

A Factor-Graph Approach to Joint OFDM Channel Estimation and Decoding in Impulsive Noise Channels

Philip Schniter

The Ohio State University

Marcel Nassar, Brian L. Evans

The University of Texas at Austin

Outline

- Uncoordinated interference in communication systems
- Effect of interference on OFDM systems
- Prior work on OFDM receivers in uncoordinated interference
- Message-passing OFDM receiver design
- Simulation results

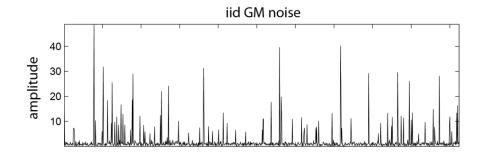
Uncoordinated Interference

- Typical Scenarios:
 - Wireless Networks:
 Ad-hoc Networks, Platform Noise, non-communication sources
 - Powerline Communication Networks:
 Non-interoperable standards, electromagnetic emissions
- Statistical Model:

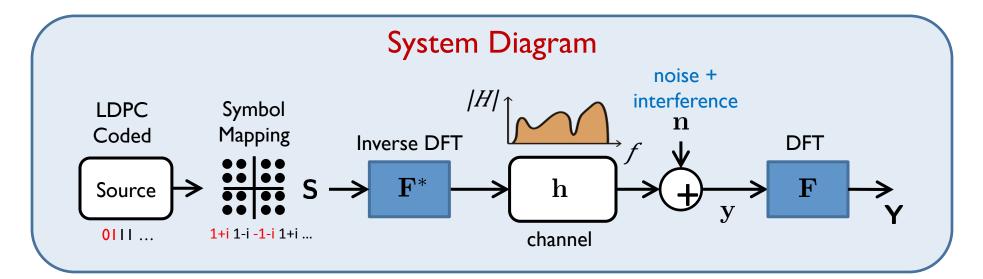
Gaussian Mixture (GM)

$$p(n) = \sum_{k=0}^{K-1} \pi_k \mathcal{N}(n; 0, \gamma_k)$$

 $K \in \mathbb{N}$:# of comp.


 π_i : comp. probability

 γ_i : comp. variance


Interference Model

Two impulsive components:

- 7% of time/20dB above background
- 3% of time/30dB above background

OFDM Basics

Noise Model

$$n_j = g_j + i_j$$

 n_i : total noise

where g_j : background noise

 i_j : interference

and $g_j \sim \mathcal{N}(0, N_0)$

 i_j : GM or GHMM

Receiver Model

After discarding the cyclic prefix:

$$y = Hs + n = HF^*S + g + i$$

After applying DFT:

$$Y = Fy = FHF^*S + Fn = H \circ S + G + I$$

• Subchannels: $Y_k = H_k S_k + G_k + I_k$

OFDM Symbol Structure

Coding

 Added redundancy protects against errors

Data Tones

$$\mathsf{Y}_k = \mathsf{H}_k \mathsf{S}_k + \mathsf{G}_k + \mathsf{I}_k$$

- Symbols carry information
- Finite symbol constellation
- Adapt to channel conditions

Pilot Tones

$$\mathsf{Y}_k = \mathsf{H}_k \mathsf{p} + \mathsf{G}_k + \mathsf{I}_k$$

- Known symbol (p)
- Used to estimate channel

Null Tones

$$\mathsf{Y}_k = \mathsf{G}_k + \mathsf{I}_k$$

- Edge tones (spectral masking)
- Guard and low SNR tones
- Ignored in decoding

pilots \rightarrow linear channel estimation \rightarrow symbol detection \rightarrow decoding

But, there is unexploited information and dependencies

Prior OFDM Designs

Category	References	Method	Limitations
Time-Domain preprocessing (PP)	[Haring2001]	Time-domain signal estimation	 ignore OFDM signal structure performance degrades with increasing SNR and modulation order
	[Zhidkov2008, Tseng2012]	Time-domain signal thresholding	
Sparse Signal Reconstruction	[Caire2008, Lampe2011]	Compressed sensing	utilize only known tonesdon't use interference modelscomplexity
	[Lin2011]	Sparse Bayesian Learning (SBL)	
Iterative Receivers	[Mengi2010, Yih2012]	Iterative preprocessing & decoding	suffer from preprocessing limitationsad-hoc design
	[Haring2004]	Turbo-like receiver	

All don't consider the non-linear channel estimation, and don't use code structure

Joint MAP-Decoding

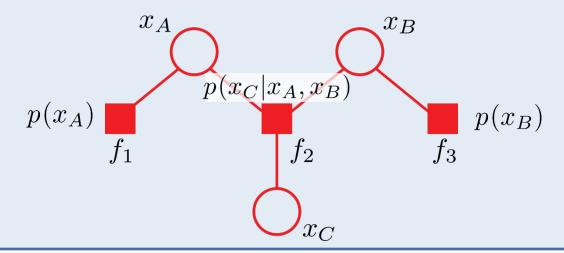
The MAP decoding rule of LDPC coded OFDM is:

$$\underset{b_m \in \{0,1\}}{\operatorname{arg\,max}} P(b_m | \mathbf{Y}; \Theta) \quad \forall m$$

Can be computed as follows:

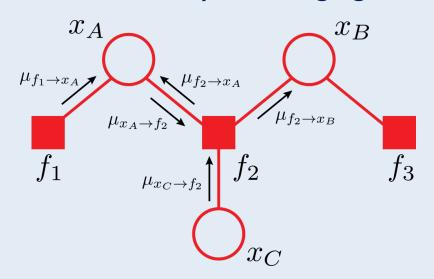
$$P(b_m|\mathbf{Y};\Theta) = \sum_{\mathbf{b}_{\backslash \mathbf{m}}} P(\mathbf{b}|\mathbf{Y};\Theta) \propto \sum_{\mathbf{b}_{\backslash \mathbf{m}}} p(\mathbf{Y}|\mathbf{b};\Theta) P(\mathbf{b})$$

$$\propto \sum_{\mathbf{S},\mathbf{c},\mathbf{b}_{\backslash \mathbf{m}}} \prod_{k=0}^{N-1} \underbrace{\int_{\mathbf{i},\mathbf{h}} p(\mathbf{Y}_k|\mathbf{S}_k,\mathbf{h},\mathbf{i};\Theta) p(\mathbf{h};\theta_{\mathbf{h}}) p(\mathbf{i};\theta_{\mathbf{i}}) P(\mathbf{S}|\mathbf{c}) P(\mathbf{c}|\mathbf{b})}_{\text{depends on linearly-mixed N noise non iid & LDPC code samples and L channel taps non-Gaussian}}$$

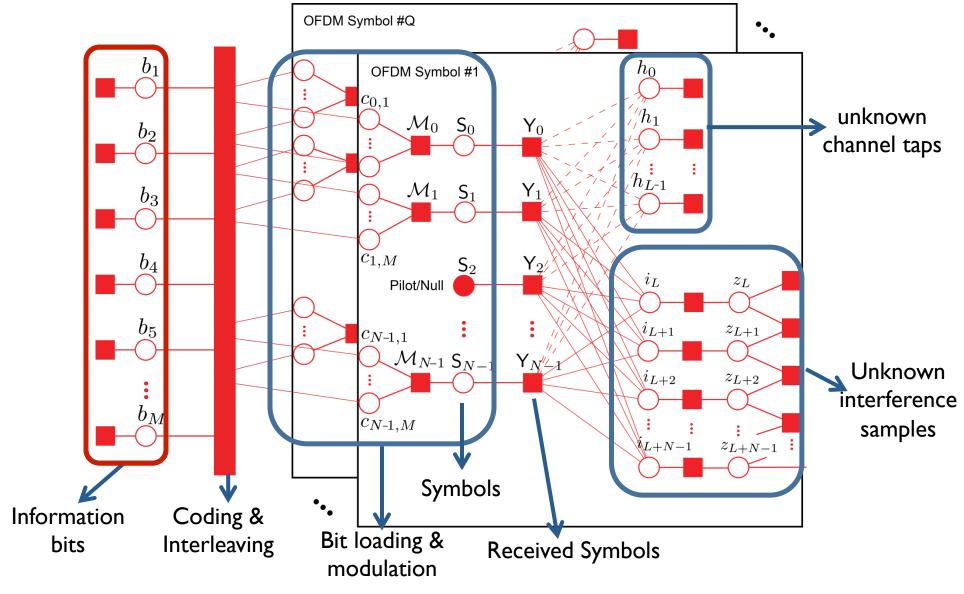

Very high dimensional integrals and summations !!

Belief Propagation on Factor Graphs

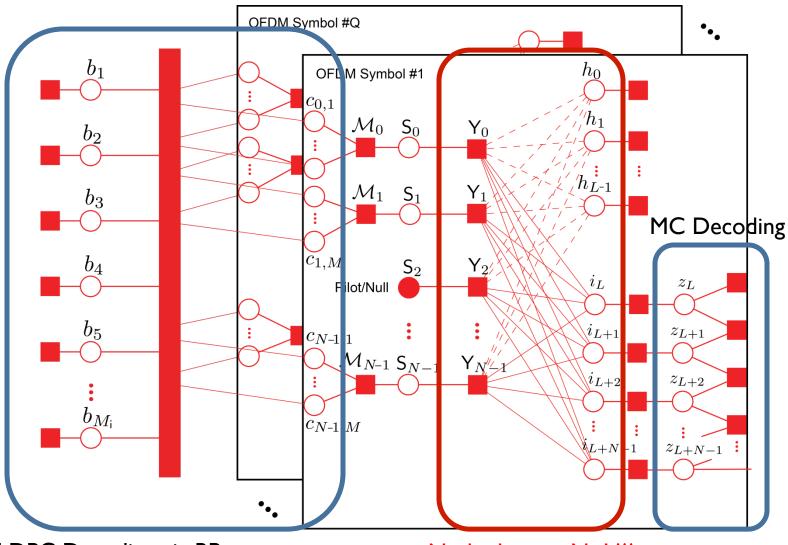
- Graphical representation of pdf-factorization
- Two types of nodes:
 - variable nodes denoted by circles
 - factor nodes (squares): represent variable "dependence"
- Consider the following pdf:


$$p(x_A, x_B, x_C) = p(x_A)p(x_B)p(x_C|x_A, x_B)$$

• Corresponding factor graph:


Belief Propagation on Factor Graphs

Approximates MAP inference by exchanging messages on graph



- Factor message = factor's belief about a variable's p.d.f.
- Variable message = variable's belief about its own p.d.f.
- Variable operation = multiply messages to update p.d.f.
- Factor operation = merges beliefs about variable and forwards
- Complexity = number of messages = node degrees

Coded OFDM Factor Graph

BP over **OFDM** Factor Graph

LDPC Decoding via BP [MacKay2003]

Node degree=N+L!!!

Generalized Approximate Message Passing

[Donoho2009,Rangan2010]

Estimation with Linear Mixing

observations

variables

$$y_1 \overset{p(y_1|z_1)}{\longleftarrow} z_1 \overset{\text{coupling}}{\longleftarrow} x_1 \overset{p(x_1)}{\longleftarrow} x_1 \overset{p(x_1)$$

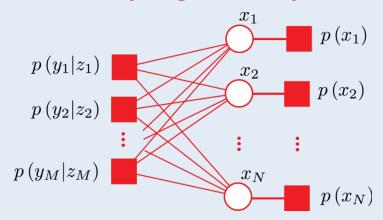
- Generally a hard problem due to coupling
- Regression, compressed sensing, ...
- **OFDM** systems:

Interference subgraph

channel subgraph

given **H**

given

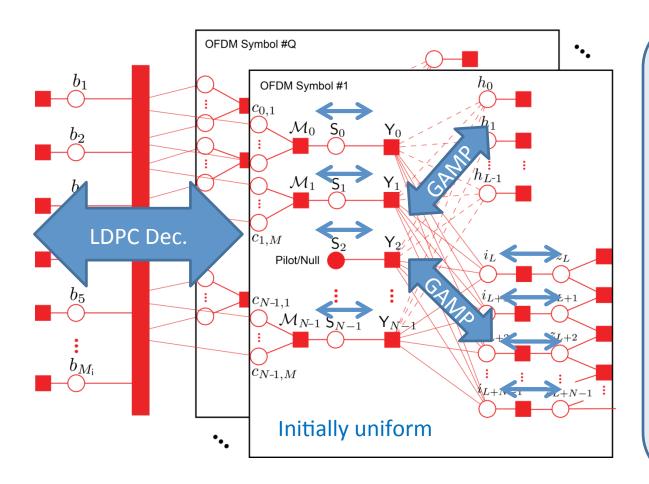

 $\mathbf{z} = \mathbf{I}$ and $\mathbf{x} = \mathbf{i}$ $\mathbf{z} = \mathbf{H}$ and $\mathbf{x} = \mathbf{h}$

 $\Phi = \mathbf{F}$

 $\mathbf{\Phi} = \sqrt{N} \mathbf{F}_{1:L}$

3 types of output channels for each

Decoupling via Graphs



- If graph is sparse use standard BP
- If dense and "large" →

Central Limit Theorem

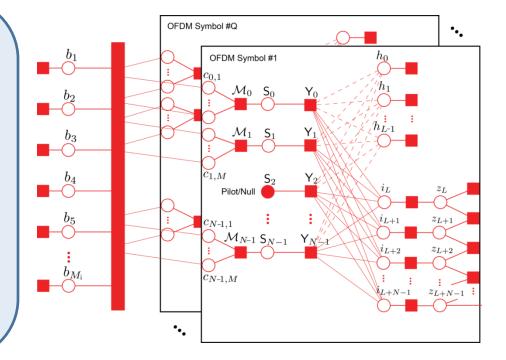
- At factors nodes treat z as Normal
- Depend only on means and variances of incoming messages
- Non-Gaussian output \rightarrow quad approx.
- Similarly for variable nodes
- Series of scalar MMSE estimation problems: O(N+M) messages

Message-Passing Receiver

Schedule

Turbo Iteration:

- I. coded bits to symbols
- 2. symbols to \mathbf{Y}
- 3. Run channel GAMP
- 4. Run noise "equalizer"
- 5. **Y** to symbols
- 6. Symbols to coded bits
- 7. Run LDPC decoding


Equalizer Iteration:

- I. Run noise GAMP
- 2. MC Decoding
- 3. Repeat

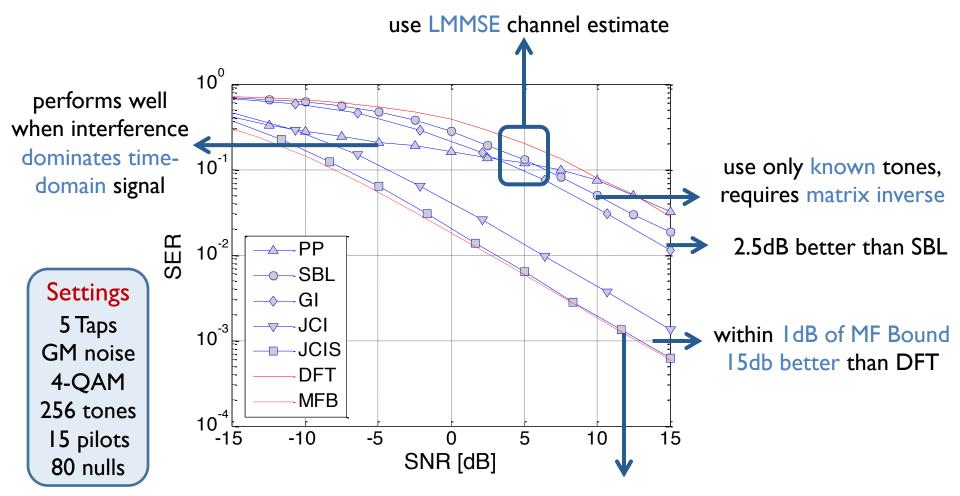
Receiver Design & Complexity

Design Freedom

- Not all samples required for sparse interference estimation
- Receiver can pick the subchannels:
 - Information provided
 - Complexity of MMSE estimation
- Selectively run subgraphs
 - Monitor convergence (GAMP variances)
 - Complexity and resources
- GAMP can be parallelized effectively

Operation	Complexity per iteration	
MC Decoding	$\mathcal{O}(N)$	
LDPC Decoding	$\mathcal{O}(M_c+C)$	
GAMP	$\mathcal{O}(\min[N\log N, U ^2])$	

Notation

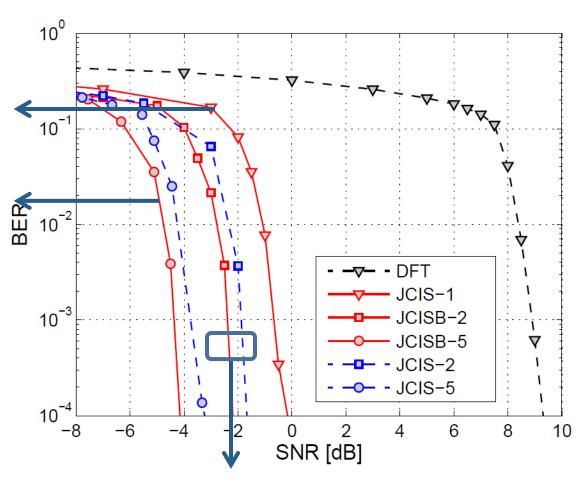

 $N: \# \ {\sf tones}$

 M_c : # coded bits

C:# check nodes

U: set of used tones

Simulation - Uncoded Performance


Matched Filter Bound: Send only one symbol at tone k

15

Simulation - Coded Performance

one turbo iteration gives 9db over DFT

5 turbo iterations gives 13dB over DFT

Settings

I0 Taps
GM noise
I6-QAM
N=1024
I50 pilots
Rate ½
L=60k

Integrating LDPC-BP into JCNED by passing back bit LLRs gives I dB improvement

Summary

- Huge performance gains if receiver account for uncoordinated interference
- The proposed solution combines all available information to perform approximate-MAP inference
- Asymptotic complexity similar to conventional OFDM receiver
- Can be parallelized
- Highly flexible framework: performance vs. complexity tradeoff