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Abstract—We propose a factor-graph-based approach to joint
channel,impulse, symbol and bit estimation (JCISB) of LDPC-
coded orthogonal frequency division multiplexing (OFDM) sys-
tems in impulsive noise environments. Impulsive noise arises in
many modern wireless and wireline communication systems, such
as cellular LTE and powerline communications, due to uncoordi-
nated interference that is much stronger than thermal noise. Our
receiver merges prior knowledge of the impulsive noise models
with the recently proposed ‘“‘generalized approximate message
passing” (GAMP) algorithm, and soft-input soft-output decoding
through the sum-product framework. Unlike the prior work, we
explicitly consider channel estimation in the problem formulation.
For N subcarriers, the resulting receiver has a complexity of
O(N log N), comparable to a typical DFT receiver. Numerical
results indicate that the proposed receiver outperforms all prior
impulsive noise OFDM decoders with improvements that reach
13dB when compared to the commonly used DFT receiver.

I. INTRODUCTION

Extensive measurement campaigns done in frequency bands
occupied by many modern cellular wireless standards and
PLC standards show that the additive noise deviates from the
well known “additive white Gaussian noise” (AWGN) scenario
and is in fact impulsive [1], [2]. In addition to multipath
propagation, this noise is the main impairment for reliable
communication in such systems. In this paper, we restrict our
attention to systems employing coded orthogonal frequency
division multiplexing (OFDM) modulation [3], as used in
many modern cellular wireless standards (e.g., IEEE802.11n
and LTE) and PLC standards (e.g., PRIME and IEEE1901).
Coded OFDM is advantageous in that it facilitates data com-
munication across convolutive multipath channels with high
spectral efficiency and low complexity.

In classical OFDM receivers, tone-by-tone demodulation is
optimal with AWGN and perfect channel estimates [3], and is
highly desirable from a complexity standpoint, since it leaves
the DFT as the primary source of receiver complexity, i.e.,
consuming O(N log N) multiplies for N tones. When the
time-domain noise is impulsive, however, the corresponding
frequency-domain noise samples will be highly correlated, and
tone-by-tone demodulation is no longer optimal.

M. Nassar and B. L. Evans were supported by National Instruments and
Semiconductor Research Corporation under SRC GRC Task 1836.063, and
P. Schniter was supported in part by the National Science Foundation under
Grant CCF-1018368.

Prior strategies for OFDM receiver design in impulsive
noise generally take a decoupled and suboptimal approach to
the problem of channel and impulse noise estimation and data
decoding. In one popular approach, the time-domain received
signal is pre-processed via clipping or blanking techniques [4]
or (nonlinear) MMSE estimation [5], and the result passed to a
conventional DFT receiver for decoding. While agreeable from
a complexity standpoint, these techniques perform relatively
poorly because OFDM signal structure is not exploited for
noise mitigation. In an attempt to improve performance, it
has been suggested to iterate between temporal denoising and
OFDM decoding, but the approaches suggested to date (e.g.,
[6]) have shown limited success, mainly because the adaptation
of temporal denoising with each iteration is challenging and
often done in an ad-hoc manner. Another popular approach
models the time-domain impulsive noise sequence as a sparse
vector and then uses sparse-reconstruction techniques to esti-
mate this sequence from the observed OFDM null and pilot
(i.e., known) tones (e.g., compressive-sensing in [7] and sparse
Bayesian learning (SBL) [8] ). The recovered impulse vector is
then subtracted from the time-domain received signal, and the
result is passed to a conventional DFT receiver for decoding.
Even with these techniques, there is room for improvement
because channel estimation was not performed jointly with
noise estimation and symbol detection and because decoding
was integrated in an ad-hoc manner.

In this paper, we propose a novel OFDM receiver that
performs near-optimally in the presence of impulsive noise
while maintaining the O(N log N) complexity order of the
conventional N-tone OFDM receiver. Our approach is based
on jointly estimating the impulsive noise and the channel gains
while decoding the bits. In doing so, we aim to exploit all
available information about the null tones, the pilot tones, the
finite-alphabet symbol constellation, the code structure, the
noise distribution, and the channel distribution. To maintain
a low complexity, we leverage recent work on “generalized
approximate message passing” (GAMP) [9], its “turbo” exten-
sion to larger factor graphs [10], and belief-propagation-based
soft-input/soft-output (SISO) decoding [11]. The receiver we
propose can be categorized as a factor-graph-based receiver,
and in particular an extension of [12], that explicitly addresses
the presence of impulsive noise. The resulting receiver pro-



vides a flexible performance vs. complexity tradeoff and can
be parallelized, making it suitable for FPGA implementations.

II. SYSTEM MODEL
A. Coded OFDM Model

We consider an OFDM system with N tones partitioned
into IV, pilot tones (indexed by the set P), N, null tones
(indexed by the set N), and Ny data tones (indexed by the
set D) each modulated by a scalar symbol from an 2M-
ary constellation S. The data bits (which determine the data
symbols) are generated by encoding M; information bits using
a rate-R coder, interleaving them, and allocating the resulting
M. = M;/R bits among an integer number Q = [M./NqM |
of OFDM symbols.

In the sequel, we use SV € Sfori € {1,...,2"} to denote
the ith element of S, and ¢ = [, ... c{)]” to denote

the corresponding bits as defined by the symbol mapping.
Likewise, we use Si[g] to denote the scalar symbol transmitted
on the kth tone of the gth OFDM symbol. Based on the tone
partition, we note that: Si[g] = p for all k € P, where p is a
known pilot symbol; Si[q] = 0 for all k € A; and Sy [q] = SO
for some [ such that c[q] = c® for all k € D, where
cklg) = [eralgls s ckmq]]T denotes the coded/interleaved
bits corresponding to Si[g]. On the frame level, we use c[q]
to denote the coded/interleaved bits allocated to the data
tones of the gth OFDM symbol, and ¢ = [c[1],...,c[Q]]
to denote the entire codeword obtained from the information
bits b = [by,...,bas]T by coding/interleaving. Similarly, we
use S[g] = [So[g],--.,Sn—1[q]]T to denote the qth OFDM
symbol’s tone vector, including pilot, null, and data tones.

For modulation, an inverse of the unitary /N-point discrete
Fourier transform (IDFT) matrix F is applied to the qth
OFDM symbol’s tone vector S[g], producing the time-domain
sequence F*S[q] = s[q] = [sold],--.,sn-1][q]]*, to which a
cyclic prefix is prepended. The resulting sequence propagates
through an L-tap linear-time-invariant Rayleigh-fading chan-
nel with impulse response h[q] = [ho[q], ..., hr_1][q]]" before
being corrupted by both AWGN and impulsive noise.

Assuming a cyclic prefix of length > L — 1, inter-symbol
interference is avoided by simply discarding the cyclic prefix
at the receiver, after which the remaining N samples are

ylg] = Hlg]s[q] + n[q] = H[q]F*S[q] + n[q] (1)

where n[g] is the time-domain noise vector and H[q] is
channel matrix. Applying a DFT, each transmitted tone Sg[q]
experiences a flat scalar subchannel, since

Yilgl = Hglg]Sklq] + Nklg], VE€{0,...,N—-1} (2)

where H[g] = V/NF. 1..h[q] is the frequency-domain channel
vector, N[g] = Fnlg] is the frequency-domain noise vector.

B. Impulsive Noise Models

The Gaussian mixture (GM) model is a commonly used
model that captures the impulsiveness of interference in
many wireless and power-line communication (PLC) systems
[13], [14]. Since our message-passing receiver is inherently
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Fig. 1. Factor graph representation of a coded data frame spanning Q OFDM
symbols. Round open circles denote random variables, round solid circles
denote deterministic variables (e.g., known pilots or nulls), and solid squares
denote pdf factors. The large rectangle on the left represents the coding-
and-interleaving subgraph, whose details are immaterial. The time-domain
impulse-noise quantities 7; and z; start at time ¢ = L due to the use of an
L —1-length cyclic prefix.

Bayesian, the GM model provides us with natural priors on
the impulsive noise. In particular, we decompose a given time-
domain noise sample n; = g; +4; into a Gaussian background
component g; ~ 91(0, 7(0)) and a sparse impulsive component
1 with Bernoulli-GM pdf

K-1
p(ir) = 7 06(i) + Y 79IN(i;0,7) (3)
k=1

where (-) denotes the Dirac delta and ZkK;()l k) = 1,
Equivalently, we could model the (hidden) mixture state
zt € {0, ..., K—1} of the impulsive component i; as a random
variable, giving rise to the hierarchical model

plit|ze = k) = N(ig; 07’7(k))
Pz =k)=7®,

(4a)
(4b)

III. JOINT CHANNEL/NOISE ESTIMATION AND DECODING

MAP-optimal decoding of the information bits b,,, involves
marginalizing over the finite-alphabet symbols S, coded bits
c, noise states z, noise samples i, channel taps h, and other
info bits by,,. Clearly, direct evaluation of the posterior
bit probabilities, represented by the factor graph in Fig. 1,
is computationally intractable due to the high-dimensional
integrals involved. We now propose a strategy to approximate
the information bit posteriors by iterating (an approximation
of) the SPA on the loopy factor graph in Fig. 1. In particular,
we utilize an approximate version of SPA called generalized
approximate message passing (GAMP) algorithm given in [9].
The GAMP algorithm addresses the estimation of a vector of
independent possibly-non-Gaussian random variables x that



are linearly mixed via a linear transform ® € CM*N to
form z = ®x = [z --- 2|7 and subsequently observed as
y = [y1---yn)T according to the general likelihood function
p(ylz) = Hf\il p(yi|z;). We denote the application of GAMP
to this problem as “GAMP(y, z, ®,x)”.

To distinguish our approach from others in the literature,
we will refer to it as “joint channel, impulse, symbol, and
bit estimation” (JCISB). The following sections describe a
particular message schedule of JCISB. We refer to a full pass
over this schedule as a “turbo” iteration.

A. Bits to Symbols

Beliefs about the coded bits {ci , }2_; (for each data tone
k € D) are first passed through the symbol mapping factor
node M. The SPA dictates that

M
HM i —S, (S(z)) = Z P(S(l)|ck) H N’Ck,m—>/\/1k(ck,m)
ckE{O,l}M m=1
M )
= I rerm—rnn(el) (5)
m=1

where (5) follows from the deterministic symbol mapping
P(S®W|c)) = §;_;. The resulting message is then copied
forward through the Sy node, i.e., us, v, = Ha,—S,, also
according to the SPA. Note that, at the start of the first turbo
iteration, we have no knowledge of the bits and thus we take
Hey,.m— M, (€) to be uniform across ¢ € {0, 1} for all m, k.

B. Channel Estimation

The next step in our message-passing schedule is to pass
messages between the factor nodes {Y}} and the time-domain
channel nodes {h;}. According to the SPA, the message passed
from Yy to hy; is

o) = 3 [ pISw b s, v, (51)
s, Yibhu

< [T snev (he) T] s, 5v, (i) (©)
J

z#l

Exact evaluation of (6) involves an intractable high-
dimensionality integration. Thus, we instead approximate
the message passing between the {Y} and {h;} nodes
using GAMP. To do this, we temporarily treat the mes-
sages {us,—v,} and {u;,v,} as fixed, allowing us
to employ “GAMP(Y,H,+/NF, h)”. The application of
GAMP(Y,H,V/NF,h) requires us to specify the likelihood
p(Yg|Hg) relating the transform output Hj to the corre-
sponding observed output Y. From Fig. 1, we see that
there are two types of belief flowing into each Y node
(apart from beliefs about {4;}) that determine this likelihood:
beliefs about the symbols {S;}, which we parameterize as
B = (B, 8] with B = s, v, (S?), and
beliefs about the frequency-domain impulsive noise {l;},
which GAMP approximates as 9(ly; I, 7)), where the values

{ik,’y,L} were computed by GAMP(Y, |, F i) in the previ-
ous turbo iteration.! Here, | = Fi refers to the impulsive

component of the frequency-domain noise N = | + G, with
{Gg} ~iid N0,7©), so that
Y=HoS+1+G. (7
From (2) and (7), the GAMP(Y,H,+/NF,h) likelihood is
N(Yi; pHE + T, 7k +7?) keP
=0
PRI = 4 S5 5001y, SOH + 14,1k +4@) k€ D
I=1
®)
with the corresponding “output MMSE estimation func-
tions”, required by GAMP(Y,H, v/ NF, h), E{H.|Y;p,~"}
and V{Hy|Y;p,+?} specified in Table 1. (See [15] for
derivations). GAMP(Y,H, v/ NF,h) also requires us to de-
rive the “input MMSE estimation functions” E{h;|Y,#, 7"}
and V{h;|Y,7,4"}. It is straightforward to show that the
input MMSE estimation functions are E{h;|Y,7,~"} =
vit/(v; + ") and V{h;|Y, 77"} = v;9"/(v; +97) [15].
After GAMP(Y,H,+/NF h) is iterated to convergence, it
outputs {Hj} and {7H} that are close approximations to
the marginal posterior mean and variance, respectively, of
{Hx}. These outputs will be used in the next step of
the message-passing schedule, as described below. Similarly,
GAMP(Y,H,v/NF, h) also outputs {i;} and {~}'} that are
close approximations to the marginal posterior mean and
variance, respectively, of {h;}.

C. Noise Estimation

The next step in our schedule is to pass messages between
the factor nodes {Yj}, the time-domain impulse-noise nodes
{i;}, and the noise-state nodes {z;}. According to the SPA,
the message passed from Yy, to ¢; is

o) = 3 [ pVulSi s, v (50
S, YN\t

X Huhﬁvk(hl) H/iijavk (i5) )]
l At
which is intractable. By temporarily treating the messages

{/’l’dt‘)it}’ {MSA:HYIC}’ and {/‘hlﬁYk} as fixed, we can apply
GAMP(Y, I, F,i) under the likelihood model

N(Yi; 1, 7 ) ifkeN
P(Yille) = ?;fYk? pHi + 1k, pprf +7(©) if k € P
> BONY 1 SO, + Iy, pert +7©) if k € D
I=1 o

implied by (2) and (7), and the coefficient prior

K—1
plie) = m8G0) + D mPN(ir;0,4F)
k=1

(1)

"During the first turbo iteration, we use Tk =0 and 'yL =~ VE.



TABLE I
GAMP ouTPUT MMSE ESTIMATION FUNCTIONS USED IN JCISB

GAMP(Y,H,v/NF,h)
Tone Type - -
E{Hg|Yr;D,7"} V{Hp|Yr; 5,77}
Pilot: k € P P+ (Y — I — D)/ (7D + 7}, + ppr”) PO+ )/ + 9+ orP)
S|y () vPS* D vy, 1, — ps<’>> (0)
T S SN [ b
Data: k€D | where A“—p(ms(”)ﬁ“/z p(YilS)B" an p 4 28 0Tt SO ] (kY 5,47 2
Yo1SDY = N(Ye: i S, ) 51 [2p P GO FsD)247) kIVEs Py Y
p(Y|SD) = N(Ye; g, + 55D, 4O + 4} +] |'Y) k
Tone Type _ GAMP(Y, |, F,i) i
E{lx|Yx;5,7P} V{lg|Yr; 5,77}
Null: k& € NV (Y, =7 Op) /(v +4P) 7P /((0) 4 4P)
Pilot: k € P PPV —p— HkP)/(’Y<O> + 97 + ppyt) (YO + o)/ (O + 4P + pprt)
Is| P (Y —p—H,5D) 0) 1 je(1)2
b+ SN o w zi AU)[M%
. . )
Data: k ¢ D where )\() —p(Yk|S(l)),8( )/ij(Yk|S<J)),8](€]) and 5 AP (Yi—p—F;5(1) ] E{1|Ye: ’yp}|2
p(Yk‘S(l)) = m(Yk;f)—i- Hks(l)7ry(0) + P+ ‘S(l)|2,71|;|) 'v(0>+'yp+\5(l)|2 H kIYE;Ds

implied by (3). In (10), B = s, v, (S®) are the sym-
bol beliefs coming from the {S;} nodes and {Hj,~} are
the frequency-domain channel estimates previously calculated
by GAMP(Y,H,V/NF,h). Meanwhile, in (11), {z{"} 5!
represents the pmf on the noise state z; that is set as m, ' =
tzy—d, (K )/(Zl 0 ' )iz, —q,(1)). The resulting output MMSE
estimation functions, derived in [15], are listed in TABLE 1,
and the input MMSE estimation functions are

K-—1 *) ’y(k)’f‘
E{i|Y, 79"} = A (12)
K-1 (k) (k) 2|2
v a 7
VY, 7 =) (VWW + )
=g+ k) v+ ®
— [E{id] Y, 7,77} (13)
Here, {at }K ! is the posterior pmf for noise-state z;, with
— B\
a®) — Pz —kj) = — LI =R)m (14)

Yo oz =D
where p(#|z; = k) = (7;0,79" + 7*)) is the noise state
likelihood.

Using these input and output MMSE estimation functions,
GAMP(Y,I,F i) is iterated until convergence, generating
{Tk,fy,'e} that are close approximations to the marginal pos-
terior means and variances of {l;} and that will be used by
GAMP(Y,H,/NF, h) in the next turbo iteration. In addition,
for each data tone & € D, GAMP(Y,I,F i) yields the
leftward flowing soft symbol beliefs

[y, 5, (S) = MN(Yi; SHe + T, [SPPAE + 4k +49) (19

that are subsequently used for decoding (as described below).
Here, {Hy,~!'} and {Ix,v}} play the role of soft frequency-
domain channel and impulse-noise estimates, respectively.

D. Symbols to Bits

The SPA dictates that the messages flowing leftward through
the symbol nodes {Sj} come out unchanged, i.e., us, o1, =

Ly, —s, . Moreover, it dictates that the message flowing left-
ward out of the symbol-mapping node M}, and into the coded-
bit node cy,,,, takes the form

IS|
:U’Mk—)ck,m Z Z S(l)|ck :U’Sk—)./\/lk(s(l))
=1 cx\cm
X H Mck,m’ng’(Cm/) (16)
m’'#m

Z:Z:C$,LL>:0 HS ) — My, (S(l))/’(‘Mk_)Sk (S(l))

ek, m— My (C)
(I7)

where the last step was is derived in [12].

Finally, the computed coded-bit beliefs are passed to the
coding/interleaving factor node. This can be viewed as passing
(extrinsic) soft information into a soft-input/soft-output (SISO)
decoder, where it is treated as prior information for decoding
according to the “turbo” principle. SISO decoding has been
studied extensively and we refer the interested reader to [11]
for a detailed account. After SISO decoding terminates, it
will produce extrinsic soft information, in the form of beliefs
{#ey ,n—m, }» that will be passed rightward to the symbol-
mapping nodes at the start of the next turbo iteration. The
turbo iterations are terminated after either the decoder detects
no bit errors, the beliefs {j, ,, s, } have converged, or a
maximum number of turbo iterations has elapsed.

IV. NUMERICAL RESULTS

We consider two N-tone OFDM systems: (1) N = 256 (80
nulls and 15 pilots) with 4-QAM modulation under a 5-tap
Rayleigh channel (PLC), and (2) N = 1024 (150 pilots) with
16-QAM under a 10-tap Rayleigh fading channel. This system
is corrupted by iid GM noise having two impulsive compo-
nents with powers 20dB and 30dB above the background noise
occurring 7% and 3% of the time, respectively. The signal to
noise ratio (SNR ) refers to the ratio of the signal power to
the second order moment of the noise. We fix the number
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LDPC coded BER for system configuration (2).

of iterations to 5 turbo iterations, 15 GAMP iterations, and a
maximum of 50 LDPC iterations.

A. Comparison With Other Schemes

Fig. 2 shows the uncoded symbol error rate (SER) compar-
ison of our proposed JCISB framework with the conventional
“DFT” [3], “PP” [5], and “SBL” [8] receivers for system
configuration (1). Since this is an uncoded transmission, we
focus on symbol detection and JCIS reduces to “Joint channel,
impulse, and symbol detection” (JCIS). By utilizing all the
tones and explicitly accounting for channel estimation, the
proposed JCIS receiver outperforms the DFT receiver by
15dB, the SBL receiver by 11dB, and the MMSE receiver by
7dB in the low SNR regime and by 15dB in the high SNR
regime. Furthermore, the proposed JCIS receiver is within 1dB
from the matched filter “MFB” lower bound.

B. Coded Systems

Fig. 3 shows the bit error rate (BER) performance of system
configuration (2). The information bits are coded using an
LDPC code with code-word length ~ 60 000 and rate 1/2.
The label “alg-# refers to the algorithm used by the receiver
followed by the number of turbo iterations performed. We
consider three types of receivers: the DFT receiver followed

by LDPC decoding; the proposed JCISB; and JCIS followed
by LDPC decoding (note JCISB-1 is equivalent to JCIS-1).
With only 1 turbo iteration, JCIS (also JCISB) provides an
additional 9dB over the coded DFT receiver. An additional
turbo iteration yields an extra 2dB while 5 turbo iterations
in total yield a 13dB improvement over the DFT receiver.
Furthermore, by decoding the LDPC code in each turbo
iteration, JCISB provides an additional 1dB over JCIS.

V. CONCLUSION

In a this paper, we presented a factor-graph approach to
joint channel/noise estimation and data decoding in impulsive
noise channels. Our approach merges recent work on modeling
impulsive noise in communication systems [13] with recent
advances in approximate message passing algorithms [9] and
SISO decoding [11]. The presented receiver has a complexity
comparable to the typical DFT receiver while providing tens
of dBs in performance gain (1dB from a lower bound).
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