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Problem Statement

Traditional Compressive Sensing (CS) addresses
underdetermined linear regression

y = Ax + w

y,w ∈ CM ; A ∈ CM×N ; x ∈ CN ; M < N

More generally, consider an unknown matrix perturbation
E ∈ CM×N

y =
(
Â + E

)
︸ ︷︷ ︸
unknown A

x + w

We characterize A = Â + E with entry-wise means and
variances given by

Âmn = E{Amn}
νAmn = var{Amn}
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Previous Work

Notice that
y =

(
Â + E

)
x + w

= Âx + (Ex + w)︸ ︷︷ ︸
signal dependent noise

Standard CS performance analysis for bounded E [1; 2]

LASSO → Sparsity-Cognizant Total Least Squares [3]

{x̂S-TLS, ÊS-TLS} = arg min
x,E

‖(Â + E)x− y‖22 + λE‖E‖2F + λ‖x‖1

Dantzig Selector → Matrix Uncertain Selector [4]

x̂MU-Selector = arg min
x

‖x‖1 subject to ‖ÂH
“
y − Âx

”
‖∞ ≤ λ‖x‖1 + ε
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Generalized Approximate Message Passing

Approximate Message Passing (AMP) [5] is derived from (approximate)
belief propagation

x̂k+1 = ηs
“
x̂k + AHzk, βkθk

”
,

zk = y −Ax̂k + bkzk−1

ηs as soft-thresholding → near minimax performance (robust)

ηs distribution specific → approximate MMSE inference

Generalized AMP (GAMP) [6; 7]

MMSE or MAP estimates of x ∈ CN , p(x) =
∏

n pX(xn)
Arbitrary separable output channel from noiseless
measurements z = Ax ∈ CM to y,
p(y | z) =

∏
m pY |Z(ym | zm)

Handles variable |Amn|
Provides approximate posteriors
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Matrix Uncertain GAMP

Recall noise-free measurements are z = Ax.

For large N , the Central Limit Theorem motivates treating zm |xn as
Gaussian

Using the zero mean quantities Ãmn , Amn − Âmn and
x̃mn , xmn − x̂mn, we can write

zm = (Âmn + Ãmn)xn +
X
r 6=n

(Âmrx̂r + Âmrx̃r + Ãmrx̂r + Ãmrx̃r)

From which we can conclude

E{zm |xn} = Âmnxm +
X
r 6=n

Âmrx̂mr

var{zm |xn} = νAmn|xn|2 +
X
r 6=n

Â2
mrν

x
mr + νAmr|x̂mr|2 + νAmrν

x
mr

Terms in red modify the original GAMP variance calculation
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MU-GAMP Algorithm Summary

for t = 1, 2, 3, . . .

∀m : ẑm(t) =
PN
n=1 Âmnx̂n(t) (R1)

∀m : νzm(t) =
PN
n=1 |Âmn|

2νxn(t) (R2a)

∀m : νpm(t) = νzm(t) +
PN
n=1 ν

A
mn

`
νxn + |x̂n(t)|2

´
(R2b)

∀m : p̂m(t) = ẑm(t)− νzm(t) ûm(t− 1) (R3)
∀m : ûm(t) = gout(ym, p̂m(t), νpm(t)) (R4)
∀m : νum(t) = −g′out(ym, p̂m(t), νpm(t)) (R5)

∀n : νrn(t) =
`PN

n=1 |Âmn|
2νum(t)

´−1
(R6)

∀n : r̂n(t) = x̂n(t) + νrn(t)
PM
m=1 Â

∗
mnûm(t) (R7)

∀n : νxn(t+1) = νrn(t)g′in(r̂n(t), νrj (t)) (R8)
∀n : x̂n(t+1) = gin(r̂n(t), νrn(t)) (R9)

end
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Independent Identically Distributed Matrix Errors

Consider i.i.d. matrix errors with νA
mn = νA.

For additive noise, a CLT argument suggests that, for large N , we
can well approximate

p(y |x) ∼ N (Âx, νA‖x‖22 + νw)

Law of large numbers → ‖x‖22 ≈ constant for large N

Conclusion: i.i.d. matrix uncertainty can be addressed by tuning
standard algorithms for large N
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Phase Transition - i.i.d. Matrix Errors

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

0.3

M/N

K
/M

 

 

GAMP

MU−GAMP

STLS

MU−Selector

SPARSA

N = 256; Â is i.i.d.
N (0, 1); νA = 0.05

x ∼
Bernoulli-Radamacher
(±1 non-zero entries)

Gaussian additive noise at
20 dB SNR. Effective
SNR is about 12 dB

LASSO (using SPARSA),
STLS, and MU-Selector
parameters use
genie-aided tuning

GAMP uses genie-aided
computation of effective
noise variance

Curves show −15dB
NMSE contours based on
median from 100 trials

Distribution A, Approved for Public Release as 88 ABW-11-5962 8



NMSE vs M/N for Sparse Matrix Errors
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STLS

MU−Selector
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Same setup, except that
the entries of E are now
Bernoulli-Radamacher
with 99% zeroes and
νA = 5 for the
non-zeroes.

MU-GAMP is given the

true entries νA
mn while

GAMP is given only the
true effective noise
variance.

The solid lines are linear
estimates given the true
support of x using Â
(blue) and Â+E (black)

Naive versions of STLS
and MU-Selector are used
with genie-aided tuning.
The parametric STLS or
“compensated”
MU-Selector would likely
show improved
performance.
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Parametric MU-GAMP

Parametric Model

Consider Θ ∈ CP an unknown parameter vector
y = A(Θ)x+w,

We employ a first order Taylor series expansion, similar to parametric STLS [3]

y ≈

0@A(Θ̂) +
PX
p=1

(Θp − Θ̂p)Ep(Θ̂)

1Ax+w

Ep(Θ̂) ,
∂A(α)

∂αp
|α=Θ̂

Estimate Θ
Dictionary: Epx̂, p = 1 . . . P

Estimate x
Dictionary: A(Θ̂)

(x̂, ν̂x)

(Θ̂, ν̂Θ)
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Parametric MU-GAMP: Compute x̂

Data Model

y ≈

0@A(Θ̂) +
PX

p=1
(Θp − Θ̂p)Ep(Θ̂)

1Ax +w

Ep(Θ̂) ,
∂A(α)

∂αp
|
α=Θ̂

First, assume we have an estimate of the parameter as (Θ̂, νΘ)

We can immediately write
y = Cx +w

C , A(Θ̂) +
PX

p=1
(Θp − Θ̂p)Ep(Θ̂)

ĉ , E{C} = A(Θ̂)

ν
c , var{C} =

PX
p=1

ν
Θ
p |Ep|2,

where squares on matrix terms are understood to be element-wise squared magnitudes. In addition, the
mean and variance of the matrix are interpreted element-wise.

We can use MU-GAMP to compute an estimate (x̂, νx) from this model.
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Parametric MU-GAMP: Compute Θ̂

Alternate form0@A(Θ̂) +

PX
p=1

(Θp − Θ̂p)Ep(Θ̂)

1Ax =

0@ PX
p=1

ΘpEp(Θ̂)

1Ax +

0@A(Θ̂)−
PX

p=1
Θ̂pEp(Θ̂)

1A x̂
| {z }

known constant

+

0@A(Θ̂)−
PX

p=1
Θ̂pEp(Θ̂)

1A x̃
| {z }

zero-mean

We can leverage this expression to obtain a linear model for Θ with a known dictionary B.
u = BΘ + n We can estimate Θ from this model using MU-GAMP!

u , y −

0@A(Θ̂)−
PX

p=1
Θ̂pEp(Θ̂)

1A x̂; n , w +

0@A(Θ̂)−
PX

p=1
Θ̂pEp(Θ̂)

1A x̃
E{n} = 0; var{n} = ν

w
+

˛̨̨̨
˛̨A(Θ̂)−

PX
p=1

Θ̂pEp(Θ̂)

˛̨̨̨
˛̨
2

ν
x

B ,
ˆ
E1(Θ̂)x E2(Θ̂)x . . . EP (Θ̂)x

˜
b̂ , E{B} =

ˆ
E1(Θ̂)x̂ E2(Θ̂)x̂ . . . EP (Θ̂)x̂

˜
ν

b , var{B} =
ˆ
|E1(Θ̂)|2νx |E2(Θ̂)|2νx . . . |EP (Θ̂)|2νx

˜
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Example 1: NMSE vs Parameter Dimension
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MU−GAMP

Parametric MU−GAMP

In this toy example
(N = 256,M = 103),

A = A0 +

PX
p=1

θpEp

A0 and all the Ep have
entries that are drawn
i.i.d. Gaussian.

As we vary P , the entries
of the Ep matrices are
scaled to keep

E{νA
mn} =

νA; ∀m,n.

MU-GAMP is given the
true element-wise
variances, but is unaware
of the underlying Θ
structure.

Parametric MU-GAMP
leverages this underlying
structure to improve
performance for small P
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Example 2: Joint Calibration and Recovery
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MU−GAMP

GENIE

GAMP True A

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

iteration

θ estimation, NMSE (dB)

 

 

Parametric MU−GAMP

GENIE

N = 256; M = 103;
K = 20; P = 10

Each Ep contains ones
for M/P of the rows,
and zeros elsewhere. This
model is a surrogate for
channel calibration errors
in a measurement system.

The unknown x is
Bernoulli-Gaussian, while
Θ is Gaussian.

In this example, all signals
are complex-valued.

The “GENIE” result for x
assumes perfect
knowledge of Θ and
vice-versa. The “GENIE”
also knows the signal
support when applicable.
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Example 3: Blind Deconvolution
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Parametric MU−GAMP

MU−GAMP

GENIE

GAMP True A

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

iteration

θ estimation, NMSE (dB)

 

 

Parametric MU−GAMP

GENIE

We consider here the
model Y = ΨA(Θ)X

A(Θ) ∈ CN×N is

circulant, and Θ ∈ CN

represents perturbations
to the first column.

Y ∈ CM×S ;
X ∈ CN×S

Ψ ∈ CM×N is a mixing
matrix.

N = 256; M = 103;
K = 20; S = 8

Each Ep represents the
change to the system
response for a given
coefficient of the impulse
response. This model is a
surrogate for learning a
system impulse response
from S snapshots, where
each signal is K sparse.

The unknown x is
complex
Bernoulli-Gaussian, while
Θ is complex Gaussian.

“GENIE” estimators same
as previous example
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Conclusions and Future Work

We have developed a Matrix Uncertain version of GAMP

Adaptively adjusts noise power for i.i.d. matrix errors
Incorporate element-wise variances for independent,
non-identical errors
Iterative approach for parametric matrix uncertainty

Future Work

MU-GAMP for spectral estimation
Parametric MU-GAMP for dictionary learning and matrix
completion
Extension of rigorous GAMP performance analysis to
MU-GAMP case.
Incorporation of MU-GAMP into EM tuning approach to learn
hyper-parameters from data
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Questions?
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