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Abstract—In this work, a Bayesian approximate message pass- algorithms that also account for temporal correlationshia t
ing algorithm is proposed for solving the multiple measurenent  amplitudes of the non-zero coefficients (c8],[[11]), which
vector (MMV) problem in compressive sensing, in which a e model as Gauss-Markov random processes. Incorporating

collection of sparse signal vectors that share a common supqt this temporal correlation structure is crucial, not onlgdase
are recovered from undersampled noisy measurements. Thego- P ' ¥

rithm, AMP-MMV, is capable of exploiting temporal correlat ions Many real-world signals possess such structure, but becaus
in the amplitudes of non-zero coefficients, and provides sbf the performance of MMV algorithms is particularly sengtiv
estimates of the signal vectors as well as the underlying spprt.  to this structure §], [11].

Central to the proposed approach is an extension of recently  gj -0 our probabilistic signal model relies on a set of hyper

developed approximate message passing (AMP) techniquestte . . .
amplitude-correlated MMV setting. Aided by these techniqies, Parameters that may not be known in practice, we describe a

AMP-MMV offers a computational complexity that is linearin all ~ principled method of learning all of the hyperparameteosnr
problem dimensions. In order to allow for automatic parameter the data using an expectation-maximization (EM) algorithm

tuning, an expectation-maximization algorithm that compements  [15]. Importantly, our EM algorithm makes use of information
AMP-MMV'is described. Finally, a numerical study demonstrales ¢ hag already been obtained in the process of executing
the power of the proposed approach and its particular suitaliity Ki h d hiahly effici
for application to high-dimensional problems. AMP-MMV, making the EM procedure highly efficient.
Finally, we present results of a numerical study of AMP-
[. INTRODUCTION MMV that includes a comparison against an oracle-aided

In this work we consider thenultiple measurement vector ~Support-aware Kalman smoother (SKS), as well as three state
(MMV) problem [1], in which, givenT length-\/ measure- of-the-art MMV algorithms. This study demonstrates that
ment vectors{y(")}7_, , the objective is to recover a collectionAMP-MMV  performs well under a variety of challenging
of length-V sparse vector§x®}7_, when M < N. Each settings, and that it is especially suitable for applicatto
measurement vector is obtained as high-dimensional problems.

y =Az® e =1 T (1) [I. SIGNAL MODEL

whereA is a known measurement matrix aed is corrupting As noted in Sectiorl, we consider the linear measurement

additive noise. The unique feature of the MMV problem is theodel (1), in which the signate® e CV at timestept is ob-

assumption of a common support for each signal veetdr.  served ag)) € CM through the linear operatod € CM >N,
Algorithms developed for the MMV problem are oftentime$\le assumee® ~ CN(0,02I,,) is circularly symmetric

intuitive extensions of single measurement vector (SM\{omplex white Gaussian noise. We uSe2 {n|x5f) # 0} to

algorithms, and therefore share a similar taxonomy. Amonignote the indices of the time-invariant support of the aign

the different techniques that have been proposed are mixeghich is assumed to be suitably sparse, i8},< M.

norm minimization methods2[-[5], greedy pursuit methods \we decompose each coefficierif’ as the product of two

[2], [6], [7], and Bayesian method8]f-[11]. Also of note are hidden variables:

techniques that transform the MMV problem into a block- 20— ¢ g )

sparse SMV problem1fl], [12]. Existing literature suggests " e

that greedy pursuit techniques are outperformed by mixegheres, € {0,1} is a binary variable that indicates support

norm minimization approaches, which in turn are surpassggt membership, anél”) € C is a variable that provides the

by Bayesian method<], [8], [11]. _ amplitude of coefficient:!’. Whens,, = 0, !/ = 0 and
In this paper we provide a high-level overview of a recently ¢ S, and whens,, = 1 +P = 0% andn € S. To model

proposed 13 algorithm, AMP-MMV, that leverages a novelyhe gparsity of the signal,nwe treat eagh as a Bernoulli

appro_ximate message passjng. (AMP) [14] framework to. Per- random variable with R, =1} =\, < 1.
form inference on a probabilistic signal model enforcingio 1, orger to model the temporal correlation of signal ampli-
sparsity of the signal vectors. Ours joins a handful of MMY, qeq e treat the evolution of amplitudes over time asostat

Work supported in part by NSF grant CCF-1018368 and DARPAtON&Y first-order Gg)uss-Markov random processes. Spedficall
grant N66001-10-1-4090. we assume that,,’ evolves according to the following linear
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TABLE [: The factors, underlying distributions, and furmtal forms associ-
ated with the signal model of Sectidh

The factor nodes in Fidl have all been assigned alphabetic
labels for clarity. The correspondence between these rfacto
labels, the underlying distributions, and the functiorahf of
the distributions is presented in Table

Our approach to performing inference on the factor graph
of Fig. 1 is based on belief propagatiohd], which, in cycle-
free graphs, is an instance of the sum-product algorithm.

(1)
Im

AMP

Fig. 1: Factor graph representation e, 8, s|g) in (5).

dynamical system model: When the factor graph contains cycles, the same rules that
. define the sum-product algorithm can still be applied, h@vev
0P = (1—a)(0 " - ¢) + aw) +¢, (3) convergence to the correct posterior marginal distrilmstits

no longer guaranteed. Despite this, loopy belief propagati

. . t)
where¢ € C is the mean of the amplitude procestsﬁ ™ has been successfully applied to many problems, including

CN.(O’p) is a circularly symrr_1etr|c white Gaussian perturT\/Iarkov random field inference, LDPC decoding, and compres-
bation process, and € [0,1] is a scalar that controls the

- ) s sive sensing 3. In what follows, we use/,_;(-) to denote
correlation off,,” across time. At one extreme, = 0, the

. ) (t—1) ' a message that is passed from ned® a connected node
random process is perfectly correla(@éf =46, ), while at

the other extremey = 1, the amplitudes evolve independently, Message Scheduling

eSSaA
over time. ) ) )
Under our model, the prior distribution of any signal coef- Since the factor graph of Fid. contains many cycles, there
ficient, 2\’ is a Bernoulli-Gaussian distribution: are a number of valid ways to schedule, or sequence, the

messages that are exchanged in the graph. In this work, we
p(a) = (1= X,)8 () + MCN (215 ¢,0%),  (4) make use of an intuitive decomposition of message scheglulin
_ _ _ 0 s ap into four distinct phases, which could be ordered in a number
whered(-) is the Dirac delta function and™ = 77 is the ot gifferent ways to enable, amongst others, causal figerin
steady-state variance éf,. and non-causal smoothind.J. We label each phase using
the mnemonicginto), (within), (out), and(across)
Il THE AMP-MMV A LGORITHM To aid our discussion, Fig2 summarizes each of the
The statistical structure of the signal model from Section four phases. Arrows indicate the direction that messages ar
which we will exploit, becomes apparent from a faCtOI‘izatiOmoving, and only those nodes and edges participating in-a par
of the posterior joint pdf of all random variables. If we defin  ticular phase are shown in that phase. For (eross)phase
to be the collection of all measurement vectdng{) }7_,, and we show messages being passed forward in time, and omit the
definez and @ similarly, then the posterior joint distribution backwards pass. The figure also introduces the notationiat
factors as follows: adopt for the different variables that serve to parametetie
M messages. Certain variables, e@f? and 7‘75?, are accented
p(.0.sly) « [] ( I pwi1z®) T p(z165,5,)  with directional arrows to differentiate messages moving i
m=1

o

t=1 = n=1 opposite directions along the same edge.
N In phase (into), messages are passed from the and
x p(6165 1))> [T psn), () o variable nodesinto frame ¢. Loosely speaking, these
n=1

messages convey current beliefs about the values ahd
wherex indicates equality up to a normalizing constant, and® . In phaseg(within) , messages are exchangeithin frame
P10y 2 p(eSH). A convenient graphical representatiort, producing an estimate of() using the current beliefs

of this decomposition is given by factor graph, which is abouts and 8 together with the available measurements
an undirected bipartite graph that connects the pdf “fattory*). In phase(out), the estimate of*) is used to refine the

of (5) with the variables that make up their arguments. THeeliefs abouts and o® by passing messagesit of framet.

factor graph for the decomposition d)(is shown in Fig.1. Finally, in phasdacross) messages are sent frqﬂﬁ) to either

For visual clarity, the{&ff)}tT:1 and s,, variable nodes have " or 6/~ thus conveying informatioacross time about
been removed from the graph for the intermediate index temporal correlation in the signal amplitudes. Upon chogsi

but should in fact be present at every index1,..., N. an ordering of these phases, messages are exchanged until



either convergence occurs, or a maximum number of allowable

iterations is reached.

B. Implementing the Message Passes

Most of the messages can be derived by applying th

rules of the sum-product algorithm. In this sub-section, we

focus on a handful of messages in ffvathin) phase whose

implementation requires a departure from these rules.

Inspection of Fig.2(b) reveals a dense interconnection
between the{xSf)} and{g,(,?} nodes. Applying standard sum-
product rules would result in an algorithm that required thg
evaluation of multi-dimensional integrals that grew exgin
tially in number in bothN and M, which is clearly computa-
tionally infeasible for meaningful problem sizes. Insteae
turn to a recently developed framework knowregproximate
message passing (AMP).

A complete description of AMP is beyond the scope of thig
work, and we refer the interested reader1d][[17]. For the
purposes of this discussion, we simply note that AMP is a
efficient means of performing inference on the factor grap
in Fig. 2(b), given generic signal priors, and is specified by
steps A4) - (A8) in Tablell. A recent theoretical analysis of

AMP [18] shows that in the large-system limit (i.e4, N —

oo with M/N fixed), the behavior of AMP is governed by a
state evolution whose fixed points, when unique, correspond (£. L) = taylor_approx (7", ¢1,,, ¢l (A1)
to minimum mean square error (MMSE) signal estimates.

From AMP’s viewpoint,v O (+) is the “prior distribu-

-

tion” for zﬁﬁ, which takes the Bernoulli-Gaussian form

Vi ,o @) = (=08 + 7V CN D560, vi0).
£ o

This “prior” determines the AMP soft-thresholding funatm®
defined in P1) - (D4) of Table ll. The derivation of these

thresholding functions closely follows those outlined 9]

% Define soft-thresholding functions
t) , L (1),
Fae(91) 2 (14 e (61))  (Ligerille (oD)
Yy +e
oLt )C
m<¢; &) £ (14 mme(9:0) 7 (Z) + (B IFu (@0l (02)
(¢7 C) = a¢ nt(‘z’; C) 7G7lt(¢1 C) (D3)
“(t)
eww:(::s ) (3)
3 (1) S %, () e (ST |2
U 191245 Meotey ) cot —cley |
X exp ( - { oD o) D (D4)
% Begin passing messages . . .
fort=1,...,7,Vn:
% Execute the (into) phase . .
S _ A nt,#?;f : (A1)
Tn =) =07
L (A=2n) Tl g A= DA Ty ™
() (P) l_<lt)
vn = (A2)
n
o - )
&l = (%w +;<t>) A3)
% Initialize AMP related vanables
vz 2zl =y vn:ul, =0, and ci =100 SN p®)
% Execute the (W|th|n) phase using AMP .
fori =1,..., I, Vn,m :
¢:L{c = 'Zr\rf 1 A:nn Zmt +Nnt (A4)
N:Il = Fnt(‘i)ntvct_) (A5)
s LT (A6)
\ c; :U +Mzn 1 ;t, (A7)
dziif1 = ’ljgﬁ) - am”‘ﬁl + Xllt Zn 1 Fre(dnescr) (A8)
en
20 = b % Store current estimate of =) (A9)
% Execute the (out) phase . .
“(t) I 1
7 = (1 + (i )m(cbit, )" (A10)
—(t)
% Execute the (across)phase from ") to 9(t+1) . ..
—e41) EORORY OISR
M =1l-o (W) (TW + ;(t) ) + ag (A12)
A(’Uﬂﬂ
=) o 2
R = (- o) (S %y ) + e (A13)
end

TABLE II: Message update equations for a “serial” configioratof the four
message passing phases.

For convenience, we summarize the message update equa-
tions in Tablell, where we provide a pseudocode implementa-

which considered the special case of a zero-mean Bernougly of AMP-MMV. Inspection of the pseudocode reveals that
Gaussian prior.

WINPT N :
\ MO
" f(t)
Only require message
(t) means, ;17,,1&, and .
gm/ variances, {v5;'} :
‘ (t+1)) t
eN (D Ry dn . z;’ £
: O~———M/
eN O 0. )N B /"
O] | :
t t l
(into) CN (O 1) () (within)
(out) Sp, U+ (across)
n
O CA’((')t . (t 1) A(H»l))
d£Z+1)
C\f(ln Dl ch) oM
N80, 50 NN R
(t)
f v

Fig. 2: A summary of the four message passing phases, imgudiessage

notation and form.

the overall per-iteration complexity is linear in all prebh
dimensions, that iSO (T'N M) flops, reflecting the substantial
complexity reduction that comes from AMP.

IV. ESTIMATING THE MODEL PARAMETERS

In order to learn the model prior parametefs,}Y ,,
¢, a, p, and o2, we develop an expectation-maximization
(EM) algorithm [L5] that couples with the message passing
procedure described in Sectidl-A to provide a means of
learning all of the model parameters while simultaneously
estimating the signat and its suppors.

The EM algorithm is an appealing choice for performing
parameter estimation for several reasons. First and fasgmo
the EM algorithm is a well-studied and principled means of
parameter estimation, offering provable convergence tzal |
maximum of the likelihood function1]. Second, it is an
iterative algorithm, and thus pairs naturally with coneutr
iterations of AMP-MMV. Finally, the expectation step of the
EM algorithm relies on quantities that have already been



% Define key quantities obtained from AMP-MMV at iteration k:

) o [T, 7 For comparison to AMP-MMV, we tested two other
Blonl®] = S =0 amam T, 0 50) @D Bayesian algorithms for the MMV problem, MSBB][and T-
50 2 varo® g} = (ﬁ) I 7;7” I i)) - Q2) MSI.SL2 [11], alqng with a re_cently proposed greedy algorithm

T T designed specifically for highly correlated signals, salosp

Ay 2 EOY g =8 (% + S + %) @3) augmented MUSIE (SA-MUSIC) [7]. We also implemented
v® 2 var(z®]g} % See (A6) of Table Il an oracle-aided support-aware Kalman smoother (SKS),hwhic
pt £ E[zP 7] % See (AS) of Table Il provides a lower bound on the achievable MSE of any algo-
% EM update equations: rithm.
Nt = & ST Elsnlg) (E1)

Three performance metrics were considered throughout our
tests. The first metric, which we refer to as the time-avetage

K+l _ [ N(T—1) N )\ ! 1 N ~(1)
¢t = (MO + ) (e Sl

T2 B e () — (1= el ) €2 normalized MSE (TNMSE), is defined as TNMGE ) 2
o = gy (0~ VBT FBN(T 1) (E3) LSl le® — 203/l |13, wherez® is an estimate of

where:

b2 2 ST, SN me {6045}

x® . The second metric is the normalized support error rate
(NSER), defined as NSER,S) £ (|S\ S| + S\ 8])/[S],

—Re{(Af) — pf)TCh Y — ol — (a2 A
¢l piszﬁzﬁ:lﬁif) FIAD 1 + 50D 4+ |adY 2 whereS and S are the sets of true and estimated supports,
—29Re{E[6V "0~V |g]} respectively. The third and final metric is runtime, which is
P = raa e Tiee T )+ 101 an important metric given the prevalence of high-dimenaion
+(a’;)2\<k\i; 2(1 a’“)k%{E[Hlif)*"S*;)IgJ} . datasets.
—2aFRe { M= 207 (1 — o®)Re{plF— D= . . .
+(f‘_ ;k{)’(‘g(tfn}ﬁﬂﬁig)‘z)a JRe i ¢ (E4) In Fig. 3, we plot our three metrics as a function of
o2 Bl = 1 ( T |ly® — Ap® ) 4 1;1,@)) (E5) the measurements-to-active-coefficients ratid/K, where

K £ |S|. Simulation details are provided in plot titles. For
AMP-MMYV, two traces appear on the NSER plot, with the
O marker corresponding to & -aware support estimation
computed in the process of executing AMP-MMYV, and so tH@€thod used by both MSBL and T-MSBL, and themarker
EM procedure is highly efficient. corresponding to ak-agnostic support estimate obtained
We letT 2 {)\(, a,p,02} denote the set of all model from AMP-MMV's posteriors p(s,|y). We see that, when
parameters, and ldt" denote the set of parameter estimatek!/K > 2, the TNMSE performance of both AMP-MMV
at the k** EM iteration. Here we have assumed that th@nd T-MSBL is almost identical to that of the oracle-aided

binary support indicator variables share a common activigKS: However, when//K" < 2, every algorithm’s support
probability, \, i.e., P{s, = 1} = \ Vn. For all parameters estimation performance (NSER) degrades, and the TNMSE

excepto?, we uses and@ as the so-called “missing” data ofcéonsequently grows. Indeed, whed/K < 1.50, all of the
the EM algorithm, while forr? we usez. algorithms perform poorly compared to the SKS, although
After an initial iteration of AMP-MMV, approximate T-MSBL performs the best of the four. We also note the

marginal posterior distributions are available for each GUPerior NSER performance of AMP-MMV over much of
the underlying random variables, e.g(s,|y), along with the_ range. From the runtime plot we see the_ tremendous
pairwise joint posterior distributions, e.w(eg)’egfl)ky). efficiency of AMP-MMV. Over the region in which AMP-

With these distributions, it is possible to perform theatare MMV IS pe:jform:cng well, (\;vefsee thhat Its runtime is mdore
expectation and maximization steps required to maximifaan one order-of-magnitude faster than SA-MUSIC, and two

p(@IT) in closed-form. We adopt a Gauss-Seidel Schem%tders-of-magnitude_faster than either T-MSBL or_MSBL. .
performing coordinate-wise maximization, e.g. A key consideration of our method is ensuring that it
’ ’ is suitable for high-dimensional problems. Our complexity

N = argmax E, g1 [logp(¥, s, 0)|y, A, T*\{(A}], analysis indicated that a single iteration of AMP-MMV could
A be completed iNO(TNM) flops. However, to verify that it
wherek is the iteration index common to both AMP-MMYV scales well with problem size, we performed an experiment
and the EM algorithm. In Tabldll we provide the EM in which the signal dimensiony, was swept logarithmically
parameter update equations for our model. over the rang¢l100, 10000], and M was scaled proportionally
such thatN/M = 3.
The results of this experiment are provided in FigSeveral
In this section we present a limited summary of an exeatures of these plots are of interest. First, we obserae th
tensive numerical study that was conductég] [to explore the performance of every algorithm improves noticeably as
the performance characteristics and tradeoffs of AMP-MM¥roblem dimensions grow fronV = 100 to N = 1000, with
MATLAB © code was writtehto implement the algorithm de- AMP-MMV and T-MSBL converging in TNMSE performance
scribed in Sectiotll, along with the EM parameter estimatiorto the SKS bound. The second observation that we point out
procedure of SectioiV.

TABLE Ill: EM algorithm update equations for the signal mogarameters
of Sectionll.

V. NUMERICAL STUDY

2Code available atlsp.ucsd.edu/zhilin/Software.html
1Code available atce.osu.edu/schniter/turboAMPmmy 3Code obtained through personal correspondence with author


ece.osu.edu/~schniter/turboAMPmmv
dsp.ucsd.edu/~zhilin/Software.html
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Fig. 3: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBMSBL, AMP-MMV, and the SKS versug//K . Correlation coefficien —a = 0.90.
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a=0.05| T=4,NM=3A=0.15 SNR=25dB

a=0.05| T=4,N/M=3,A=0.15 SNR=25dB
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Fig. 4: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBMSBL, AMP-MMYV, and the SKS versus signal dimensias, Correlation coefficient

1—a=0.95.

is that AMP-MMYV is extremely fast. Indeed, a problem with [9]
NT = 40000 unknowns can be solved accurately in just
under 30 seconds. Finally, we note that AMP-MMV scales
with increasing problem dimensions more favorably than theo)
other methods; alv = 10000, AMP-MMV runs two orders-
of-magnitude faster than the other techniques.
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