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Uncoordinated Interference

* Typical Scenarios:

— Wireless

Networks:

Ad-hoc Networks, Platform Noise, non-communication sources
— Powerline Communication Networks:

Non-inte

e Statistical Model:

roperable standards, electromagnetic emissions

-~

Ti: comp. probabi

p(n) = Zﬂ'kN(n 0,7)

AEN :# of comp.

\%;: comp. variance J °l ' “ LLM[

( \ Two impulsive components:
Gaussian Mixture (GM) * 7% of time/20dB above background
* 3% of time/30dB above background
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OFDM Basics

~

LDPC
Coded

\ oIt ...

Source

Symbol

System Diagram

noise +

interference
Mappi f‘/ﬂ i
apping Inverse DFT > DFT
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/" Noise Model

ng =g;+1ij

\and ?:j -

. total noise
: background noise

. interference

GM or GHMM

/ Receiver Model \

°\Subchannels: Y. = H.S, + G + 1,

After discarding the cyclic prefix:
y=Hs+n=HF"'S +g+i
After applying DFT:

Y =Fy=FHF*S+Fn=HoS+ G

%
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OFDM Symbol Structure

4 Coding A & Data Tones )
* Added redundancy protects Y = HpSk + G +

against errors ) )
& * Symbols carry information

* Finite symbol constellation
\ J & Adapt to channel conditiory

[

et Temzs T Nl Tares A

Yir =Hpp+ Gi + 1 Yi =G+l

* Edge tones (spectral masking)
* Known sym.bol (P) * Guard and low SNR tones
* Used to estimate channel

\_ -/ \¢ Ignored in decoding )

pilots — linear channel estimation — symbol detection — decoding

But, there is unexploited information and dependencies
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Prior OFDM Designs
| Category | References | Method | Limitations ____

_ . [Haring2001] Time-domain signal e
Time-Domain

) estimation C
preprocessing . . o
(PP) [Zhidkov2008,  Time-domain signal
Tseng2012] .
thresholding
[Caire2008, Compressed °
Lampe201 1] .
sensing .

Sparse Signal
Reconstruction [PAY Sparse Bayesian

Learning (SBL)

[Mengi2010, Iterative .
Yih2012] g
Iterative preprocessing
i decodin .
Receivers g
[Haring2004]

Turbo-like receiver

ignore OFDM signal structure
performance degrades with
increasing SNR and
modulation order

utilize only known tones
don’t use interference models
complexity

suffer from preprocessing
limitations
ad-hoc design

All don’t consider the non-linear channel estimation, and don’t use code structure
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Joint MAP-Decoding

* The MAP decoding rule of LDPC coded OFDM is:

arg max P(b,,|Y;©) Vm
bm €{0,1}

* Can be computed as follows:

P(b|Y;0) = > P(b|Y;0) oc Y p(Y|b;0)P(b)

b\ m b\ m

X Z H Yk\Sk,h 1 @)}(h, Hh

depends on linearly-mixed N noise non iid & LDPC code
samples and L channel taps non-Gaussian

Very high dimensional integrals and summations !!
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Belief Propagation on Factor Graphs

/Graphical representation of pdf-factorization \
* Two types of nodes:

 variable nodes denoted by circles
* factor nodes (squares): represent variable “dependence *

* Consider the following pdf:

p(an LB, Zli‘c) — p(CCA)p(SBB)p(ZI}0|CIS‘A, CUB)

* Corresponding factor graph:

A B
ﬁ(xch,xB)CK.
p(za) p(zp)
J1 Jo J3
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Belief Propagation on Factor Graphs

ﬂ)proximates MAP inference by exchanging messages on g%

* Factor message = factor’s belief about a variable’s p.d.f.
* Variable message = variable’s belief about its own p.d.f.
* Variable operation = multiply messages to update p.d.f.

* Factor operation = merges beliefs about variable and forwards
* Complexity number of messages = node degrees
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Coded OFDM Factor Grap

OFDM Symbol #Q °

OFDM Symbol #1

Co,1
unknown

channel taps

\

C1,M
Pilot/Null

AW AN AWAVAWA!

\ Unknown
interference

samples

Symbols

Information Coding & .

bits Interleaving Bit loading &  Raceived Symbols
modulation
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BP over OFDM Factor Grap

LDPC Decoding via BP jmackay2003 Node degree=N+L!!!
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Generalized Approximate Message Passing

[Donoho2009,Rangan2010]

ﬁstimation with Linear Mix@

observations variables

p(y1]21) coupling p(x1)
Y1 €—— 21 <€— T €—

p(ynr|zar) p(znN)

* Generally a hard problem due to coupling
* Regression, compressed sensing, ...
 OFDM systems:

Interference subgraph channel subgraph

given H given |
z—=1and x =1 z=Handx=h
¢ =F (P:\/NFLL

3 types of output channels for each

* Series of scalar MMSE estimation
problems: O(/N+M) messages

/Decoupling via Graphs\

P (y1lz1)

P (y2|22)

P (ynmr|znr)

If graph is sparse use standard BP
If dense and "large” —

Central Limit Theorem
At factors nodes treat 2 as Normal
Depend only on means and variances of
incoming messages
Non-Gaussian output — quad approx.

Similarly for variable nodes
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OFDM Symbol #1
M >
—O Mo s0 Yo

Message-Passing Receiver

OFDM Symbol #Q

O

Ml
e

C1,M
Pilot/Null

CN-1,1

CN1M

Initially uniform

hg

// 1
)

\\cy %m}.

.
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2>

NoLUhAhWDN —

Introduction | Message

3&Repeat

/ Schedule

Turbo Iteration:

coded bits to symbols
symbols to Y

Run channel GAMP
Run noise “equalizer”
Y to symbols
Symbols to coded bits
Run LDPC decoding

Equalizer Iteration:

|. Run noise GAMP
2. MC Decoding

~

/
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Receiver Desigh & Complexity

/ DeSIgn Freedom OFDM Symbol #Q

 Not all samples required for sparse 2>J OFDM Symbol #1 by
interference estimation o —rc‘“ o
* Receiver can pick the subchannels: S hLl :
* Information provided O

e Complexity of MMSE estimation Gar sy Yy nl

PilotNull @——Jl—\ O\

e Selectively run subgraphs
* Monitor convergence (GAMP
variances)
e Complexity and resources

\GAMP can be parallelized effectivey
Complexity per iteration " Notation )

o A NN
: CN-1,1 : : \ R
) E ); Mna1 Sy Yiiiyl”: B

CN-1,M

; AL4+N-1 ZL4+N-1 @

E— O(N N :# tones
eco 'rfg (V) M. : # coded bits
LDPC Decoding O(M.+C) C' : # check nodes
GAMP O(min[N log N, |U|?]) Q: set of used tonej

Introduction | Message Passing Receivers | Simulations | Summary 14



Simulation - Uncoded Performance

performs well

when interference

dominates time-
domain signal

(Settin gs\

5 Taps
GM noise
4-QAM
256 tones
|5 pilots

\80 nU”SJ

SER

use LMMSE channel estimate

—-—PP
| —o—-SBL
R ——C ]

3 | —+—JCI

_ use only known tones,
=3 requires matrix inverse

f—> 2.5dB better than SBL

1\7 5 within 1dB of MF Bound

i oo-JCis %7 |5db better than DET
S DFT ]
-MFB
5 10 -5 0 5 10 i5
SNR [dB] v

Matched Filter Bound: Send
only one symbol at tone k
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Simulation - Coded Performance

one turbo iteration

gives 9db over DFT 107"}

5 turbo iterations

gives | 3dB over DFT oo

B

G102l

(Settings\
10 Taps
GM noise
. . . v 16-QAM
- =v— - DFT ] N=1024
—v— JCIS-T ] 150 pilots
—orer | e
- -Jcis—2 | |\ 760k )
- —o— - JCIS-5 A

2 4 6 8 10
SNR [dB]

Integrating LDPC-BP into JCNED by passing
back bit LLRs gives | dB improvement
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Summary

Huge performance gains if receiver account for uncoordinated
interference

The proposed solution combines all available information to
perform approximate-MAP inference

Asymptotic complexity similar to conventional OFDM receiver

Can be parallelized

Highly flexible framework: performance vs. complexity tradeoff
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