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\'.’/ Problem Statement
L 4

o Traditional Compressive Sensing (CS) addresses
underdetermined linear regression
y=Azx+w

yweCY, AecC™VN. gecV, M<N

@ More generally, consider an unknown matrix perturbation
E c (C]WXN

Y= (A =+ E) T+ w
unknown A

o We characterize A = A + E with entry-wise means and
variances given by

Amn = E{Amn}

yfm = var{ A}
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@ Notice that
Y= (A + E) T+w
=Az+ (Ex+w)
—_——
signal dependent noise
e Standard CS performance analysis for bounded E [1; 2]
@ LASSO — Sparsity-Cognizant Total Least Squares [3]
{#s-1Ls, Esris} = argmin ||(A + E)z — yll3 + Az |- + Alz|h
x,FE

e Dantzig Selector — Matrix Uncertain Selector [4]

. . . ~H ~
£MU-Selector = arg min ||x||1 subject to || A (y — Aa:) oo < Alj|[1 + €
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\‘.’/ Generalized Approximate Message Passing
>

@ Approximate Message Passing (AMP) [5] is derived from (approximate)
belief propagation

=, (a:k T AMLE mﬁk) ,
28 =y — AgF 4 b
@ 1), as soft-thresholding — near minimax performance (robust)
@ 1), distribution specific — approximate MMSE inference
@ Generalized AMP (GAMP) [6; 7]
o MMSE or MAP estimates of z € CV, p(x) = [[,, px (n)
o Arbitrary separable output channel from noiseless
measurements z = Ax € CM to y,

p(y|2) =11, pvizUm | 2m)
o Handles variable |A,,,|
e Provides approximate posteriors
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Matrix Uncertain GAMP

@ Recall noise-free measurements are z = Ax.

@ For large N, the Central Limit Theorem motivates treating zm | z» as

Gaussian

Using the zero mean quantities A,n = App — Ay, and
~ A ~ .
Tmn = Tmn — Tmn, WE CaN write

Zm = (Amn + A~'mn)xn + Z(Amrir + Amri'r + Am'ri'r + Amrir)
r#mn

From which we can conclude

r#n

Var{zm | xn} mrt ‘an + Z Amr‘]/m'r + l/mr ‘ Lmr ‘ Jr Z/ml mr
r#n

Terms in red modify the original GAMP variance calculation
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MU-GAMP Algorithm Summary E T

fort=1,2,3,.
vm : zm(t) = Y. Amndn (t) (R1)
Vm v (t) = Zif 2 AP () (R2a)
VYm: b (t) = vi(t) + N v, L (Vi + |2n(2)]?) (R2D)
Vm o pm(t) = Zm( ) —vm(t )um(t— 1) (R3)
VYmim(t) = Gout(Ym, D (t), V2 ( ) (R4)
Vm v (t) = =gt (Ym, D (t), v m () (R5)
Vn:vp(t) = (Zn 1 |4,7,,,|21/77; ) (R6)
Vnin(t) = @a(t) +unt) SN AL (R7)
Vv (t+1) = vp(t)gn(Fa(t), ’/gr(t)) (R8)
dV” Tn(t+1) = gn(Pu(t),vn(t)) (R9)
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.’/ Independent ldentically Distributed Matrix Errors N f

@ Consider i.i.d. matrix errors with v4 = 4.

@ For additive noise, a CLT argument suggests that, for large N, we
can well approximate

p(y| @) ~ N(Az, v |3 + v*)

@ Law of large numbers — ||z||3 &~ constant for large N

@ Conclusion: i.i.d. matrix uncertainty can be addressed by tuning
standard algorithms for large N
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N Phase Transition - i.i.d. Matrix Errors

4:0

@ N =256 Aisiid.
N(0,1); v4 = 0.05

@z~
Bernoulli-Radamacher
(£1 non-zero entries)

@ Gaussian additive noise at

20 dB SNR. Effective
< —6— MU-GAMP SNR is about 12 dB
—+—sTLS
< MU-Selector @ LASSO (using SPARSA),
o015 — 5 SPARSA i STLS, and MU-Selector
N parameters use
A genie-aided tuning
o
e e o = 9 GAMP uses genie-aided
ot PR 1 computation of effective
e //E' g e noise variance
= @ Curves show —15dB
0% 0z 03 oa 05 o5 07 o8 0.9 NMSE contours based on
MIN median from 100 trials
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\/ NMSE vs M/N for Sparse Matrix Errors

4:0

@ Same setup, except that
the entries of E are now
Bernoulli-Radamacher

0= T T T T ; ; ;

% — % —GAMP Wif\h 99% zeroes and
| —o—MU-GAWP | | v = 5 for the
-5
\\*\ ;L{ss octor non-zeroes.
—=— SPARSA @ MU-GAMP is given the

. A .
true entries v, while
GAMP is given only the
true effective noise

variance.

1 @ The solid lines are linear
estimates given the true
support of @ using A

f (blue) and A + E (black)
@ Naive versions of STLS

] and MU-Selector are used
with genie-aided tuning.
The parametric STLS or

35 . . . . . . . . « "
0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1 ‘compensated .
MN MU-Selector would likely
show improved
performance.
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L 4

Parametric Model

@ Consider ® € C¥ an unknown parameter vector
y=AO)z +w,

@ We employ a first order Taylor series expansion, similar to parametric STLS [3]

P
Yy~ (A(é)) +> (6p— ép)Ep(é)> x+w
p=1

Estimate ©
Dictionary: EpX, p=1...
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Data Model

p=1

P
<A(@) + > (©p - ép)Ep(é)> z +w

. 0A(a)
E,(©) £ T'azé
P

@ First, assume we have an estimate of the parameter as (@, ue)
@ We can immediately write
y=Cz +w
P
C2A0)+ > (6 —6p)Ep(®)
p=1
E2 E{C}=A(©)
P
ve & var{C} = Z VS\EP\Q,
p=1

where squares on matrix terms are understood to be element-wise squared magnitudes. In addition, the
mean and variance of the matrix are interpreted element-wise.

@ We can use MU-GAMP to compute an estimate (£, v®) from this model.

N =
Distribution A, Approved for Public Release as 88 ABW-11-5962 A ?RL
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Alternate form

,
(A(én + > (0p - épwp(é)) x =
p=1

P P
(Z @pEp(®>> z + (A(é)) -> épEp(®)> &+ (A(é) =
p=1 p=1

known constant

zero-mean

@ We can leverage this expression to obtain a linear model for @ with a known dictionary B.

We can estimate © from this model using MU-GAMP!

u=B®+n
P N P
udy— (A(é)) -> epEp(®)> &; nw+ (A(é) -> épEp(®)> &
p=1 p=1
P 2
E{n} = 0; var{n} = v + |A(©) — Y 6,E,(©)| v*
p=1
B2[ E1(®)z E3®z ... Ep®z ]|
b2E{B}=[ E1(©)2 E2®)2% ... Ep(®& ]
v’ 2var(B} = [ [E1(©)%v® |E2(©)%v® |Ep(©)%v™ ]
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Example 1: NMSE vs Parameter Dimension

NMSE (dB)

U-GAMP
—— Parametric MU-GAMP

50

L
100

L L
150 200 250
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In this toy example
(N = 256, M = 103),
P

A=Ag+ > 0,E,
p=1

Aj and all the E, have
entries that are drawn
i.i.d. Gaussian.

As we vary P, the entries
of the E, matrices are
scaled to keep

E{vpn,} =

VA; Vm, n.

MU-GAMP is given the
true element-wise
variances, but is unaware
of the underlying ®
structure.

Parametric MU-GAMP
leverages this underlying
structure to improve
performance for small P

‘R
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A X4 Example 2: Joint Calibration and Recovery

4:0

x estimation, NMSE (dB)

-5 T T T T — . — .
Parametric MU-GAMP ° N = 256’ M = 103'
_tok *  MU-GAMP H K =20; P=10
-~ - GENE

— — GAMP True A

@ Each E,, contains ones
for M/ P of the rows,
and zeros elsewhere. This
model is a surrogate for
channel calibration errors

L L L L L in a measurement system.

o 5 10 20 25 30
fteration @ The unknown x is
0 estimation, NMSE (dB) Bernoulli-Gaussian, while
-5 T T f .
e
-1or GENIE @ In this example, all signals
15k are complex-valued.
@ The “GENIE" result for =
-2 assumes perfect
-25 1 knowledge of ® and
vice-versa. The “GENIE”
ar) B T 5 20 25 30 also knows the signal
iteration support when applicable.
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Example 3: Blind Deconvolution

x estimation, NMSE (dB)
T

T T
Parametric MU-GAMP
P u

-5 *  MU-GAMI
— — —GENIE

-10 — — GAMP True A nl
-15
-20
25 -
e L L L L L L L L L

0 10 20 30 40 60 70 80 90

50
iteration

6 estimation, NMSE (dB)
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We consider here the
model Y = TA(O)X

A(©®) e VXN s
circulant, and ® € cN
represents perturbations
to the first column.

Y EC}WXS;
X e cNxs

e CMXN isa mixing
matrix.

N = 256; M = 103;
K =20;S=8

Each E, represents the
change to the system
response for a given
coefficient of the impulse
response. This model is a
surrogate for learning a
system impulse response
from S snapshots, where
each signal is K sparse.

The unknown x is
complex
Bernoulli-Gaussian, while
© is complex Gaussian.

“GENIE" estimators same

as previous example
—RL
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‘}.’/ Conclusions and Future Work
L 4

@ We have developed a Matrix Uncertain version of GAMP

o Adaptively adjusts noise power for i.i.d. matrix errors

e Incorporate element-wise variances for independent,
non-identical errors

o lterative approach for parametric matrix uncertainty

@ Future Work

o MU-GAMP for spectral estimation

o Parametric MU-GAMP for dictionary learning and matrix
completion

o Extension of rigorous GAMP performance analysis to
MU-GAMP case.

e Incorporation of MU-GAMP into EM tuning approach to learn
hyper-parameters from data
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Questions?
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