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Abstract—In this paper we consider the problem of full-duplex
multiple-input multiple-output (MIMO) relaying between multi-
antenna source and destination nodes. The principal difficulty in
implementing such a system is that, due to the limited attenuation
between the relay’s transmit and receive antenna arrays, the
relay’s outgoing signal may overwhelm its limited-dynamic-range
input circuitry, making it difficult—if not impossible—to recover
the desired incoming signal. While explicitly modeling transmit-
ter/receiver dynamic-range limitations and channel estimation
error, we derive tight upper and lower bounds on the end-
to-end achievable rate of decode-and-forward-based full-duplex
MIMO relay systems, and propose a transmission scheme based
on maximization of the lower bound. The maximization requires
us to (numerically) solve a nonconvex optimization problem, for
which we detail a novel approach based on bisection search and
gradient projection. To gain insights into system design tradeoffs,
we also derive an analytic approximation to the achievable rate
and numerically demonstrate its accuracy.1

I. I NTRODUCTION

We consider the problem of communicating from source
to destination nodes through a relay node. Traditional relay
systems operate in a half-duplex, whereby the time-frequency
signal-space used for the source-to-relay link is kept orthog-
onal to that used for the relay-to-destination link, such as
with non-overlapping time periods or frequency bands. Half-
duplex operation is used to avoid the high levels of relay self-
interference that are faced with full-duplex operation, where
the source and relay share a common time-frequency signal-
space. For example, it is not unusual for the ratio between
the relay’s self-interference power and desired incoming signal
power to exceed that of the relay’s front-end hardware, making
it impossible to recover the desired signal. The importance
of limited dynamic-range (DR) cannot be overstressed; notice
that, even if the self-interference signal was perfectly known,
limited-DR renders perfect cancellation impossible.

Recently, multiple-input multiple-output (MIMO) relaying
has been proposed as a means of increasing spectral efficiency
(e.g., [1]). By MIMO relaying, we mean that the source, relay,
and destination each use multiple antennas for both reception
and transmission. MIMO relaying brings the possibility of
full-duplex operation throughspatial self-interference suppres-
sion (e.g., [2]–[6]). Still, the following fundamental questions
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about full-duplex MIMO relaying in the presence of self-
interference remain:1) What is the maximum achievable end-
to-end throughput under a transmit power constraint? 2) How
can the system be designed to achieve this throughput?

In this paper, we aim to answer these two fundamental
questions while paying special attention to the effects of both
limited-DR and imperfect channel-state information (CSI).
Limited-DR is a natural consequence of non-ideal amplifiers,
oscillators, analog-to-digital converters (ADCs), and digital-
to-analog converters (DACs). To model the effects of limited
receiver-DR, we inject, at each receive antenna, an additive
white Gaussian “receiver distortion” with varianceβ times
the energy impinging on that receive antenna (whereβ ≪ 1).
Similarly, to model the effects of limited transmitter-DR,we
inject, at each transmit antenna, an additive white Gaussian
“transmitter noise” with varianceκ times the energy of the
intended transmit signal (whereκ ≪ 1). Imperfect CSI can
result for several reasons, including channel time-variation,
additive noise, and DR limitations. We focus on CSI imperfec-
tions that result from the use of pilot-aided least-squares(LS)
channel estimation performed in the presence of limited-DR.
Moreover, we consider regenerative relays that decode-and-
forward (as in [2]–[6]), as opposed to simpler non-regenerative
relays that only amplify-and-forward (also discussed in [4]).

The contributions of this paper (an abbreviated version of
[7]) are as follows. For full-duplex MIMO relaying, an explicit
model for transmitter/receiver-DR limitations is proposed;
pilot-aided least-squares MIMO-channel estimation, under DR
limitations, is analyzed; the residual self-interference, from
DR limitations and channel-estimation error, is analyzed;
lower and upper bounds on the achievable rate are derived;
a transmission scheme is proposed based on maximizing the
achievable-rate lower bound subject to a power constraint,
requiring the solution of a nonconvex optimization problem,
to which we apply bisection search and Gradient Projection;
an analytic approximation of the maximum achievable rate is
proposed; and, the achievable rate is numerically investigated
as a function of signal-to-noise ratio, interference-to-noise
ratio, and transmitter/receiver dynamic range.

II. SYSTEM MODEL

We will useNs andNr to denote the number of transmit
antennas at the source and relay, respectively, andMr and
Md to denote the number of receive antennas at the relay and
destination, respectively. Here and in the sequel, we use the



subscriptss for source,r for relay, andd for destination, and
we omit subscripts when referring to common quantities.

We assume that propagation between each transmitter-
receiver pair can be characterized by a Raleigh-fading MIMO
channelH ∈ CM×N corrupted by additive white Gaussian
noise (AWGN) n(t). By “Rayleigh fading,” we mean that
vec(H) ∼ CN (0, IMN ), and by “AWGN,” we mean that
n(t) ∼ CN (0, IM ). The time-t radiated signalss(t) are then
related to the received signalsu(t) via

ur(t) =
√
ρrHsrss(t) +

√
ηrH rrsr(t) + nr(t) (1)

ud(t) =
√
ρdH rdsr(t) +

√
ηdHsdsd(t) + nd(t). (2)

In (1)-(2), ρr > 0 and ρd > 0 denote the signal-to-noise
ratio (SNR) at the relay and destination, whileηr > 0 and
ηd > 0 denote the interference-to-noise ratio (INR) at the relay
and destination. (As described in the sequel, the destination
treats the source-to-destination link as interference). The INR
ηr will depend on the separation between, and orientation of,
the relay’s transmit and receive antenna arrays, whereas the
INR ηd will depend on the separation between source and
destination modems, so that typicallyηd ≪ ηr.

For full-duplex decode-and-forward relaying, we partition
the time indicest = 0, 1, 2, . . . into a sequence of commu-
nication epochs{Ti}∞i=0 where, during epochTi ⊂ Z+, the
source communicates theith information packet to the relay,
while simultaneously the relay communicates the(i− 1)th

information packet to the destination. Before the first data
communication epoch, we assume the existence of a training
epochTtrain during which the modems estimate the channel
state. From the estimated channel state, the data commu-
nication design parameters are optimized and the resulting
parameters are used for every data communication epoch.
Since the design and analysis will be identical for every data-
communication epoch (as a consequence of channel time-
invariance), we suppress the indexi in the sequel and refer to
an arbitrary data communication epoch asTdata.

The training epoch is partitioned into two equal-length
periods (i.e.,Ttrain[1] and Ttrain[2]) to avoid self-interference
when estimating the channel matrices. Each data epoch is
also partitioned into two periods (i.e.,Tdata[1] and Tdata[2])
of normalized durationτ ∈ [0, 1] and 1 − τ , respectively,
over which the transmission parameters can be independently
optimized. As we shall see in the sequel, such flexibility is
critical when the INRηr is large relative to the SNRρr.
Moreover, this latter partitioning allows us to formulate both
half- and full-duplex schemes as special cases of a more
general transmission protocol. For use in the sequel, we find
it convenient to defineτ [1] , τ andτ [2] , 1−τ . Within each
of these periods, we assume that the transmitted signals are
zero-mean and wide-sense stationary.

We model the effect of limited transmitter dynamic range
(DR) by injecting, per transmit antenna, an independent zero-
mean Gaussian “transmitter noise” whose variance isκ times
the energy of theintended transmit signal at that antenna.
In particular, say thatx(t) ∈ CN denotes the transmitter’s

intended time-t transmit signal, and sayQ , Cov{x(t)} over
the relevant time period (e.g.,t ∈ Tdata[1]). We then write the
time-t noisy radiated signal as

s(t) = x(t) + c(t) s.t.







c(t) ∼ CN (0, κ diag(Q))
c(t)⊥⊥x(t)
c(t)⊥⊥ c(t′)

∣
∣
t′ 6=t

,
(3)

wherec(t) ∈ CN denotes transmitter noise and⊥⊥ statistical
independence. Typically,κ ≪ 1.

We model the effect of limited receiver-DR by injecting, per
receive antenna, an independent zero-mean Gaussian “receiver
distortion” whose variance isβ times the energy collected by
that antenna. In particular, say thatu(t) ∈ CM denotes the
receiver’s undistorted time-t received vector, and sayΦ ,

Cov{u(t)} over the relevant time period (e.g.,t ∈ Tdata[1]).
We then write the distorted post-ADC received signal as

y(t) = u(t) + e(t) s.t.







e(t) ∼ CN (0, β diag(Φ))
e(t)⊥⊥u(t)
e(t)⊥⊥ e(t′)

∣
∣
t′ 6=t

,
(4)

where e(t) ∈ CM is additive distortion. Typically,β ≪ 1.
Justifications for these limited-DR models are given in [7].
Figure 1 summarizes our overall system model.
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Fig. 1. Our model of full-duplex MIMO relaying under limited
transmitter/receiver-DR. The dashed lines denote statistical dependence.

III. A NALYSIS OF ACHIEVABLE RATE

A. Pilot-Aided Channel Estimation

We assume that, during the training epochsTtrain[1]
and Ttrain[2], least-squares estimates of the channels
Ĥsr, Ĥ rr, Ĥ rd, Ĥsd are obtained fromTN -duration (for
someT ∈ Z+) training sequences, according to the method
described in [7]. There it was shown that the resulting
estimates take the form

√
αĤ =

√
αH +D

1

2 H̃, (5)

where the entries of̃H are i.i.dCN (0, 1), and where

D ≈ 1
2T

[
I + α 2κ

N
HHH + α 2β

N
diag(HHH)

]
. (6)

characterizes the spatial covariance of the estimation error
under β ≪ 1 and κ ≪ 1. Above, α ∈ {ρr, ηr, ρd, ηd} for
H ∈ {Hsr,H rr,H rd,Hsd}, respectively.



B. Interference Cancellation and Equivalent Channel

Recalling that the data communication period is partitioned
into two periods,Tdata[1] andTdata[2], and that—within each—
the transmitted signals are wide-sense stationary, the relay’s
(instantaneous, distorted) signal at any timet ∈ Tdata[l] is

yr(t) = (
√
ρrĤsr −D

1

2

srH̃sr)(xs(t) + cs(t)) + nr(t)

+ (
√
ηrĤ rr −D

1

2

rr H̃ rr)(xr(t) + cr(t)) + er(t), (7)

as implied by Fig. 1 and (5). Defining the aggregate noise term

vr(t) ,
√
ρrĤsrcs(t)−D

1

2

srH̃sr(xs(t) + cs(t)) + nr(t)

+
√
ηrĤ rrcr(t)−D

1

2

rr H̃ rr(xr(t) + cr(t)) + er(t), (8)

we can writeyr(t) =
√
ρrĤsrxs(t) +

√
ηrĤ rrxr(t) + vr(t),

where the self-interference term
√
ηrĤ rrxr(t) is known and

thus can be canceled. The interference-canceled signalzr(t) ,
yr(t)−

√
ηrĤ rrxr(t) can then be written as

zr(t) =
√
ρrĤsrxs(t) + vr(t). (9)

Equation (9) shows that, in effect, the information signal
xs(t) propagates through a known channel

√
ρrĤsr corrupted

by an aggregate (possibly non-Gaussian) noisevr(t), whose
(Ĥsr, Ĥ rr)-conditional covariance we denote aŝΣr[l] ,

Cov{vr(t) | Ĥsr, Ĥ rr}t∈Tdata[l]. It can be shown [7] that

Σ̂r[l] ≈ I + κρrĤsr diag(Qs[l])Ĥ
H
sr + D̂sr tr(Qs[l])

+ κηrĤ rr diag(Qr[l])Ĥ
H
rr + D̂rr tr(Qr[l])

+ βρr diag(ĤsrQs[l]Ĥ
H
sr)

+ βηr diag(Ĥ rrQr[l]Ĥ
H
rr), (10)

whereD̂sr , E{Dsr | Ĥsr} andD̂rr , E{Drr | Ĥ rr} obey

D̂ ≈ 1
2T

[
I + α 2κ

N
ĤĤ

H
+ α 2β

N
diag(ĤĤ

H
)
]

(11)

and where the approximations in (10)-(11) hold underκ ≪ 1
andβ ≪ 1. An expression similar to (10) can be derived for
Σ̂d[l] , Cov{vd(t) | Ĥ rd, Ĥsd}t∈Tdata[l].

C. Bounds on Achievable Rate

The end-to-end mutual information can be written, for a
given time-sharing parameterτ , as [1]

Iτ (Q) = min

{
2∑

l=1

τ [l]Isr(Q[l]),

2∑

l=1

τ [l]Ird(Q[l])

}

, (12)

whereIsr(Q[l]) and Ird(Q[l]) are the period-l mutual infor-
mations of the source-to-relay channel and relay-to-destination
channel, respectively, and whereQ[l] ,

(
Qs[l],Qr[l]

)
and

Q ,
(
Q[1],Q[2]

)
.

Mutual-information analysis is complicated by the fact that
the aggregate noise termsvr and vd are, in general, non-
Gaussian as a result of the channel-estimation-error compo-
nents. However, it is known that, among all noise distributions
of a given covariance, the Gaussian one is worst from a

mutual-information perspective [8]. Thus,Isr(Q[l]) can be
lower-bounded by [7]

Isr(Q[l]) = log det
(
I + ρrĤsrQs[l]Ĥ

H
srΣ̂

−1

r [l]
)

(13)

= log det
(
ρrĤsrQs[l]Ĥ

H
sr + Σ̂r[l]

)
−log det(Σ̂r[l])

andIrd(Q[l]) similarly lower bounded byI rd(Q[l]). The end-
to-endτ -specific achievable-rate is then lower-bounded by

Iτ (Q) = min

{
2∑

l=1

τ [l]Isr(Q[l])

︸ ︷︷ ︸

, Isr,τ (Q)

,

2∑

l=1

τ [l]I rd(Q[l])

︸ ︷︷ ︸

, I rd,τ (Q)

}

. (14)

Moreover, the rateIτ (Q) bits-per-channel-use (bpcu) can be
achieved via independent Gaussian codebooks at the transmit-
ters and maximum-likelihood detection at the receivers [8].

A straightforward achievable-rate upper boundIτ (Q) re-
sults from the case of perfect CSI (i.e.,D̂ = 0), wherevr(t)
andvd(t) are Gaussian.

IV. T RANSMIT COVARIANCE OPTIMIZATION

We would now like to find the transmit covariance matrices
Q that maximize the achievable-rate lower boundIτ (Q) in
(14) subject to the per-link power constraintQ ∈ Qτ , where

Qτ ,

{

Q s.t.
2∑

l=1

τ [l] tr
(
Qs[l]

)
≤1,

2∑

l=1

τ [l] tr
(
Qr[l]

)
≤1,

(15)
Qs[l] = QH

s [l] ≥ 0, Qr[l] = QH
r [l] ≥ 0

}

,

and subsequently optimize the time-sharing parameterτ . We
now denote the optimal (i.e., maximin) rate, for a givenτ , by

I∗,τ , max
Q∈Qτ

min
{
Isr,τ (Q), I rd,τ (Q)

}
, (16)

and we useQ∗,τ to denote the corresponding set of maximin
designsQ (which are, in general, not unique). Then, with
τ∗ , argmaxτ∈[0,1] I∗,τ , the optimal rate isI∗ , I∗,τ∗ , and
the corresponding set of maximin designs isQ∗ , Q∗,τ∗ .

It is important to realize that, among the maximin designs
Q∗,τ , there exists at least one “link-equalizing” design, i.e.,
∃Q ∈ Q∗,τ s.t. Isr,τ (Q) = I rd,τ (Q). To see why this
is the case, notice that, given any maximin designQ such
that Isr,τ (Q) > I rd,τ (Q), a simple scaling ofQs[l] can yield
Isr,τ (Q) = I rd,τ (Q), and thus an equalizing design. A similar
argument can be made whenI rd,τ (Q) > Isr,τ (Q).

Referring to the set ofall link-equalizing designs (maximin
or otherwise), for a givenτ , as

Q=,τ ,
{
Q ∈ Qτ s.t. Isr,τ (Q) = I rd,τ (Q)

}
, (17)

the maximin equalizing design can be found
by solving either argmaxQ∈Q=,τ

Isr,τ (Q) or
argmaxQ∈Q=,τ

I rd,τ (Q), where the equivalence is due
to the equalizing property. More generally, the maximin
equalizing design can be found by solving

arg max
Q∈Q=,τ

Iτ (Q, ζ) (18)



with any fixed ζ ∈ [0, 1] and theζ-weighted sum-rate

Iτ (Q, ζ) , ζIsr,τ (Q) + (1− ζ)I rd,τ (Q). (19)

To find the maximin equalizing design, we propose relaxing
the constraint onQ fromQ=,τ toQτ , yielding theζ-weighted-
sum-rate optimization problem

Q∗,τ (ζ) = arg max
Q∈Qτ

Iτ (Q, ζ). (20)

At each bisection step, we use Gradient Projection (GP) to
solve2 the τ -specific,ζ-weighted-sum-rate optimization prob-
lem (20). See [7] for details.

V. ACHIEVABLE-RATE APPROXIMATION

The complicated nature of the optimization problem (16)
motivates us to approximate its solution, i.e., the covariance-
optimized achievable rateI∗ = maxτ∈[0,1] maxQ∈Qτ

Iτ (Q).
In doing so, we focus on the case ofT → ∞, where channel
estimation error is driven to zero so thatIτ (Q) = Iτ (Q) =
Iτ (Q). In addition, for tractability, we restrict ourselves to
the caseNs = Nr = N andMr = Md = M (i.e., N transmit
antennas andM receive antennas at each node), the caseηd =
0 (i.e., no direct source-to-destination link), and the caseτ = 1

2
(i.e., equal time-sharing).

Our approximation is built around the simplifying case
that the channel matrices{Hsr,H rr,H rd} are each diagonal,
although not necessarily square, and haveR , min{M,N}
identical diagonal entries equal to

√

MN/R. (The latter value
is chosen so thatE{tr(HHH)} = MN as assumed in
Section II.) In this case, the mutual information (14) becomes

Iτ (Q) ≈ 1

2
min

{ 2∑

l=1

log det
(

I + ρr
NM
R

Qs[l]
(
I + (κ+ β)

× NM
R

[
ρr diag(Qs[l]) + ηr diag(Qr[l])

])−1
)

,

2∑

l=1

log det
(

I + ρd
NM
R

Qr[l]
(
I + (κ+ β)

× NM
R

ρd diag(Qr[l])
)−1

)}

. (21)

Whenηr ≪ ρr, theηr-dependent terms in (21) can be ignored,
after which it is straightforward to show that, under the
constraint (15), the optimal covariances are the “full duplex”
QFD , ( 1

N
I, 1

N
I, 1

N
I, 1

N
I), for which (21) gives

I(QFD) ≈ R log
(

1 + min
{

ρr
R
M

+(κ+β)(ρr+ηr)
, ρd

R
M

+(κ+β)ρd

})

=







R log
(

1 + ρd
R
M

+(κ+β)ρd

)

if ρr
ρd

≥ 1+ (κ+β)ηrM

R

R log
(

1 + ρr
R
M

+(κ+β)(ρr+ηr)

)

else. (22)

Whenηr ≫ ρr, theηr-dependent term in (21) dominates unless
Qr[l] = 0. In this case, the optimal covariances are the “half

2Because (16) is generally non-convex, finding the global maximum can
be difficult. Although GP is guaranteed only to find a local, and not global,
maximum, our experience with different initializations suggests that GP is
indeed finding the global maximum in our problem.

duplex” onesQHD , ( 2
N
I,0,0, 2

N
I), for which (21) gives

I(QHD) ≈







R
2 log

(

1 + ρd
R

2M
+(κ+β)ρd

)

if ρr
ρd

≥ 1

R
2 log

(

1 + ρr
R

2M
+(κ+β)ρr

)

else.
(23)

Finally, given any triple (ρr, ηr, ρd), we approximate the
achievable rate as follows:I∗ ≈ max{I(QFD), I(QHD)}.

From (22)-(23), usingθ , R
M(κ+β) , it is straightforward to

show that the approximated system operates as follows.
1) Say ρr

ρd
≤ 1. Then full-duplex is used iff

ηr ≤ 1
2

√

(θ + 2ρr)2 +
2ρr
κ+β

(θ + 2ρr)− 1
2θ. (24)

For either half- or full-duplex,I∗ is invariant toρd, i.e.,
the source-to-relay link is the limiting one.

2) Say1 ≤ ρr
ρd

≤ 1 + (κ+β)ηrM

R
. Full-duplex is used iff

ηr ≤ ρr
2ρd

√

(θ + 2ρd)2 +
2ρd
κ+β

(θ + 2ρd)− θ
(
1− ρr

2ρd

)
.

(25)
3) Say 1 + (κ+β)ηrM

R
≤ ρr

ρd
, or equivalentlyηr ≤ ηcrit ,

(
ρr
ρd

− 1
)

R
M(κ+β) . Then full-duplex is always used, and

I∗ is invariant toρr and ηr, i.e., the rate is limited by
the relay-to-destination link.

Figure 2 shows a contour plot of the proposed achievable-
rate approximation as a function of INRηr and SNRρr, for
the case thatρr/ρd = 2. We shall see in Section VI that
our approximation of the covariance-optimized achievable-
rate is reasonably close to that found by solving (16) using
bisection/GP.
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Fig. 2. Contour plot of the approximated achievable rateI∗ versus relay
SNR ρr and INRηr, for N = 3, M = 4, β = κ = −40dB, andρr/ρd = 2.
The horizontal dashed line shows the INRηcrit, and the dark curve shows the
boundary between full- and half-duplex regimes described in(25).

VI. N UMERICAL RESULTS AND CONCLUSIONS

We now study the average behavior of the bisection/GP-
optimized rateI∗ = maxτ maxQ∈Qτ

Iτ (Q) as a function
of SNRs ρr and ρd; INRs ηr and ηd; and dynamic range
parametersκ andβ. We also investigate the role of interference
cancellation, the role of two distinct data periods, the role
of τ -optimization, and the relation to optimized half-duplex
(OHD) signaling. In doing so, we find close agreement with
the achievable-rate approximation proposed in Section V and



illustrated in Fig. 2. All results below usedN , Ns = Nr

transmit antennas,M , Mr = Md receive antennas, the SNR
ratio ρr/ρd = 2, the destination INRηd = 1, training duration
T = 50, optimization of time-shareτ ∈ {0.1, 0.2, . . . , 0.9},
and were averaged over100 realizations.

Below, we denote the full scheme proposed in Section IV
by “TCO-2-IC,” which indicates the use of interference can-
cellation (IC) and transmit covariance optimization (TCO)
performed individually over the 2 data periods (i.e.,Tdata[1]
andTdata[2]). To test the impact of IC and of two data periods,
we also implemented the proposed scheme but without IC,
which we refer to as “TCO-2,” as well as the proposed scheme
with only one data period (i.e.,Qi[1] = Qi[2] ∀i), which we
refer to as “TCO-1-IC.” To optimize half-duplex, we used GP
to maximize the sum-rateIτ (Q, 1

2 ) under the power constraint
(15) and the half-duplex constraintQ1[2] = 0 = Q2[1]; τ -
optimization was performed as described above.

In Fig. 3, we examine achievable-rate performance versus
INR ηr for the TCO-2-IC, TCO-1-IC, TCO-2, and OHD
schemes, using different dynamic range parametersβ = κ.
For OHD, we see that rate is invariant to INRηr, as ex-
pected. For the proposed TCO-2-IC, we observe “full duplex”
performance for low-to-mid values ofηr and a transition to
OHD performance at high values ofηr, just as predicted
by the approximation in Section V. In fact, the rates in
Fig. 3 are very close to the approximated values in Fig. 2.
To see the importance of two distinct data-communication
periods, we examine the TCO-1-IC trace, where we observe
TCO-2-IC-like performance at low-to-midrange values ofηr,
but performance that drops below OHD at highηr. Essen-
tially, TCO-1-IC forces full-duplex signaling at high INR
ηr, where half-duplex signaling is optimal, while TCO-2-IC
facilitates the possibility of half-duplex signaling through the
use of two distinct data-communication periods, similar tothe
MIMO-interference-channel scheme in [9]. The effect ofτ -
optimization can be seen by comparing the two OHD traces,
one which uses the fixed valueτ = 0.5 and the other which
uses the optimized valueτ = τ∗. The separation between these
traces shows thatτ -optimization gives a small but noticeable
rate gain. Finally, by examining the TCO-2 trace, we conclude
that partial interference cancellation is very important for all
but extremely low or high values of INRηr.

In Fig. 4, we examine the rate of the proposed TCO-IC-2
and OHD versus SNRρr, using the dynamic range parameters
β = κ = −40dB, ηd = 1, and two fixed values of INRηr. All
the behaviors in Fig. 4 are predicted by the rate approximation
described in Section V and illustrated in Fig. 2. In particular,
at the low INR ofηr = 20dB, TCO-IC-2 operates in the full-
duplex regime for all values of SNRρr. Meanwhile, at the
high INR of ηr = 60dB, TCO-IC-2 operates in half-duplex
at low values of SNRρr, but switches to full-duplex afterρr

exceeds a threshold.

In the full paper [7], we also examine rate performance
versus training lengthT and for various combinations of
transmit and receive antennas(M,N).
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Fig. 3. Achievable-rate lower boundI
∗

for TCO-2-IC, TCO-2, TCO-1-IC,
and OHD versus INRηr. Here,N = 3, M = 4, ρr = 15dB, ρr/ρd = 2,
ηd = 0dB, andT = 50. OHD is plotted forβ = κ = −40dB, but was
observed to give nearly identical rate forβ = κ = −80dB. Both fixed-time-
share (τ = 0.5) and optimized-time-share (τ = τ∗) versions of OHD are
shown.
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Fig. 4. Achievable-rate lower boundI
∗

for TCO-2-IC and OHD versus SNR
ρr. Here,ρr/ρd = 2, ηd = 0dB, N = 3, M = 4, β = κ = −40dB, and
T = 50. OHD in this figure is optimized overτ .
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