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KI'hree Important Matrix Recovery Problems:

e Matrix Completion (MC):

Recover low-rank matrix X from AWGN-corrupted incomplete
observations Y = Pq (X + W)

e Robust Principle Components Analysis (RPCA):

Recover low-rank matrix X and sparse matrix S from
AWGN-corrupted observationsY = X + S + W.

e Dictionary Learning (DL):

Recover overcomplete dictionary A and sparse matrix S from
AWGN-corrupted observations Y = AS + W.

The following extensions may also be of interest:

\_

e RPCA and DL with incomplete observations and/or structured sparsity.

e Any of the above with a non-additive noise model (e.g., quantized Y).
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/Our contribution: \

e \We propose a novel unified approach to these matrix-recovery problems that

leverages the recent framework of approximate message passing (AMP).

e While previous AMP algorithms have been proposed for the linear model:

— Infer s ~ [[,, ps(sn) from y = ®s + w
with AWGN w and known ® [Donoho/Maleki/Montanari'10]

or the generalized linear model:

— Infer s ~ [],, ps(sn) from y ~ ], oy x (Ym|Tm)
with hidden £ = ®s and known ® [Rangan'10]

our new algorithm is formulated for the generalized bilinear model:

— Infer A ~ [, .palams) and B ~ [, pp(bry) from
Y ~ Hm’n pY|X(ymn|xmn) with hidden X = AB [Parker/Schniter/Cevher'11,12]

e Our work is still in-progress. Today we will focus on results for Matrix

Completion. A journal submission with RPCA and DL examples is in

preparation. Preliminary results are encouraging; stay tuned!
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/Outline:

1. Brief review of popular approaches to

matrix-completion and robust PCA:
e Convex
o Greedy

e Bayesian

2. Bilinear Generalized AMP (BiG-AMP).
e What is it?
e What are AMP’s approximations?
e How to apply to MC, RPCA, DL?

3. Preliminary results:
e Phase transition curves
e NMSE and runtime

e Practical examples: image completion,

video surveillance
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/Convex—Optimization for Matrix-Completion & Robust PCA: \
e Consider the combined MC-and-RPCA problem:

Recover low-rank X and sparse S from AWGN-corrupted incomplete
observations Y = Pq(X + S+ W).
e Optimization approach:

r)rclig {rank(X) 4+ 7||Sllo} st. |[Pa(X +S)—Y|p <n ...intractable

min {| Xl +7/IS]li} st [|Pa(X +S)=Y|r <7 ...convex!

e Convex relaxation yields perfect noiseless & stable noisy recovery when:
— rank(X) is sufficiently small,
— singular vectors of X are not too cross-correlated nor too spiky,
— support of S is random and sufficiently sparse,
— observation set {2 is random and sufficiently large.

Details given in, e.g., [Candés/Recht’08], [Candés/Plan'09], [Candés/Li/Ma/Wright'09],
[Zhou /Wright/Li/Candés/Ma’10], and [Chen/Jalali/Sanghavi/Caramanis’11].
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http://perception.csl.uiuc.edu/matrix-rank/sample_code.html

/Fast Algorithms for Convex Matrix-Completion & Robust PCA: \

e A comparison of convex RPCA algorithms is given at Yi Ma's webpage:

[Lin/Chen/Wu/Ma'09]

Algorithm Error | Time (sec)
Singular Value Thresholding 3.4e-4 877
[Cai/Candes/Shen’08]
Dual Method 1.6e-5 177
[Lin/Ganesh /Wright/Wu/Chen/Ma’09]
Accelerated Proximal Gradient (partial SVD) | 1.8e-5 8
[Lin/Ganesh /Wright /Wu /Chen /Ma'09]
Alternating Direction Methods 2.2e-5 5
[Yuan/Yang'09]
Exact Augmented Lagrange Method 7.6e-8 4
[Lin/Chen/Wu/Ma'09]
Inexact Augmented Lagrange Method 4. 3e-8 2

with amplitudes uniform in [—50, 50].

for the recovery of 400 x 400 rank-20 matrix X corrupted by 5%-sparse S

e Evidently a lot of progress has been made! Can one do better?
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/Greedy Approaches to Matrix-Completion & Robust PCA: \

e First consider matrix completion, where we want to recover low-rank X
from AWGN-corrupted incomplete observations Y = Pqo(X + W).

e If we suppose that ...
X ¢ RMXN s square or tall (i.e., M > N) with rank(X) = R,
then the difficult part of the MC problem is finding the column space of X,

leading to squared-error minimization on the Grassmanian manifold G,/ g:
min min||Po(AB) - Y%
e Example algorithms: A€9v.r B
— Optspace [Keshavan/Montanari/Oh'09]: Grad-descent minimizing (A, B).
— SET [Dai/Milenkovic’'09]: Solves for B, then takes gradient w.r.t A.
— GROUSE [Balzano/Nowak/Recht'10]: Grad-descent one column at a time.

e This greedy approach can also be extended to RPCA:
— GRASTA [He/Balzano/Lui'11].
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/Bayesian Approaches to Matrix-Completion & Robust PCA: \

e First consider matrix completion, where we want to recover low-rank X
from AWGN-corrupted incomplete observations Y = Pqo(X + W).

e The basic Bayesian approach decomposes X = A B and assumes priors
A ~ N(0,0%1) and B ~ N(0,I). The log posterior then becomes

Inp(A, BlY) = 55 |Pa(AB) - Y| +

2
20W

AL+ LIBJ% + C

1 |
20124

To infer (A, B), various schemes have been proposed, e.g.,

— EM (“Probabilistic PCA") [Tipping/Bishop'99]
— SDP (“Maximum-Margin Matrix Factorization”) [Srebro/Rennie/Jaakkola’04]
— VB (“Variational Bayes") [Lim/Teh'07]
— MCMC (“Probabilistic Matrix Factorization™) [Salakhutdinov/Mnih’08]

Each has their own way of estimating the hyperparameters {03, 0%}.

e This approach can be extended to RPCA by changing the noise model to a
heavy-tailed one (e.g., [Luttinen/llin/Karhunen'09], [Ding/He/Carin'11]).
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/Bilinear Generalized AMP (BiG-AMP):

e BiG-AMP is a Bayesian approach that uses approximate message passing

(AMP) strategies to infer (A, B, S).

Compressive Sensing (CS):

51

52

53

54

e In AMP, beliefs are propagated on a loopy factor graph using approximations

that exploit the blessings of dimensionality:
1. Gaussian message approximation (motivated by CLT),

2. Taylor-series approximation of message differences.

e A rigorous large-system analysis of AMP for CS (with i.i.d Gaussian ®) has

~

MC/RPCA/DL:

Lo brn bB

k established a number of optimalities [Bayati/Montanari'10],[Rangan’10]. J
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/- . . ] 0 Ple(a)  pf(by) x
BiG-AMP Approximations (sum-product version): © -0’

1. Message from it node of X to j** node of B: -
25|b; ~ N via CLT!
B : ‘ B A
pz’—>j(bj) X ( }R ) pY|X (yl‘ Zr a’rbr ) (Hr pier(br)) (Hr;zéj pier(ar))
Ar fr=1197Sr#j

z/ Py x (Yilzs) N (235 2i(bj), vF (b)) ~ N (exact for AWGN!I)

To compute ;(b;),v%(b;), the means and variances of p2_ p#t  suffice,
thus we have Gaussian message passing! (Same thing happens with

X — A messages.)

2. Although Gaussian, we still have 4M NR mes-
sages to compute (too many!). Exploiting similar-
ity among the messages {pg_j}i]‘il, AMP employs

a laylor-series approximation whose error vanishes

as M — oco. (Same for {pﬁ_j N ) In the end, pY|X(3/MﬁM)
k AMP only needs to compute O(M N) messages! PRrer(@n) J
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/BiG-AMP for MC, RPCA, and DL: \

BiG-AMP can be applied to a wide variety of matrix recovery problems:

e Matrix Completion (MC):
Recover low-rank AB fromY = Pqo(AB + W).
...set A~ N(0,0%I) and B ~ N(0,1I).

e Robust PCA (RPCA):

Recover low-rank AB and sparse S fromY = AB+ S+ W.
...set A~ N(0,0%I), B~ N(0,I),and S ~ Bern(\)-N(0,0%1).

e Dictionary Learning (DL):

Recover overcomplete A and sparse S fromY = AS+ W.
...set A~ N(0,051I) and S ~ Bern(\)-N(0,0%1).

Moreover:
e Non-Gaussian (e.g., quantized) observations can be incorporated via py|x.

e Structured sparsity can be incorporated via “turbo-AMP.” [Schniter'10]

\\ e Hyperparameters can be learned via EM. [Ziniel/Schniter'lO],[ViIa/Schniter'll,lQ]/
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/BiG-AMP in Context: \

Advantages:

e A unified approach to a wide range of problems, e.g., MC, RPCA, DL, ...

e Competitive with best algorithms for each application.

— Very fast and scaleable: no SVDs, easily parallelizable.

... will see from runtime curves.

— Accurate: in part due to flexibility of choice of priors.

... will see from phase transition and NMSE curves.

Relation to other message-passing algorithms for matrix completion:

e [Kim/Yedla/Pfister'10]
— All quantities are discrete.

e [Keshavan/Montanari'll] (1 page poster only!)

— Variable nodes are vector-valued; updates involve matrix inversion?

\_ /
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/BiG-AMP Comments: \

e Low computational cost

— Dominated by 8 matrix multiplies per iteration
— Sparse matrix math — cost per multiply O(R|{2|)
— Uniform variances — eliminates 5 matrix multiplies per iteration

— Sparse MM + Uniform variances + Gaussian priors —> BiG-AMP Lite
e Adaptive stepsize scheme based on GAMP work
e EM hyperparameter learning using BiG-AMP for the “E" step

e Many extensions to pursue:
— quantized outputs (e.g., Netflix ratings)
— non-negativity constraints (e.g., pmf)
— structure (e.g., tree-structured dictionaries)
— linear (not missing) observations

— etc, etc, etc. ..

k e Theoretical analysis/guarantees? J
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/I\/Iatrix Completion — Phase Transitions: \

For M x N = 1000x 1000 matrices in the absence of noise, median over 10 trials:

Inexact ALM VSBL GROUSE
1 100 : 1 1
90
0.8 80 0.8 0.8
70
0.6 'l 0.6 0.6
C60
0.4 20 0.4 0.4
30
0.2 0.2 0.2
20
10
0.05 0.1 %15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 0
LMaFit Matrix ALP@ Il with QR BiG-AMP
1 100 1 1
90
0.8 80 0.8 0.8
70
0.6 'l 0.6 0.6
C60
0.4 20 0.4 0.4
30
0.2 0.2 0.2
20
10
0.25 0 0.05 0.1 0.15 0.2 0.25 0 0.25 0

where

\\ e § = fraction of observed entries. /
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/Matrix Completion — Phase Transitions, 50% Contours:

For M x N = 1000x 1000 matrices in the absence of noise, median over 10 trials:
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\\BiG—AMP achieves the best phase transition in

0.2

0.25

this test

~
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/I\/Iatrix Completion — NMSE and Runtime (to -100 dB): \
(vertical slices of phase plane)
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BiG-AMP achieves very high accuracy and is faster than most approaches.

\\ BiG-AMP Lite is competitive with the fastest techniques.
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Original Image Rank Limited Image Matrix ALPS, NMSE = -18.03 dB

100 200 300 400 500 100 200 300 400 500 100 200 30 400 500

Inexact ALM, NMSE = -16.44 dB VSBL, NMSE = -15.97 dB GROUSE, NMSE = -16.47 dB

100 200 300 400 500 100 200 30 400 500 100 200 30 400 500

BiG-AMP, NMSE = -18.12 dB EM-BiG-AMP, NMSE = -18.42 dB

17



Jason T. Parker AFRL/RYAP

/Robust PCA — Video Surveillance (over 200 frames): \
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/Conclusions: \

BiG-AMP is . ..

e Approximate message passing (AMP) for the generalized bilinear model.
e A unified approach to many matrix-recovery problems (MC, RPCA, DL...)

e Competitive with the best algorithms for each application.

Ongoing Work
e Rank learning

e EM learning for RPCA and DL

e DL applications
— Hyperspectral imaging (with J. Vila and J. Meola)
— Topic modeling (with S. Som)

e Parametric BiG-AMP
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