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Abstract—In this paper we consider the problem of full-
duplex bidirectional communication between a pair of modems,
each with multiple transmit and receive antennas. The prin-
cipal difficulty in implementing such a system is that, due
to the close proximity of each modem’s transmit antennas to
its receive antennas, each modem’s outgoing signal can exceed
the dynamic range of its input circuitry, making it difficult—
if not impossible—to recover the desired incoming signal. To
address these challenges, we consider systems that use pilot-aided
channel estimates to perform transmit beamforming, receive
beamforming, and interference cancellation. Modeling transmit-
ter/receiver dynamic-range limitations explicitly, we derive tight
upper and lower bounds on the achievable sum-rate, and propose
a transmission scheme based on maximization of the lower bound,
which requires us to (numerically) solve a nonconvex optimization
problem. In addition, we derive an analytic approximation to
the achievable sum-rate, and show, numerically, that it is quite
accurate. 1

I. I NTRODUCTION

Full-duplex bidirectional communication between two
multiple-input multiple-output (MIMO) wireless modems has
the potential to nearly double the system spectral efficiency
[1]. By full-duplex, we mean that the two modems perform
simultaneous transmission and reception (STAR) at the same
carrier frequency. The fundamental difficulty with STAR is
that, due to the close proximity of a given modem’s transmit
antennas to its receive antennas, the modem’s outgoing signal
can overwhelm its receiver circuitry, making it impossibleto
recover the incoming signal. To avoid this problem, existing
practical systems tend to communicate in half-duplex mode
(e.g., time-division duplex or frequency-division duplex). In
this paper, we propose a realistic system model, including
channel estimation errors and effects of limited dynamic range,
and derive achievable-rate bounds for a proposed MIMO
STAR protocol. It is shown that its spectral efficiency is
uniformly better than optimized half-duplex and nearly double
when operating within dynamic range constraints.

In this work, we assume that each of the two modems
usesNt ≥ 1 antennas for transmission andNr ≥ 1 different
antennas for reception (i.e., MIMO modems), and we assume
a per-modem transmit power constraint. We then consider the
problem of jointly optimizing the MIMO transmission and
reception strategies in order to maximize the sum of the rates
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of reliable communication between the two modems (i.e., the
sum-rate).

From our perspective, the primary challenges of MIMO-
STAR are, in practice, due to the following:

1) high channel dynamic range (DR),
2) limited transmitter and receiver DR, and
3) imperfect channel state information (CSI).

Channel DR refers to the ratio of the (nominal) interference-
channel gain to the (nominal) desired-channel gain, which may
be as high as100dB due to the relative separation between
intra- and inter-modem antenna pairs. Limited transmitterand
receiver-DR is a natural consequence of non-ideal amplifiers,
oscillators, analog-to-digital converters (ADCs), and digital-to-
analog converters (DACs). Imperfect CSI can result for several
reasons, including channel time-variation, additive noise, and
DR limitations.

Due to the practical importance of transmitter/receiver-
DR and imperfect CSI, we model each artifact explicitly in
this work. In particular, we model limited transmitter-DR
by injecting, for each transmit antenna, an additive white
Gaussian “transmitter noise” with varianceκ times the energy
of the intended transmit signal. Similarly, we model limited
receiver-DR by injecting, for each receive antenna, an additive
white Gaussian “receiver distortion” with varianceβ times the
energy impinging on that receive antenna. Finally, we model
CSI imperfections by assuming the use of pilot-aided least-
squares (LS) channel estimation.

The problem that we consider, full-duplex bidirectional
MIMO, is reminiscent yet fundamentally different than the
well-studied two-userMIMO interference channel (ICh) prob-
lem [11], for which interference alignment [12] has recently
been proposed. While in both problems the primary challenge
is mitigation of other-user interference, in the MIMO-ICh
problem, the other-user codewords are unknown, whereas in
our problem, they are perfectly known because they are self-
generated. In fact, in our problem, “other-user” interference
manifests only through channel-estimation error and limited
receiver-DR, both of which can become significant under very
high channel-DR (e.g., 100 dB).

The contributions of this paper are as follows. For the
full-duplex bidirectional MIMO communication problem: 1)
an explicit model for transmitter/receiver-DR limitations is
proposed; 2) pilot-aided least-squares MIMO-channel esti-
mation, under DR limitations, is analyzed; 3) the residual



self-interference, resulting from DR limitations and channel-
estimation error, is analyzed; 4) lower and upper bounds on
the achievable sum-rate are derived; 5) a transmission scheme
is proposed based on maximizing the sum-rate lower bound
subject to a power constraint, requiring the solution of a
nonconvex optimization problem; 6) an analytic approximation
of the maximum achievable sum-rate is proposed; and, 7) the
achievable sum-rate is numerically investigated as a function
of signal-to-noise ratio, interference-to-noise ratio, transmit-
ter/receiver dynamic range, and number of antennas.

II. SYSTEM MODEL

Our bidirectional communication problem involves two
modems (“A” and “B”), and thus two communicating
transmitter-receiver pairs (i ∈ {1, 2}). We assume, without
loss of generality, that modem A houses transmitteri = 1 and
receiveri = 2, whereas modem B houses transmitteri = 2
and receiveri = 1. In the sequel, we uset ∈ Z+ to denote
the channel-use index,si(t) ∈ CNt to denote the noisy signal
radiated by the antenna array of transmitteri, anduj(t) ∈ CNr

to denote the undistorted signal collected by the antenna array
of receiverj, whereNt is the number of transmit antennas
andNr is the number of receive antennas.

We assume that the signal radiated by transmitterj and
collected by receiveri propagates through an additive white
Gaussian noise (AWGN) corrupted Raleigh-fading MIMO
channelHij ∈ CNr×Nt . By “Rayleigh fading,” we mean
that vec(Hij) ∼ CN (0, INrNt). The time-t radiated signals
{sj(t)}2j=1 are then related to each received signalsui(t) via

u1(t) =
√
ρH11s1(t) +

√
ηH12s2(t) + n1(t) (1)

u2(t) =
√
ρH22s2(t) +

√
ηH21s1(t) + n2(t). (2)

In (1)-(2), ni(t) ∼ CN (0, INr) denotes AWGN,ρ > 0
denotes the signal-to-noise ratio (SNR), andη > 0 denotes
the interference-to-noise ratio (INR). The size ofη will depend
on, e.g., antenna separation and analog-domain suppression.

We assume that the signaling epochT is partitioned into
a training periodTtrain and a subsequent data communication
periodTdata. For reasons that will become clear in the sequel,
the training period is itself partitioned into two equal-length
portions (i.e.,Ttrain[1] andTtrain[2]), as is the data period (i.e.,
Tdata[1] and Tdata[2]). Within each of these four sub-periods,
we assume that the transmitted signals are zero-mean and
wide-sense stationary.

We model the effect of limited transmitter dynamic range
(DR) by injecting, per transmit antenna, an independent zero-
mean Gaussian “transmitter noise” whose variance isκ times
the energy of theintended transmit signal at that antenna.
In particular, say thatxj(t) ∈ CNt denotes the thejth

transmitter’s intended time-t transmit signal, and sayQj ,
Cov{xj(t)} over the relevant time period (e.g.,t ∈ Tdata[1]).
We then write the time-t noisy radiated signal as

sj(t) = xj(t) + cj(t) s.t.











cj(t) ∼ CN (0, κ diag(Qj))

cj(t)⊥⊥xj(t)

cj(t)⊥⊥ cj(t
′)
∣

∣

t′ 6=t
,

(3)

where cj(t) ∈ CNt denotes the transmitter noise. Typically,
κ ≪ 1. The model (3) closely approximates the combined
effects of additive power-amp noise, non-linearities in the DAC
and power-amp, and oscillator phase noise (e.g., [14]).

We model the effect of limited receiver-DR by injecting, per
receive antenna, an independent zero-mean Gaussian “receiver
distortion” whose variance isβ times the energy collected by
that antenna. In particular, say thatui(t) ∈ CNr denotes the
ith receiver’s undistorted time-t received vector, and sayΦi ,
Cov{ui(t)} over the relevant time period (e.g.,t ∈ Tdata[1]).
We then write the distorted post-ADC received signal as

yi(t) = ui(t) + ei(t) s.t.











ei(t) ∼ CN (0, β diag(Φi))

ei(t)⊥⊥ui(t)

ei(t)⊥⊥ ei(t
′)
∣

∣

t′ 6=t
,

(4)

whereei(t) ∈ CNr is additive distortion. Typically,β ≪ 1.
The model (4) closely approximates the combined effects of
additive gain-control noise, non-linearities in the ADC and
gain-control, and oscillator phase noise (e.g., [15]).

Figure 1 summarizes our model.
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Fig. 1. A model of bidirectional MIMO communication under limited
transmitter/receiver-DR. The dashed lines denote statistical dependence. In
labeled quantities, the time indext has been suppressed for brevity.

III. A NALYSIS OF ACHIEVABLE SUM-RATE

A. Pilot-Aided Channel Estimation

In this section, we describe the pilot-aided channel esti-
mation procedure that is used to learn the channel matrices
{Hij}. In our protocol, the training interval consists of two
sub-periods,Ttrain[1] andTtrain[2], each of durationTNt chan-
nel uses (for someT ∈ Z+). For all t ∈ Ttrain[1], we assume
that transmitterj = 1 transmits a known pilot signal andj = 2
remains silent, while, for allt ∈ Ttrain[2], j = 2 transmits and
j = 1 remains silent. As we shall see, it suffices to choose
the pilot sequenceXj = [xj(1), . . . ,xj(TNt)] ∈ CNt×TNt

arbitrarily so long as it satisfies12T XjX
H
j = INt , where the

scaling is chosen to satisfy a per-period power constraint of the
form tr(Qj) = 2, consistent with the data power constraints
that will be described in the sequel.

Our limited transmitter/receiver-DR model implies that the
(distorted) space-time pilot signal observed by receiveri is

Y i =
√
αijHij(Xj +Cj) +N i +Ei, (5)

where, for notational convenience, we define

αij ,

{

ρ if i = j

η if i 6= j.
(6)



In (5), Cj ,Ei andN i areNt × TNt matrices of transmitter
noise, receiver distortion, and AWGN, respectively. At the con-
clusion of training, we assume that theith receiver estimates
the channels{Hij}2j=1 via least-squares (LS), yielding

√
αijĤij , 1

2T Y iX
H
j , (7)

and communicates them to the other modem.In the sequel, it
will be useful to decompose the channel estimate into the true
channel plus some estimation error. It can be shown that such
a decomposition takes the form of

√
αijĤij =

√
αijHij +D

1

2

ijH̃ij , (8)

where the entries of̃Hij are i.i.dCN (0, 1), and where

Dij = 1
2T

[

(1 + β)I + αij
2κ
Nt
HijH

H
ij

+ αij
2β
Nt
(1 + κ) diag(HijH

H
ij)

]

(9)

characterizes the spatial covariance of the estimation error.

B. Partial Self-Interference Cancellation

Recall that the data communication period is partitioned
into two sub-periods,Tdata[1] and Tdata[2], and that—within
each—the transmitted signals are wide-sense stationary. The
(instantaneous, distorted) signal at receiveri = 1 and any time
t ∈ Tdata[l] then takes the form

y1[l] =
√
ρH11(x1[l] + c1[l]) + n1[l] + e1[l]

+
√
ηH12(x2[l] + c2[l]) (10)

= (
√
ρĤ11 −D

1

2

11H̃11)(x1[l] + c1[l]) + n1[l] + e1[l]

+ (
√
ηĤ12 −D

1

2

12H̃12)(x2[l] + c2[l]). (11)

Defining the aggregate interference term

v1[l] ,
√
ρĤ11c1[l]−D

1

2

11H̃11(x1[l] + c1[l]) + n1[l] (12)

+
√
ηĤ12c2[l]−D

1

2

12H̃12(x2[l] + c2[l]) + e1[l],

we can writey1[l] =
√
ρĤ11x1[l] +

√
ηĤ12x2[l] + v1[l],

where the self-interference term
√
ηĤ12x2[l] is known and

thus can be canceled. The interference-canceled signalz1[l] ,
y1[l]−

√
ηĤ12x2[l] can then be written as

z1[l] =
√
ρĤ11x1[l] + v1[l]. (13)

Equation (13) shows that, in effect, the information signal
x1[l] propagates through a known channel

√
ρĤ11 corrupted

by an aggregate (possibly non-Gaussian) noisev1[l], whose
(Ĥ11, Ĥ12)-conditional covariance we denote aŝΣ1[l] ,
Cov{v1[l] | Ĥ11, Ĥ12}. It can be shown that

Σ̂1[l] ≈ I + κρĤ11 diag(Q1[l])Ĥ
H
11 + D̂11 tr(Q1[l])

+ κηĤ12 diag(Q2[l])Ĥ
H
12 + D̂12 tr(Q2[l])

+ βρdiag(Ĥ11Q1[l]Ĥ
H
11)

+ βη diag(Ĥ12Q2[l]Ĥ
H
12), (14)

whereD̂ij , E{Dij | Ĥij} obeys

D̂ij ≈ 1
2T

[

I + αij
2κ
Nt
ĤijĤ

H
ij + αij

2β
Nt

diag(ĤijĤ
H
ij)

]

(15)

and where the approximations in (14)-(15) follow fromκ ≪ 1
andβ ≪ 1. A similar analysis applies tôΣ2[l]. We note, for
later use, that the channel estimation error termsD̂ij can be
made arbitrarily small through appropriate choice ofT .

C. Bounds on Achievable Sum-Rate

Equation (13) succinctly characterizes the effective com-
munication channel, under limited transmitter/receiver-DR
and pilot-aided LS MIMO-channel estimation, for transmit-
ter/receiver pairi = 1 during data communication period
l ∈ {1, 2}; an equivalent model can be stated for the pair
i=2. Due to the channel estimation error components in (12),
the aggregate noisev1[l] is generally non-Gaussian, which
complicates the analysis of the channel (13). It is known, how-
ever, that among all distributions onv1[l] with fixed covariance
Σ̂1[l], the Gaussian one is worst from a mutual-information
perspective [16]. Thus, we can lower-bound the sum mu-
tual informationI(Q), written as a function of the transmit
covariance matricesQ ,

(

Q1[1],Q1[2],Q2[1],Q2[2]
)

, as
I(Q) ≥ I(Q), where [17]

I(Q) =
2

∑

i=1

1

2

2
∑

l=1

log det
(

I + ρĤiiQi[l]Ĥ
H
iiΣ̂

−1

i [l]
)

(16)

=
1

2

2
∑

i=1

2
∑

l=1

log det
(

ρĤiiQi[l]Ĥ
H
ii + Σ̂i[l]

)

−log det(Σ̂i[l]).

Furthermore, standard communication theoretic argumentsim-
ply that it is possible to achieve a sum-rate equal toI(Q)
in (16) by using independent Gaussian codebooks at each
transmitter and maximum-likelihood detection at each receiver
[17]. Taking “log” in (16) to be base-2, the units of sum-rate
are bits-per-channel-use (bpcu).

A straightforward upper boundI(Q) on achievable sum-
rate then follows from the perfect-CSI case (i.e.,D̂ij = 0),
where v1[l] becomes Gaussian under our distortion model.
Moreover, the lower boundI(Q) converges to the upper bound
I(Q) as the training lengthT → ∞.

D. Transmit Covariance Optimization

We would now like to find the transmit covariance matrices
Q ,

(

Q1[1],Q1[2],Q2[1],Q2[2]
)

that maximize the sum-
rate lower boundI(Q) in (16) subject to the per-user power
constraint (17b). This yields the optimization problem

max
Q

1
[1],Q

1
[2],Q

2
[1],Q

2
[2]

I
(

Q1[1],Q1[2],Q2[1],Q2[2]
)

(17a)

s.t.
1

2

2
∑

l=1

tr
(

Qi[l]
)

≤ 1, i = 1, 2 (17b)

Qi[l] ≥ 0, ∀i, l ∈ {1, 2}, (17c)

where the inequality (17c) constrains eachQi[l] to be positive
semi-definite. We solve2 this non-convex optimization problem
via Gradient Projection (GP), taking inspiration from [18].

2In general, (17) is a non-convex optimization problem, and so finding the
global maximum can be difficult. Although GP is not guaranteed to find the
global maximum, our experience with different initializations suggests that,
in our problem, GP is indeed finding the global maximum.



E. Sum-Rate Approximation

The complicated nature of the optimization problem (17)
motivates us to approximate its solution, i.e., the transmit-
covariance optimized sum-rateI∗ , maxQ∈Q I(Q), whereQ
represents the constraint set implied by (17b)-(17c). Here, we
focus on the case ofT → ∞, where channel estimation error
is driven to zero so thatI(Q) = I(Q) = I(Q).

Our approximation is built around the special case that each
Hij is diagonal, although not necessarily square, withNmin ,
min{Nt, Nr} identical diagonal entries equal to

√

NtNr/Nmin.
(The latter value is chosen so thatE{tr(HijH

H
ij)} = NtNr

as assumed in Section II.) In this case, the mutual information
expression (16) becomes (forj 6= i)

I(Q) ≈ 1

2

∑

i,l

log det
(

I + ρNtNr
Nmin

Qi[l]
(

I + (κ+ β)NtNr
Nmin

×
[

ρdiag(Qi[l]) + η diag(Qj [l])
])−1

)

. (18)

When η ≪ ρ, the η-dependent term in (18) can be ignored,
after which it is straightforward to show that, under the
constraints (17b)-(17c), the optimal covariances are the “full
duplex” QFD , ( 1

Nt
I, 1

Nt
I, 1

Nt
I, 1

Nt
I), for which (18) gives

I(QFD) ≈ 2Nmin log

(

1 +
ρ

Nmin
Nr

+ (κ+ β)(ρ+ η)

)

. (19)

Whenη ≫ ρ, the η-dependent term in (18) dominates unless
Qj [l] = 0. In this case, the optimal covariances are the “half
duplex” onesQHD , ( 2

Nt
I,0,0, 2

Nt
I), for which (18) gives

I(QHD) ≈ Nmin log

(

1 +
ρ

Nmin
2Nr

+ (κ+ β)ρ

)

. (20)

Finally, for any given pair(η, ρ), we approximate the op-
timized sum-rate as follows:I∗ ≈ max{I(QFD), I(QHD)}.
From (19)-(20), it is straightforward to show that the
boundary between full- and half-duplex occurs atη =
(
√

ξ2 + 2ρξ/(κ+ β)− (ξ − 2ρ)
)

/2 for ξ , Nmin
Nr(κ+β) + 2ρ.

We now make some additional observations about (19)-(20).
First, suppose thatη ≪ ρ, in which caseQFD is appropriate.
From (19), we see thatI(QFD) will not significantly benefit
from further increase in SNRρ when (κ + β)ρ > (κ +
β)η + Nmin

Nr
, i.e., whenρ > η + Nmin

Nr(κ+β) . Sinceη ≪ ρ, this

ρ-saturation occurs whenρ > Nmin
Nr(κ+β) . Next, suppose that

η ≫ ρ, in which caseQHD is appropriate. Here, (20) shows
that I(QHD) will not significantly benefit from SNRs above
ρ = Nmin

2Nr(κ+β) . Thus, in both theη ≪ ρ and η ≫ ρ cases,

we can interpretρ ≈ Nmin
Nr(κ+β) as the transition between SNR-

limited and distortion-limited regimes. (See Fig. 2.)
Figure 2 shows a contour plot of the proposed optimized-

sum-rate approximation as a function of INRη and SNRρ.
We shall see in Section IV that our approximation of the
covariance-optimized sum-rate is surprisingly close, on aver-
age, to that found by solving (17) using gradient projection.
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Fig. 2. Contour plot of the optimized-sum-rate approximationI∗ versus
SNR ρ and INR η, for Nt = 3, Nr = 4, andβ = κ = −40dB. The dark
curve shows the boundaryη = (

√

ξ2 + 2ρξ/(κ+ β)−(ξ−2ρ))/2 between
full- and half-duplex regimes, and the vertical dashed line shows the boundary
ρ =

Nmin
Nr(κ+β)

between SNR-limited and distortion-limited regimes.

IV. N UMERICAL RESULTS AND CONCLUSIONS

We now study the average behavior of the GP-optimized
sum-ratemaxQ I(Q) as a function of SNRρ, INR η, dynamic
rangeκ−1 andβ−1, and number of antennasNt andNr. We
also investigate the role of interference cancellation, the role
of two distinct data sub-periods, and the relation to optimized
half-duplex (OHD) signaling. In doing so, we find close agree-
ment with the optimized-sum-rate approximation proposed in
Section III-E and illustrated in Fig. 2. Throughout, we used
T = 50 training duration. All results were averaged over1000
realizations, unless specified otherwise.

Below, we denote the full scheme proposed in Section III
by “TCO-2-IC,” which indicates the use of interference can-
cellation (IC) and transmit covariance optimization (TCO)per-
formed individually over the 2 data sub-periods (i.e.,Tdata[1]
and Tdata[2]). To test the impact of IC and of two data sub-
periods, we also implemented the proposed scheme but with-
out IC, which we refer to as “TCO-2,” as well as the proposed
scheme with only one data sub-period (i.e.,Qi[1] = Qi[2] ∀i),
which we refer to as “TCO-1-IC.” To optimize half-duplex, we
used GP to maximizeI(Q) under the power constraint (17b)
and the additional half-duplex constraintQ1[2] = 0 = Q2[1].

In Fig. 3, we examine sum-rate performance versus INR
η for the TCO-2-IC, TCO-1-IC, TCO-2, and OHD schemes,
using several different dynamic range parametersβ = κ. For
OHD, we see that sum-rate is invariant to INRη, as ex-
pected. For the proposed TCO-2-IC, we observe “full duplex”
performance for low-to-mid values ofη and a transition to
OHD performance at high values ofη, just as predicted by
the approximation in Section III-E. In fact, the sum-rates in
Fig. 3 are nearly identical to the approximate values in Fig.2.
To see the importance of two distinct data-communication
periods, we study the TCO-1-IC trace, where we observe
TCO-2-IC-like performance at low-to-mid values ofη, but
performance that drops below OHD at highη. Essentially,



TCO-1-IC forces full-duplex signaling at high INRη, where
half-duplex signaling is optimal, while TCO-2-IC facilitates
the possibility of half-duplex signaling through the use of
two distinct data-communication sub-periods, similar to the
interference-channel scheme [20]. Finally, from the TCO-2
trace, we conclude that partial interference cancellationis
essential for all but extreme values of INRη.
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Fig. 3. Achievable sum-rate lower boundI(Q) for TCO-2-IC, TCO-2,
TCO-1-IC, and OHD versus INRη. Here,Nt = 3, Nr = 4, ρ = 15dB, and
T = 50. OHD is plotted forβ = κ = −60dB, but was observed to give
nearly identical results for all three values ofβ = κ.

In Fig. 4, we examine sum-rate of the proposed TCO-IC-2
and OHD versus SNRρ, using the dynamic range parameters
β = κ = −40dB and various fixed values of INRη. All
the behaviors in Fig. 4 are almost exactly as predicted by
the sum-rate approximation described in Section III-E and
illustrated in Fig. 2. In particular, we see OHD’s sum-rate
increase with SNRρ up to the distortion-limited regime,
i.e., ρ & Nmin

Nr(κ+β) ≈ 36dB. For TCO-IC-2, we see sum-
rate increase withρ when ρ ∈ [0, 36] (i.e., the SNR-limited
regime), saturate whenρ ∈ [36, η] (i.e., distortion-limited high-
INR regime), increase again aroundρ ≈ η (i.e., the transition
to the low-INR regime), and then saturate whenρ ≫ η (i.e.,
the distortion-limited low-INR regime). In fact, the sum-rates
in Fig. 4 are nearly identical to the approximations in Fig. 2.

Finally, in Fig. 5, we explore the sum-rate of TCO-2-
IC and OHD versus the number of antennas,Nt and Nr.
There,we see that sum-rate increases with bothNr and Nt,
as expected. More interesting is the sum-rate behavior when
the total number of antennas is fixed, e.g., atNt + Nr = 7,
as illustrated by the triangles in Fig. 5. The fact that the
configuration(Nt, Nr) = (3, 4) outperforms(Nt, Nr) = (4, 3)
is predicted by the approximations (19)-(20): given fixedNmin

(here,Nmin = 3), one should strive to maximizeNr.
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