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Abstract—The approximate message passing (AMP) algorithm probabilistic viewpoint where the elementsaofire drawn i.i.d
originally proposed by Donoho, Maleki, and Montanari yields from the marginal pdpx (z) = Af(x)+(1—\)é(z), for Dirac
a computationally attractive solution to the usual ¢, -regularized delta §(z), active-coefficient pdff(z), and A 2 K/N, then
least-squares problem faced in compressed sensing, whose so-h L ’ PTC i ff d ’ This PTC i '
lution is known to be robust to the signal distribution. When t € .asso IS npt affected b(-). . 1S mvanapce
the signal is drawn i.i.d from a marginal distribution that is implies that Lasso is robust, but that it cannot benefit from
not least-favorable, better performance can be attained using a the restriction ofe to an “easier” signal class. For example, if
Bayesian variation of AMP. The latter, however, assumes that the the coefficients inc are known to be non-negative, then there

distribution is perfectly known. In this paper, we navigate the  qyists g polynomial-complexity algorithm whose PTC is éett
space between these two extremes by modeling the signal as i.i. han that of Lasso [2]

Bernoulli-Gaussian (BG) with unknown prior sparsity, mean, and - o
variance, and the noise as zero-mean Gaussian with unknown Although, in some applications, robustness to worst-case
variance, and we simultaneously reconstruct the signal while signals may be the dominant concern, in many other applica-
learning the prior signal and noise parameters. To accomplish this tions the goal is to maximize average-case performance over
task, we embed the BG-AMP algorithm within an expectation- 5, anticipated signal class. When the sigaal drawn i.i.d
maximization (EM) framework. Numerical experiments confirm from an arbitraryknown marginal distributionp (-) and the
the excellent performance of our proposed EM-BG-AMP on a X o . . . X )
range of signal typest? noise w is i.i.d Gaussian withknown variance, there exist
very-low-complexity iterative Bayesian algorithms to geate
approximately maximum a posteriori (MAP) and minimum

We consider the problem of recovering a sigmak RY  mean-squared error (MMSE) signal estimates, notably the
from noisy linear measurements= Az +w € R in the Bayesian version of Donoho, Maleki, and Montana@p-
“undersampled” regime wheré/ < N. Roughly speaking, proximate message passif@MP) algorithm [4]. AMP is
when z is sufficiently sparse (or compressible) and whefdrmulated from a loopy-belief-propagation perspectieger-
the matrix A is sufficiently well-conditioned, accurate signakging central-limit-theorem approximations that hold he t
recovery is possible with polynomial-complexity algorits.  large system limit for suitably densé, and admits a rigorous

One of the best-known approaches to this problem is knowhalysis in the large-system limit [5]. Meanwhile, AMP’s
as “Lasso” [1], which minimizes the convex criterion complexity is remarkably low, dominated by one application
) of A and A" per iteration (which is especially cheap 4 is

an FFT or other fast operation), with typically 50 iterations

with \asso @ tuning parameter. WheA is constructed from to convergence. More recently, generalized AMAGAMP)
i.i.d Gaussian entries, the so-called phase transitiowvecu@lgorithm [6] was proposed that relaxes the requirements on
(PTC) gives a sharp characterization of Lasso performanrice the noise distribution and on the sensing ma#ix(See Table |
K-sparsez in the large system limit, i.e., a&, M, N — oo for a summary.)
with fixed undersampling ratid/ /N and sparsity ratids’/M Given that it is rare to know the signal and noise distri-
[2]. (The Lasso PTC is illustrated in Figs. 1-3.) For noissle butions perfectly, we take the approach of assuming signal
observations, the PTC partitions thé/N-versusi /M plane and noise distributions that are known up to some statlstica
into two regions: one where Lasso reconstructs the sigmerameters, and then learning those unknown parameteles whi
perfectly (with high probability), and one where it does.nosimultaneously recovering the signal. Examples of this-‘em
For noisy observations, the same curve indicates whetleer fhrical Bayesian” approach include several algorithmsetdas
noise sensitivity (i.e., the ratio of estimation-error mowto on Tipping'srelevance vector maching]-[9]. Although the
measurement-noise power under the worst-case signai distverage-case performance of those algorithms is oftere quit
bution) of Lasso remains bounded [3]. good (depending on the signal class, of course), their com-

One remarkable feature of the noiseless Lasso PTC is thapligxities are generally much larger than that of (G)AMP.
is invariant to signal distribution. In other words, if wecgd a In this paper, we propose a GAMP-based empirical-

Bayesian algorithm. In particular, we treat the signal as
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I. INTRODUCTION

Tjasso = argn}cin lly — Aﬁ:”% + Nasso |21,



an expectation-maximization (EM) approach [10] that callsgefinitions: ) A
. . P ylz ZiZ, 1
BG-GAMP once per EM-iteration. pziy(z(|y,z ,iZ; = ff/gEZZ(y{zlfNEZ’i’fz) , gg
Il. BERNOULLI-GAUSSIAN GAMP Joulth m 1) = " Vf‘;yf:ijyig} :
) 9oy, 2, 17) = F(uiz - 1) (D3)
A core component of our proposed method is the Bernoullj- pxialy Py pt) = - 2XEN @) (Da)
Gaussian (BG) GAMP algorithm, which we now review. For = ’( S e pxEDN LT
BG-GAMP, the signale = [z1,...,zn] is assumed to be o (7, r) - 7f |$_gm(r )2 py |y (@ly; 7, u7) (D6
i.i.d BG, i.e., to have marginal pdf initialize
Vn:in(l) = [ xpx(z) (11)
px (@A, 0,0) = (1= N)é(x) + AW(xz:0,0), (2 V(1) = [) o — @ (1)2px (2) (12)
vm : 4m(0) = 0 (13)
whered(-) denotes the Dirac deltay the sparsity ratef) the |fort=1,2,3,. N
active-coefficient mean, ang the active-coefficient variance. vm : Z;n(t) = Z%:lf‘mnf;(i) (R1)
The noisew is assumed to be independentaofind i.i.d zero- vm Hin(t) = 2y Amn "7 (1) (R2)
mean Gaussian with variange Vm : m (t) = goutWm, Bm (t), 12, (1)) (R4)
Vme: g (8) = —gou(Yms Bm (1), 15, (1)) (R5)
w(w; ) = N(wioﬂb) 3 Vn ol () = (25:1 1A |2 ( ))_1 (R6)
A ) Vn: fn(t) = Ea(t) + pp (8) o g Al m () (R7)
In our approach, the parameteys= [\, 0, ¢, 1] that define Vi pE (th1) = pl(E)gl (et b (2)) (R8)
these prior distributions are treated as deterministimonkas, Vn o &n(t+1) = gin(Fn(t), uy, (1)) (R9)
and learned through the EM algorithm, as detailed in Sec¢t"d
tion Ill. Although above and in the sequel we assume real- TABLE |

; . THE GAMP ALGORITHM [6
valued Gaussians, all expressions can be converted to the [6]

circular-complex-Gaussian case by replacing/dliwith CA for scaling factorC, 2 [ px(@n: @) N (: 7, i7,). From

and removing alll’s. - ) .
. I . (12), it is straightforward to show that BG-GAMP yields the
GAMP can handle an arbitrary probabilistic relationshiigOIIOWing posterior support probabilities:

Py |z (Yml|zm) between the observed outpyt, and the noise-

less outputz,, £ a! x, wherea is the m' row of A. Pr{z, #0|y;q} = 7(Fn, pt,; @) (13)
Our additive Gaussian noise assumption implies; (y|z) =
N(y; z, ). To complete our description, we need only to !ll. EM LEARNING OF THEPRIOR PARAMETERS g
specify gin(), 9/,(*), gout(-), and g (-) in Table 1. Using  We use the expectation-maximization (EM) algorithm [10]
straightforward manipulations, ok~ (-|-) yields [6] to learn the statistical parameteys® [\, 0, ¢, v]. The EM al-
. gorithm is an iterative technique that increases the likald at
gout(y, 2, %5 q) = y—z (4) each iteration, guaranteeing convergence to a local marimu
W I”b of the likelihoodp(y; q). In our case, we choose the “hidden

—gb (. 2, 0% q) = (5) data” to be{z,w}, which yields the EM update

I " .
Tt = argmax E { In p(x, w; :q't, 14
and our BG signal prior (2) yields 4 S {Inp( a) ’y 7'} (14)
(B T — (T P wherei denotes EM iteration anB{-|y; q°} denotes expecta-
Tg'/”(t’“r’q) B W(f’ltr’q)v(ri“ ;q) o 2(6) tion conditioned on the observations under the parameter
Wgn(F "5 q) = w(F 0" q) (v " q) + (e a)l) hypothesisq’. Moreover, we use the well-established “in-
— (ﬁ(f’ur;q))zw(f,l[;q)i{ (7) cremental” updating schedule [11], whegeis updated one
element at a time while keeping the other elements fixed.

1 A. EM update for\
m(F,pu" q) & NGOG T (8)  We now derive the EM update fok given previous pa-
L+ (& N (70,67 ) rametersq’ = [\!,0°, ¢, +']. Becauser is apriori indepen-

where

(7" q) 2 /" +6/¢ ) dent ofw and i.i.d, the joint pdfp(x, w;q) decouples into

T 1/ur + 1/¢ CH _10x(zn; A, 0,0) for a A-invariant constant”, and so
o) B 10 al

v(r, 1" q) 1//~L —|—1/¢> (10) N+l — a;g(ma)xZE{lan Tni N, 00, 0Y) |y q } (15)
€(0,1 n—1

Table | implies that BG-GAMP’s marginal posteriors are ) ) .
The maximizing value o in (15) is necessarily a value of

P(@aly; @) = 2= px (T0; @) N (2 s p17,) (11) that zeroes the derivative, i.e., that satisfies
= o (1= N)d(zn) + AN (2,56, 0))
N o ) 12 Z / (raly: @) npx (i A, 6,6 = 0. (16)



For thepx (x,; A, 0, ¢) given in (2), it is readily seen that  The unique value of satisfying (23) as — 0 is then

d o i .
a lan (xna /\7 017 d)z) 0i+1 _ Zg:l hInE_}O -[InEE 'an(xn‘y’ q ) (24)
- N i
N (@038, 61) — 3(2) {; WA Soiilimeso [, e p(@alyia)
- xn;)\aeiv g B =L xnzo 1 a ~ r. i N T, i
Px( ?) 1A = WZﬂ(rmun;q’)v(mun;q) (25)
Plugging (17) and (12) into (16), it becomes evident that n=1

the neighborhood around the point = 0 should be treated
differently than the remainder @&. Thus, we define the closed
ball B, = [—¢,¢] andB. = R\ B, and note that, in the limit
e — 0, the following is equivalent to (16):

N
1
oy

n=1 z, €BC

for the GAMP outputs{y(#,,u%;q")}N_, defined in (9).
The equality in (25) can be verified by plugging the GAMP
posterior expression from (12) into (24) and simplifying vi
the Gaussian-pdf multiplication rule.

pan|yig') = AZ/%GB (zn|y:q").  C. EM update fors
Similar to (15), the EM update fap can be written as

e—0 e~>0

= (P, i q") 17 (P, 105 q")

1 . al
To verify that the left integral converges to thé7,, 1" ; q°) ¢! = argmax Y E{Inpx(zn; N\, 0°,0) |yiq'}. (26)
defined in (8), it suffices to plug (12) into (18) and apply the o=0
Gaussian-pdf multiplication rufé;meanwhile, for any, the The maximizing value ofs in (26) is necessarily a value of
right integral must equal one minus the left. Finally, the EM, that zeroes the derivative, i.e., that satisfies
update for\ is the unique value satisfying (18) as- 0, i.e.,

n=1

N
1S / (raly: ') lnp (0 X0, 6) = 0. (27)
N = 5 (i q)- (19) Zm * )

n=1

Conveniently,{x (i, u": ¢')}Y_, are GAMP outputs. For thepx (z,; A\, 0, ¢) given in (2), it is readily seen that

d
B. EM update ford %lnpx(xmk 0, ¢)
Similar to (15), the EM updatefor 6 can be written as 20 — 02 1\ NN(zn:0,0)
== — 28
B . e (T ) iy @
0" = arg max E{lnpx(z.; )\, 0,0") | y;q 20 1 (|zn—02 1
0eR — {2( (9)? 75) o # 0 (29)
0 Ty, =0

The maximizing value o# in (20) is necessarily a value éf

that zeroes the derivative, i.e., that satisfies Splitting the domain of integration in (27) int6, andB,, and

then plugging in (29), we find that the following is equivalen
Z/ (znly; ") lnpx(me 0,6')=0.  (21) to (27) in the limit ofe — 0
N
For thepx (z,; A\, 0, ¢) given in (2), it is readily seen that Z/ (|x iR ¢) p(znly; q') = 0. (30)
n=1 zn €BC

A px (s N, 6, 6)

do
(xn _ 9) )‘Z‘N«En;‘gv d)l) _ w,,;s:G Tn # 0
(bl pX(l'n;AZ,e,(bl) 0 In =0

The unique value o satisfying (30) as — 0 is then

.(22 N . i i

(22) i1 Zn:l lim, 0 fxnel’z |2y — 0 |2p(xn|y§ q') 31

¢ - N 1i i (31)
Zn:l e—0 fx,,LEEp(x"‘y’ q )

Splitting the domain of integration in (21) int8, and 3., and

then plugging in (22), we find that the following is equivalen _ 1 e 4 ; N
to (21) in the limit of e — O: = NHIN Z_;”(T"’M"’q )(|9 = (P pin: )|
N .
i + (P, 5 q° 32
| @opalwa) 0. @3 (Futia) 52
n=17%n€

for the GAMP outputs{v(#,, u%; q¢")})_, defined in (10).
SN (23 0, AN (a; b,B) = N (w; LLA+/B L__\A/(0;a—b, A+B). The equality in (32) can be verified by plugging the GAMP

) 1/A+1/B’ 1/A+1/B . . . g e
41f the user has good reason to believe that the true signabmyimmetric POSterior expression from (12) into (31) and simplifyingngs

around zero, then they may consider fixithg: 0 and avoiding this EM update. the Gaussian-pdf multiplication rule.
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Fig. 1. Empirical noiseless PTCs for BernoulliFig. 2. Empirical noiseless PTCs for BernoulliFig. 3. Empirical noiseless PTCs for Bernoulli
Gaussian signals and theoretical PTC for LassRademacher case and theoretical PTC for Lassignals and theoretical PTC for Lasso.

D. EM update fory We initialize the active mean & = 0, which effectively as-
Finally, we derive the EM update fop given previous sumeszthat the active pdf-) is symmeAtric. Figally, noting that

parameterg’. Becausew is apriori independent of and i.i.d, E{ll¥lz} = (SNR 4+ 1)M¢ for SNR = tr(A"A)Ap/ (M),

the joint pdfp(z,w; q) decouples intaC HMflpW(wm;L/f) we see that the varianceg,and ), can be initialized based

for a ¢-invariant constant, and so on |ly|2 and a given hypothesSNR’ > 0. In particular,
M 0 lyl3 o _ Iyl — My°
i =—, == 40
Pt = = arg max Y E{lpw(wniv)|yia'}. (33 V= SNRY 4 D tr(ATA)AO (40)
m=1

. 0
The maximizing value of in (33) is necessarily a value of Where, without other knowledge, we sugg&NR"™ = 100.

1) that zeroes the derivative, i.e., that satisfies IV. NUMERICAL RESULTS

A. Noiseless Phase Transitions
Z / wrn|y q lan(w’rny¢) . (34)

First, we describe the results of experiments that computed
noiseless empirical phase transition curves (PTCs) unaer v

Becaus mi ) = m;0,1), it is readily seen that . X S .
Pw (Wm; V) = N (wm; 0,9) y ious sparse-signal distributions. To compute each engbiric

d lwm* 1 PTC, we constructed 80 x 30 grid of oversampling ratio
A 1 ms - - 9 35 ' . . .
gy mw (Wmi¥) = 3 ( ()2 w) (35) M < 10.05,0.95] and sparsity ratick € [0.05,0.95] for fixed
which, when plugged into (34), yields the unique solution Signal lengthN' = 1000. At each grid point, we generated
R = 100 independent realizations of{-sparse signale
pit! = Z | ‘ | (36) and M x N i.i.d-Gaussian measurement matdéx From the
M w W " p(Wmly; @°)- measurementg = Ax, we attempted to reconstruct the signal

x using various algorithms. A recovery from realization

Sincew,, = Y — 2z, for z, £ a) @, we can also write r € {1,...,R} was considered a success (i.6, = 1)
if NMSE £ ||z — 2|j3/||z||? < 10~*, where the average

/ Ym — 2m|?p(zmly; @) (37) success rate is defined @2 LY S,. The empirical
Zm PTC was then plotted, using Matlabtont our command,

wi-‘rl _

=)=
NE

m=1
1 M as theS = 0.5 contour over the sparsity-undersampling grid.
= Z (lym — Zml* + 12) (38) Figures 1-3 show the empirical PTCs for three recovery
m=1 algorithms: the proposed EM-BG-GAMP algorittfma, “genie-

wherez,,, andy?,, the posterior mean and variancezxgf, are aided” BG-GAMP that knew the trug\, 6, ¢,+], and the
available from GAMP (see steps (R1)-(R2) in Table I). Laplacian-AMP from [2]. For comparison, Figs. 1-3 also dis-
L play the theoretical Lasso PTC (39). The signal was gergrate
E. EM Initialization as BG with zero meand(= 0) and unit varianced = 1) in
Since the EM algorithm converges only to a local maximurpig. 1, as Bernoulli-Rademacher (BR) in Fig. 2 (i.e., nomeze
of the likelihood function, proper initialization is essiah We  coefficients chosen uniformly frorh—1,11), and as Bernoulli
initialize the sparsity as\” = 4l pse(4f), wherepse(4F) is in Fig. 3 (i.e., all non-zero coefficients set equal ttoor,

the sparsity ratiol: achieved by the Lasso PTC [2] equivalently, BG with? = 1 and ¢ = 0).
1_ 2N7(q 2D (a) — Figures 1-3 demonstrate that, for all three signal types,
pse (L) = max,>o . on [2( Ira )2 ((I)a) ag(a) . (39) the empirical PTC of EM-BG-GAMP improves on that for
—a? = 2[(1+a*)®(a) — ag(a)] Laplacian-AMP as well as the theoretical Lasso PTC. (The

SEmpirically, we have observed that the EM updatedanorks better with  [atter two are known to converge in the large system limit

the 1z, term in (38) weighted by% and suppressed until later EM iterations.
We conjecture that this is due to bias in the GAMP varianceneses.?, . SMatlab code available at http://www.ece.osu.edu/ sentiMturboGAMP
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Fig. 4. NMSE for noisy recovery of a Bernoulli- Fig. 5. NMSE for noisy recovery of a Bernoulli- Fig. 6. NMSE for noisy recovery of a Bernoulli

Gaussian signal. Rademacher signal.

[2].) The smallest gains over Lasso appear when the sigiehaviors to a poor fit between the assumed and actual signal

signal.

is BR (i.e., the least-favorable distribution [3]), whesethe priors, motivating future work on an EMBaussian-Mixture
largest gains appear when the signal is Bernoulli. AmaginglIGAMP with automatic selection of the mixture order.

EM-BG-AMP perfectly recovered almost every Bernoulli re-
alization when% > 0.65. The figures suggest that the EM
algorithm does a decent job of learning the parametefisy. (1]
In fact, EM-BG-GAMP slightly outperforms genie-BG-GAMP 2]

in Figs. 1-2 due to realization-specific data fitting.

B. Noisy Signal Recovery [3]

Figures 4-6 show NMSE for noisy recovery of the samey
three sparse signal types considered in Figs. 1-3. To cmhstr
these new plots, we fixedl = 1000, K = 100, SNR = 25dB, (5]
and variedM. Each data point represents NMSE averagedlS
over R = 500 realizations. For comparison, we show the
performance of the proposed EM-BG-GAMP, Bayesian Ccoml®
pressive Sensing (BCS) [9], Sparse Bayesian Learning [8] (v[7]
T-MSBL), debiased genie-aidédlasso (via SPGL1 [12]), and
Smoothedé, (SLO) [13]. All algorithms were run under the [
suggested defaults, withhoi se’ = srmal | * in T-MSBL. [9]

In Fig. 4 and Fig. 6, we see EM-BG-GAMP outperforminrﬂ
all other algorithms for all meaningful values of undersam-=
pling ratio % In fact, for Bernoulli signals (Fig. 6), we see
a significant improvement, especially Wh% € [0.3,0.38]. [11]
We have verified (in simulations not shown here) that similar
behavior persists at lowe8NRs. In Fig. 5, we see EM-BG- [172]
GAMP outperforming all algorithms except T-MSBL, which
does~1 dB better for large values G% Apparently, the prior 13]
assumed by T-MSBL is a better fit to BR than the BG prior.

Admittedly, the near-dominant EM-BG-GAMP performance
observed forperfectly sparse signals in Figs. 1-6 does ndt¥!
hold for all signal classes. As an example, Fig. 7 shows noisy
recovery NMSE for a Student’s-t signal with pdf

s I'((¢+1)/2))

V2ml(q/2)

under thenon-compressibl@arameter choice = 1.67 [14].

There, we see EM-BG-GAMP outperformed by SLO and
genie-aided Lasso, although not by T-MSBL and BCS. In
fact, among the competing algorithms, those that performed
best for exactly sparse signals seem to do worst for this
non-compressible signal, and vice versa. We attributeethes

px(25q) (14 22)" @2 (41)

"We ran SPGL1 in ‘BPDN’ modeming ||z||1 S.t. ||y — Az||2 < o, for
tolerancess? € {0.1,0.2,...,1.5} x M+, and reported the lowest NMSE.

Fig. 7.
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