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Introduction

+ +

noise

Source Relay Dest

noise

weak direct-link

self-interference

Source communicates to Destination through decode and forward Relay

MIMO at all terminals

Relay operates in full-duplex mode

Fundamental challenges:
high self-interference (as high as 100dB!)
limited dynamic range due to non-ideal transmitter and receiver hardware
(power amp noise, non-linearities in ADC/DAC, oscillator phase noise, AGC
noise)

Fundamental question:
What is the maximum achievable rate of such systems?
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System Model
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Hij are MIMO Rayleigh fading propagation channels, assumed to be
unknown and static.

ni is AWGN thermal noise of unit variance.

ρi represents SNR and ηi represents INR.

Dynamic range limitation modeled by signal-power dependent additive
interference cj at transmitters and ei at receivers.

Facilitates tractable achievable-rate analysis.
Recent work (e.g. Rice, Lincoln) confirms the fidelity of this model.
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Dynamic Range Limitation Model
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Each receive chain is corrupted by additive Gaussian interference with power
proportional to the intended receive power; similar for each transmit chain

ei(t) ∼ CN (0, β diag(Φi)), ei(t)⊥⊥ui(t), ei(t)⊥⊥ ei(t
′)
∣
∣
t′ 6=t

cj(t) ∼ CN (0, κ diag(Qj)), cj(t)⊥⊥xj(t), cj(t)⊥⊥ cj(t
′)
∣
∣
t′ 6=t

where Φi = Cov(ui) and Qj = Cov(xj).
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Transmission Protocol

During Epoch i, the source communicates the ith packet to the relay, while
the relay simultaneously communicates the (i− 1)st packet to the
destination. ❀ Enables full-duplex communication.

Before the first data epoch, we have a training epoch where we perform
least-squares channel estimation.

Data communication parameters (e.g. transmit covariance matrices) are
designed to maximize the achievable rate.
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Two Periods Per Epoch

T train[1]

T train[2]

Source:

Relay:

Qs[1] Qs[1]Qs[1]Qs[2] Qs[2]Qs[2]

Qr[1] Qr[1]Qr[1]Qr[2] Qr[2]Qr[2]

τ [1] = τ τ [1] = ττ [1] = ττ [2] = 1− τ τ [2] = 1− ττ [2] = 1− τ

Training Epoch Data Epoch 1 Data Epoch 2 Data Epoch i

. . .

. . .

. . .

. . .

. . .

. . .

We allow two distinct transmit covariance matrices per data epoch.

The two periods per data epoch can differ in duration.
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Partial Interference Cancellation

We show that the relay’s received signal can be modeled as

yr(t) =
√
ρrĤsrxs(t) + vr(t)

where vr is the aggregate interference including transmitter/receiver
dynamic-range induced self-noise, channel-estimation error, and thermal
noise. Similarly, we can write yd with interference vd.

We write the relay’s aggregate interference as

vr(t) ,
√
ηrĤ rrxr(t) +

√
ρrĤ srcs(t)−D

1

2

srH̃sr(xs(t) + cs(t)) + nr(t)

+
√
ηrĤ rrcr(t)−D

1

2

rrH̃ rr(xr(t) + cr(t)) + er(t)

where
√
ηrĤ rrxr(t) is known by the relay and can be eliminated using

interference cancellation.
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Lower-Bounding the Achievable Rate

Mutual information characterization is complicated by the fact that the
aggregate interference vi is non-Gaussian when channel-estimation error is
non-zero.

We therefore lower-bound the mutual information by replacing vi with a
Gaussian noise of identical covariance, i.e.,

Isr(Q[l]) = log det
(
I + ρrĤ srQs[l]Ĥ

H

srΣ̂
−1

r [l]
)

where Σ̂r = Cov(vr | Ĥsr, Ĥ rr) and Q[l] , {Qs[l],Qr[l]}. A similar
expression is found for I rd(Q[l]).

We can also upper-bound the mutual information by ignoring the channel
estimation error component.
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Maximizing the Achievable-Rate Lower-Bound

For full-duplex operation, the Source → Destination rate is bottlenecked by
the smallest of {Isr, Ird}.

Therefore, our metric is

Iτ (Q) = min

{
2∑

l=1

τ [l]Isr(Q[l])

︸ ︷︷ ︸

, Isr,τ (Q)

,

2∑

l=1

τ [l]I rd(Q[l])

︸ ︷︷ ︸

, I rd,τ (Q)

}

where Q , {Qs[1],Qs[2],Qr[1],Qr[2]}.

Our optimization problem becomes max
Q

Iτ
(
Q
)
with power and positivity

constraints

Q ∈ Qτ ,

{

∑2
l=1 τ [l] tr

(

Qs[l]
)

≤ 1 , Qs[l] ≥ 0 ∀l ∈ {1, 2}
∑2

l=1 τ [l] tr
(

Qr[l]
)

≤ 1 , Qr]l] ≥ 0 ∀l ∈ {1, 2}
.
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Transmit Covariance Optimization

We convert the maximin problem to a weighted sum-rate optimization
problem

max
ζ∈[0,1]

max
Q∈Qτ

(

ζIsr,τ (Q) + (1− ζ)I rd,τ (Q)
)

where we find ζ via bisection search.

To maximize τ -weighted sum-rates Isr,τ (Q) and Isr,τ (Q), we have developed
a Gradient Projection algorithm.

The projection step is performing waterfilling over both spatial and temporal
degrees of freedom.

Finally we maximize with respect to the time-share τ using a grid search.
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Numerical Results

We will now show the achievable-rate bounds in the following plots:

versus INR ηr
versus training length

In the plots, we show our proposed scheme as well as the following schemes:

Half-duplex with optimized covariance matrices and time-sharing parameter τ
Our proposed scheme without performing interference cancellation
Our proposed scheme using only one period per data epoch
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Achievable-Rate Lower-Bound vs. INR ηr
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Achievable-Rate Lower-Bound vs Training Length T
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Conclusion

We characterized the achievable-rate of MIMO decode-and-forward
full-duplex relaying.

We considered dynamic range limitations at the transmitter and receiver, as
well as channel-estimation error from the training-based least-squares.

Our solution required solving a non-convex optimization problem, for which
we applied the projected gradient method.

An analytic approximation that writes mutual information as an explicit
function of the SNRs, INRs, numbers of antennas, and dynamic-range
parameters κ and β was also derived (see paper).
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Thanks!
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Gradient Projection Algorithm

We find the achievable-rate lower-bound via Gradient Projection:

for k = 1, 2, 3, . . .

P (k)
r [1] = Q(k)

r [1] +G(k)
r [1]

P (k)
r [2] = Q(k)

r [2] +G(k)
r [2]

(
Q̃

(k)

r [1], Q̃
(k)

r [2]
)
= PQτ

(
P (k)

r [1],P (k)
r [2]

)

Q(k+1)
r [1] = Q(k)

r [1] + γ(k)
(
Q̃

(k)

r [1]−Q(k)
r [1]

)

Q(k+1)
r [2] = Q(k)

r [2] + γ(k)
(
Q̃

(k)

r [2]−Q(k)
r [2]

)

〈Similar repeated for Qs[1] and Qs[2]〉
end

where G(k)
r [l] is the gradient, and PQτ

(·) projects the period 1 and period 2
covariances onto the constraint set. γ(k) is chosen via the Armijo stepsize rule.
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Achievable-Rate Lower-Bound Contour over SNR and INR
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Analytic Approximation of Achievable Rate

The complicated nature of the optimization problem motivates us to
approximate its solution

Making simplifying assumptions, we are able to find straightforward optimal
transmit covariance matrices for both full-duplex and half-duplex operation.

Our analytic approximate solution is simply the maximum of the full-duplex
and half-duplex approximate solutions.
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Analytic Approximation Contour over SNR and INR

Approximation Gradient Projection Optimization
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