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The Multiple Measurement Vector (MMV) Problem

Consider a time-series of sparse, temporally correlated signal vectors that
share a common support...
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The Multiple Measurement Vector (MMV) Problem

...observed through a noisy linear measurement process, Y = AX + E.

= +

Y A X E

Applications: Magnetoencephalogaphy, direction-of-arrival estimation, parallel MRI,...
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Existing methods

� Greedy pursuit
� M-BMP, M-OMP, M-ORMP [Cotter et al., '05]
� S-OMP [Tropp et al., '06]
� Subspace-augmented MUSIC* [Lee et al., '10]

� Mixed-norm (`1/`2) minimization
� M-FOCUSS [Cotter et al., '05]
� RX-penalty, RX-error [Tropp et al., '06]
� JLZA [Hyder and Mahata, '10]
� tMFOCUSS* [Zhang and Rao, '11a]

� Bayesian MMV
� M-SBL [Wipf and Rao, '07]
� JSSR-MP [Shedthikere and Chockalingam, '11]
� T-MSBL*, T-SBL* [Zhang and Rao, '11b]

� Block-sparse single measurement vector
� [Eldar and Mishali, '09]
� bSBL [Zhang and Rao, '11b]

* = Accounts for temporal correlation in amplitudes
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Comparing Di�erent Approaches

Approach Speed Performance

Greedy Fast Fair

Mixed-norm Okay Good

Bayesian Slow Great

Why Bayesian?

� Modeling assumptions are made explicit

� Model parameters have meaningful interpretations

� Principled parameter learning

� Soft inference
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A Model of Sparse Time-Evolving Signals

We write: x(t)n = s(t)n · θ(t)n for s(t)n ∈ {0,1} and θ
(t)
n ∼ CN (ζ,σ2).

Xs Θ

⊙ =

Amplitude Evolution

Treat {θ(t)n }T
t=1 as a Gauss-Markov

process: θ
(t)
n = (1− α)θ

(t−1)
n + αw(t)

n ,

where w(t)
n ∼ CN (0,ρ), and α conrols

the correlation in the random process.
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The Factor Graph Representation
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The Factor Graph Representation: Single Timestep
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The Factor Graph Representation: Support Variables
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The Factor Graph Representation: Amplitude Variables
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Approximate Message Passing (AMP)
M
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� Standard belief propagation is intractable here

� Simpli�cation: Approximate message passing
(AMP), [Donoho, Maleki, and Montanari, '09, '10]

� Marginal for x(t)n : Bernoulli-Gaussian -

(1− π
(t)
n )δ(x(t)n ) + π

(t)
n CN (x(t)n ;ξ(t)n ,ψ(t)

n )

� As M,N→∞, AMP behavior described precisely by
state evolution → MMSE-optimal estimates [Bayati
and Montanari, '10]

# of messages exchanged: O(N)
Complexity per iteration: O(MN) (matrix-vector
product)
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Parameter Learning via Expectation-Maximization

� Signal model governed by a number of parameters: Γ, {λ,ζ,σ2,α,ρ,σ2
e }

� Parameters can be tuned automatically from the data using an
expectation-maximization (EM) algorithm

AMP-MMV EM Learning

{s,Θ}i

Γi+1

� Finds local maximizer of p(Y|Γ)
� EM parameter estimation �ts naturally into the existing message passing
procedure
� The E-step of the EM algorithm makes use of quantities available for free as
a byproduct of AMP-MMV!
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Empirical Study: Setup

� AMP-MMV w/ EM parameter learning was compared against 3 powerful
MMV algorithms, and an oracle-aided MMSE bound (support-aware
Kalman smoother)
� Bayesian: MSBL and T-MSBL* [Zhang and Rao, '11b]
� Greedy: Subspace-augmented MUSIC (SA-MUSIC*) [Lee et al., '10]

� Signals generated according to signal model; i.i.d. Gaussian A matrices;
AWGN corrupting noise

* = Accounts for temporal correlation in amplitudes
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Empirical Study: MSE vs. Normalized Sparsity Rate
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Empirical Study: NSER vs. Normalized Sparsity Rate
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Empirical Study: MSE vs. Normalized Sparsity Rate
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Empirical Study: MSE vs. Signal Dimension
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Empirical Study: MSE vs. Measurement Innovation
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Conclusion

� AMP-MMV
� Works with temporally correlated signal amplitudes
� Performance rivals an oracle-aided MMSE bound (support aware Kalman
smoother) over a wide range of problems

� Computational complexity scales linearly in all problem dimensions

� EM parameter learning
� Principled method of learning signal model parameters
� Closed-form updates using outputs of AMP-MMV

� Empirical study
� Two orders-of-magnitude improvement in runtime
� Major gains possible from matrix diversity
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Empirical Study: MSE vs. Undersampling Rate
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