
paths, Nt = Nr = 11 antenna uniform linear arrays without delay spread.

IV. MODULATION AND DEMODULATION

In the sequel, we propose channel-estimation and precoding

strategies that are both based on the following FFT-based approach

to modulation and demodulation. For modulation, we propose to

structure the transmitted matrix as

Xt = F
H
NStF

H
Nt
, (15)

where the structure of St will be specified in the sequel. Here, the

temporal IFFT F H
N amounts to OFDM precoding, while the transmit-

aperture FFT F H
Nt

is used to expose the virtual channel coefficients,



as will be seen. For demodulation, we propose to FFT-process the

received samples Y t both temporally and across the receive-aperture.

According to (11), this yields

Y t , FNY tFNr (16)

=

Nd−1∑

d=0

FNJdF
H
NSt

Gd︷ ︸︸ ︷
F

H
Nt

D(αt)Hd D(αr)FNr

+ FNW t D(αr)FNr . (17)

We now show that (17) can be simplified. Denoting the circulant

matrix with first column x ∈ C
N×1 by C(x), we know [10]

C(x) = F
H
N diag(

√
NFNx)FN . (18)

Thus, since Jd = C(δd), where δd denotes the dth column of the

identity matrix, we have that

FNJdF
H
N = FNF

H
N diag(

√
NFNδd)FNF

H
N (19)

=
√
N diag(fN,d), (20)

where fN,d , FNδd is the dth column of FN . Furthermore, we

can write StGd =
∑Nt−1

i=0 st,:,ig
T
d,i, where st,:,i is the ith column

of St and gT
d,i ∈ C

Nr is the ith row of Gd, implying

∑Nd−1
d=0 diag(fN,d)StGd

=
∑Nd−1

d=0 diag(fN,d)
∑Nt=1

i=0 st,:,i g
T
d,i (21)

=
∑Nt−1

i=0 diag(st,:,i)
∑Nd−1

d=0 fN,d g
T
d,i (22)

=
[
diag(st,:,0)FN · · · diag(st,:,Nt−1)FN

]
G (23)

where FN contains the first Nd columns of FN and

G ,





gT
0,0
...gT

Nd−1,0

...

gT
0,Nt−1

...gT
Nd−1,Nt−1





∈ C
NdNt×Nr . (24)

Applying these facts to (17), we find

Y t =
√
N
[
diag(st,:,0)FN · · · diag(st,:,Nt−1)FN

]
︸ ︷︷ ︸

, At

G+W t

(25)

where W t , FNW t D(αr)FNr contains Gaussian noise that is

spectrally white but possibly correlated across receive-angle bins due

to αr. In particular, each column of W t is AWGN with variance

νw , νw‖αr‖2/Nr, while each row of W t is zero-mean Gaussian

with covariance

Rw , νwF
H
Nr

D(|αr|2)FNr , (26)

where |αr|2 is the component-wise magnitude-square of αr.

V. CHANNEL ESTIMATION

We now propose a training-based channel estimation scheme that

leverages the sparsity of the virtual MIMO channel G. Assuming the

channel is time-invariant over blocks t ∈ {1, . . . , T}, we construct

Y , [Y
T
1, . . . ,Y

T
T ]

T, A , [AT
1, . . . ,A

T
T ]

T ∈ C
NT×NdNt , and W ,

[W
T
1, . . . ,W

T
T ]

T, so that

Y = AG+W . (27)

In (27), the ratio of observations to unknowns is NT/(NdNt), so that

when T < NdNt/N the problem becomes one of compressed channel

sensing [14]. Ignoring the possible correlation across the columns of

W , we separately estimate gj , the jth column of G, from yj , the

jth column of Y , noting that

yj = Agj +wj , (28)

where wj is νw-variance AWGN. Leveraging the sparsity in gj , we

propose to use LASSO [15] for estimation:

ĝj = argmin
gj

‖gj‖1 s.t. 1
NT

‖yj−Agj‖2 ≤ νw. (29)

For good estimation performance, we desire that the linear map

A : CNdNt → C
NT is approximately isometric, which occurs (with

high probability) when A is randomly constructed with pilots {st,n,i}
drawn i.i.d. uniform from {1, j,−1,−j}. Low estimation complexity

can be achieved through the use of a “first-order” LASSO solver

such as SPGL1 [16], noting that Agj can be computed using only

O
(
NtN logN

)
multiplies via FFTs when N is a power of 2.

As a baseline, we also consider the performance of linear mini-

mum mean-squared error (LMMSE) estimation, i.e.,

ĝj = A
H

(
AA

H +
νw

νgj

INT

)−1

yj (30)

for which the elements in gj were treated as if they were uncorrelated

with mean zero and variance νgj
= 1

NdNt
E{‖gj‖2}.

VI. PRECODING

Since the noise in W t is independent across rows, we can

decouple the decoding across subcarriers without loss of optimality.

Note that the nth row (or subcarrier) of Y t is

y
T
t,n =

√
N

[
st,n,0f

T

N,n · · · st,n,Nt−1f
T

N,n

]
G+w

T
t,n (31)

=
[
st,n,0, . . . , st,n,Nt−1

]
︸ ︷︷ ︸

, s
T
t,n,:





∑Nd−1
d=0 gT

d,0e
−j 2π

N
dn

...∑Nd−1
d=0 gT

d,Nt−1e
−j 2π

N
dn





︸ ︷︷ ︸
, G

T
n

+w
T
t,n,

(32)

where (with a slight abuse of notation) Gn ∈ C
Nr×Nt denotes the

virtual MIMO channel matrix associated with the nth subcarrier.

We consider linear precoding over Ns ≤ min(Nt, Nr) streams.

In this case, the signal modulated on the nth subcarrier is

st,n,: = Bnct,n ∈ C
Nt , (33)

where each element in ct,n ∈ C
Ns contains an independently

coded datastream (presumably coded over T ≫ 1 blocks t) and

Bn ∈ C
Nt×Ns is a suitable precoding matrix. Without loss of

generality, we assume that ct,n has an identity covariance matrix, after

which the power constraint
∑N−1

n=0 E{‖st,n,:‖2} ≤ Ps ∀t translates

to
∑N−1

n=0 ‖Bn‖2F ≤ Ps.

In the slow-fading case, the capacity of the system (conditioned

on the true channel G) for a given Ns is [17]

max
{Bn}:

∑
n ‖Bn‖2

F
≤Ps

N−1∑

n=0

log2 det
(
INs +B

H
nG

H
nR

−1
w GnBn

)
.

(34)

Furthermore, with the eigenvalue decomposition V nΛnV
H
n ,

G
H
nR

−1
w

Gn, the optimal precoders take the form

Bn = V n D(
√
pn), (35)



with powers pn = [pn,0, . . . , pn,Ns−1]
T that solve the well-known

waterfilling problem

max
{pn,i}

∑

n,i

log2
(
1 + λn,ipn,i

)
s.t. pn,i ≥ 0,

∑

n,i

pn,i ≤ Ps. (36)

The numerical experiments in Section VIII suggest that Ns = L is

sufficient to achieve capacity, where typically L ≪ min(Nt, Nr).

VII. DECODING UNDER IMPERFECT CSI

In practice, the true channel {Gn} is unknown at the transmitter

and receiver. Thus, it is natural to wonder to what extent channel

estimation error degrades throughput.

In our preliminary investigation of this question, we assume

that the channel estimate is available to both the receiver and

transmitter. This scenario might arise, e.g., with time-division-duplex

(TDD) operation and a reciprocal channel. We also assume that the

transmitter uses the channel estimate Ĝn as if it was correct, i.e., that

the precoder Bn is designed as in Section VI but with Ĝn used in

place of Gn. Our assumptions about the receiver are described next.

Without loss of generality, we assume that the receiver pre-

processes the observations yt,n from (32) using the invertible matrix

Û
H

nR
−1/2

w
, where R

−1/2

w
accomplishes noise-whitening and Ûn is

defined via the singular value decomposition

ÛnΣ̂nV̂
H

n , R
−1/2

w
Ĝn (37)

UnΣnV
H
n , R

−1/2

w
Gn. (38)

We note that, when Ns is small, the dominant singular values/vectors

can be efficiently computed via the Lanczos algorithm [18], which

reduces to the simple “power method” in the case that Ns = 1. In

any case, the pre-processed observations take the form

zt,n , Û
H

nR
−1/2

w
yt,n (39)

= Û
H

nR
−1/2

w
GnBnct,n +N (0, INr) (40)

= Û
H

nUnΣnV
H
nV̂ n D(

√
p̂n)︸ ︷︷ ︸

, Γn

ct,n +N (0, INr). (41)

Under perfect channel state information (CSI), Γn is diagonal, and

so the kth stream of ct,n can be independently decoded from the kth

component of zt,n without loss of optimality. In the general case,

Γn is non-diagonal, and so inter-stream interference exists. But Γn

is unknown, which complicates the application of standard multi-

user detection strategies like MMSE-SIC [17]. Thus, we assume that

independent stream decoding is used even with imperfect CSI. In this

case, (41) implies that the kth component of zt,n can be written as

zt,n,k = γn,k,kct,n,k + et,n,k, (42)

where (conditioned on Gn and Ĝn) the interference et,n,k ,∑
l 6=k γn,k,lct,n,l +N (0, 1) has variance 1 +

∑
l 6=k |γn,k,l|2 and is

statistically independent of γn,k,kct,n,k. From the mutual-information

perspective, the worst-case distribution for the interference et,n,k is

Gaussian [17]. Under Gaussian interference, the channel (42) supports

a throughput of log2(1+ |γn,k,k|2/(1+
∑

l 6=k |γn,k,l|2)) bits/sec/Hz.

Summing over all subcarriers n and streams k, a lower bound on the

total throughput is

I(G, Ĝ) ,

N−1∑

n=0

Ns−1∑

k=0

log2

(
1 +

|γn,k,k|2
1 +

∑
l 6=k |γn,k,l|2

)
. (43)

The average value of (43) is numerically investigated below.

VIII. NUMERICAL EXPERIMENTS

We now investigate the average performance of the proposed

system using the channel model (2) with raised-cosine parameter 1
and L = 4 i.i.d. scattering centers, each with delay τl, transmit angle

θt,l, and receive angle θr,l chosen uniformly at random, and with

Rayleigh fading gain βl. In particular, we investigate the performance

of aperture shaping (9) (relative to no shaping) and sparse channel

estimation (29) (relative to LMMSE estimation (30)) in terms of

both normalized mean-squared error (NMSE) and system throughput,

where for the latter we use the bound (43).

For our numerical study, we used block length N = 512 and

cyclic prefix length Nd = 128 (as in the 802.11ad 60 GHz standard

[9]), along with Nt = 64 transmit antennas and Nr = 64 receive

antennas. For channel estimation, we considered both the use of

T = 1 training block, which leads to a sub-Nyquist sampling rate

of NT/(NdNt) = 1/16 (i.e., compressed channel sensing), and

T = 16 training blocks, which leads to a Nyquist sampling rate of

NT/(NdNt) = 1. We considered SNR , E{‖AG‖2F }/E{‖W ‖2F }
in the interval [−15, 0] dB since, with the beamforming gain provided

by Nr = 64 receive antennas, this translates to subcarrier SNRs in

the interval [3, 18] dB.

Figure 2 shows the average channel-estimation NMSE for both

LASSO (blue) and LMMSE (green) estimators. The NMSE perfor-

mance of LASSO is far better than that of LMMSE, essentially

because LASSO is able to exploit the sparsity of the channel. For

example, the T = 1 traces (solid lines) show that LASSO is able to

accomplish successful compressed channel sensing, whereas LMMSE

is not. But even in the non-compressed case (T = 16, dashed lines),

LASSO exhibits a huge gain over LMMSE. Comparing the left and

right subplots in Fig. 2, we see that aperture shaping improves LASSO

by ≈ 1 dB when SNR = −15 dB and ≈ 6 dB when SNR = 0 dB,

essentially because shaping makes the channel sparser (recall Fig. 1)

and thus easier to estimate.

Figure 3 shows the average throughput (43) under LASSO (blue)

and LMMSE (green) channel estimators as well as perfect CSI

(black). There we see that the throughput under LASSO channel

estimates is close to that under perfect-CSI and much higher than

that under LMMSE channel estimates. More precisely, under Nyquist-

rate training (T = 16, dashed lines), the throughput achieved under

LASSO estimates is 96% without shaping but 98% optimal with

shaping, while the throughput achieved under LMMSE estimates is

only 32% optimal. Meanwhile, with compressed training (T = 1,

solid lines), the throughput achieved under LASSO estimates is 82%
optimal without shaping but 95% optimal with shaping, whereas the

throughput achieved under LMMSE estimates is only 2% optimal.

Thus, we conclude that aperture shaping brings a noticeable increase

in throughput due to its improvement of the underlying channel

estimates, especially when the number of training blocks T is few.

We note that, in practice, the use of few training blocks T will

lead to direct benefits in throughput beyond that which is visible in

Fig. 3, because the “slow-fading” metric (43) used for Fig. 3 does not

take the training overhead into account. A more precise understanding

of the relation between throughput and training overhead requires

assumptions on the training interval (and thus the channel coherence

time), which we postpone to future work.

Finally, we notice from Fig. 3 that the throughput attained via

beamforming (i.e., Ns = 1, “+” markers) is close to capacity, i.e.,

that attained via full spatial multiplexing (Ns = min(Nt, Nr) = 64,

“✷” markers), at very low SNR. Moreover, the throughput attained



with two streams (i.e., Ns = 2, “×” markers) is reasonably close to

the capacity over the full SNR range considered in Fig. 3. Finally,

although it is not directly visible from Fig. 3, at most 4 streams were

activated through waterfilling power allocation in the Ns = 64 case.

Thus, for this statistical channel model, it suffices to use Ns = 4
streams throughout the SNR range shown in Fig. 3. Given that there

were L = 4 scattering clusters, the optimality of Ns = 4 is not

surprising.
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Fig. 2. Average NMSE of LASSO and LMMSE channel estimates versus
SNR for T ∈ {1, 16} training blocks, with and without shaping.
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Fig. 3. Average throughput bound (43) versus SNR for LASSO, LMMSE,
and perfect channel estimates; for number of streams Ns ∈ {1, 2, 64}; and
for number of training blocks T ∈ {1, 16}; with and without shaping.

IX. CONCLUSIONS

In this work we proposed techniques for computationally and

spectrally efficient massive MIMO that exploit the inherent delay-

and angle-domain sparsity exhibited by mmWave channels. Our

approaches are based on the use of FFTs, across both time and

aperture, for low-complexity modulation, demodulation, and training-

based sparse-channel estimation. In addition, low-complexity Lanczos

methods were proposed for precoder and decoder design, waterfilling

for power allocation, and aperture shaping for sparsification of the

channel representation. Numerical experiments suggested that our

fast, pilot-aided designs come close to matching the spectral efficiency

of the perfect-CSI capacity-optimal system. In future work, we plan

to extend the approach presented here to the CAP-MIMO framework

from [6] and the one-bit digital beamforming framework from [7],

making it practically realizable.
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