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Abstract—The approximate message passing (AMP) algorithm
originally proposed by Donoho, Maleki, and Montanari yields
a computationally attractive solution to the usual ℓ1-regularized
least-squares problem faced in compressed sensing, whose so-
lution is known to be robust to the signal distribution. When
the signal is drawn i.i.d from a marginal distribution that is
not least-favorable, better performance can be attained using a
Bayesian variation of AMP. The latter, however, assumes that the
distribution is perfectly known. In this paper, we navigate the
space between these two extremes by modeling the signal as i.i.d
Bernoulli-Gaussian (BG) with unknown prior sparsity, mean, and
variance, and the noise as zero-mean Gaussian with unknown
variance, and we simultaneously reconstruct the signal while
learning the prior signal and noise parameters. To accomplish this
task, we embed the BG-AMP algorithm within an expectation-
maximization (EM) framework. Numerical experiments confirm
the excellent performance of our proposed EM-BG-AMP on a
range of signal types.12

I. I NTRODUCTION

We consider the problem of recovering a signalx ∈ R
N

from noisy linear measurementsy = Ax + w ∈ R
M in the

“undersampled” regime whereM < N . Roughly speaking,
when x is sufficiently sparse (or compressible) and when
the matrixA is sufficiently well-conditioned, accurate signal
recovery is possible with polynomial-complexity algorithms.

One of the best-known approaches to this problem is known
as “Lasso” [1], which minimizes the convex criterion

x̂lasso = argmin
x̂

‖y −Ax̂‖22 + λlasso‖x̂‖1, (1)

with λlasso a tuning parameter. WhenA is constructed from
i.i.d Gaussian entries, the so-called phase transition curve
(PTC) gives a sharp characterization of Lasso performance for
K-sparsex in the large system limit, i.e., asK,M,N → ∞
with fixed undersampling ratioM/N and sparsity ratioK/M
[2]. (The Lasso PTC is illustrated in Figs. 1-3.) For noiseless
observations, the PTC partitions theM/N -versus-K/M plane
into two regions: one where Lasso reconstructs the signal
perfectly (with high probability), and one where it does not.
For noisy observations, the same curve indicates whether the
noise sensitivity (i.e., the ratio of estimation-error power to
measurement-noise power under the worst-case signal distri-
bution) of Lasso remains bounded [3].

One remarkable feature of the noiseless Lasso PTC is that it
is invariant to signal distribution. In other words, if we adopt a

1This work has been supported in part by NSF-I/UCRC grant IIP-0968910,
by NSF grant CCF-1018368, and by DARPA/ONR grant N66001-10-1-4090.

2Portions of this work were presented in a poster at the Duke Workshop
on Sensing and Analysis of High-Dimensional Data, July 2011.

probabilistic viewpoint where the elements ofx are drawn i.i.d
from the marginal pdfpX(x) = λf(x)+(1−λ)δ(x), for Dirac
delta δ(x), active-coefficient pdff(x), andλ , K/N , then
the Lasso PTC is not affected byf(·). This PTC invariance
implies that Lasso is robust, but that it cannot benefit from
the restriction ofx to an “easier” signal class. For example, if
the coefficients inx are known to be non-negative, then there
exists a polynomial-complexity algorithm whose PTC is better
than that of Lasso [2].

Although, in some applications, robustness to worst-case
signals may be the dominant concern, in many other applica-
tions the goal is to maximize average-case performance over
an anticipated signal class. When the signalx is drawn i.i.d
from an arbitraryknownmarginal distributionpX(·) and the
noise w is i.i.d Gaussian withknown variance, there exist
very-low-complexity iterative Bayesian algorithms to generate
approximately maximum a posteriori (MAP) and minimum
mean-squared error (MMSE) signal estimates, notably the
Bayesian version of Donoho, Maleki, and Montanari’sap-
proximate message passing(AMP) algorithm [4]. AMP is
formulated from a loopy-belief-propagation perspective,lever-
aging central-limit-theorem approximations that hold in the
large system limit for suitably denseA, and admits a rigorous
analysis in the large-system limit [5]. Meanwhile, AMP’s
complexity is remarkably low, dominated by one application
of A andAT per iteration (which is especially cheap ifA is
an FFT or other fast operation), with typically< 50 iterations
to convergence. More recently, ageneralized AMP(GAMP)
algorithm [6] was proposed that relaxes the requirements on
the noise distribution and on the sensing matrixA. (See Table I
for a summary.)

Given that it is rare to know the signal and noise distri-
butions perfectly, we take the approach of assuming signal
and noise distributions that are known up to some statistical
parameters, and then learning those unknown parameters while
simultaneously recovering the signal. Examples of this “em-
pirical Bayesian” approach include several algorithms based
on Tipping’s relevance vector machine[7]–[9]. Although the
average-case performance of those algorithms is often quite
good (depending on the signal class, of course), their com-
plexities are generally much larger than that of (G)AMP.

In this paper, we propose a GAMP-based empirical-
Bayesian algorithm. In particular, we treat the signal as
Bernoulli-Gaussian (BG) signal with unknown sparsity, mean,
and variance, and the noise as Gaussian with unknown vari-
ance, and then we then learn these statistical parameters using



an expectation-maximization (EM) approach [10] that calls
BG-GAMP once per EM-iteration.

II. B ERNOULLI-GAUSSIAN GAMP

A core component of our proposed method is the Bernoulli-
Gaussian (BG) GAMP algorithm, which we now review. For
BG-GAMP, the signalx = [x1, . . . , xN ]T is assumed to be
i.i.d BG, i.e., to have marginal pdf

pX(x;λ, θ, φ) = (1− λ)δ(x) + λN (x; θ, φ), (2)

whereδ(·) denotes the Dirac delta,λ the sparsity rate,θ the
active-coefficient mean, andφ the active-coefficient variance.
The noisew is assumed to be independent ofx and i.i.d zero-
mean Gaussian with varianceψ:

pW (w;ψ) = N (w; 0, ψ) (3)

In our approach, the parametersq , [λ, θ, φ, ψ] that define
these prior distributions are treated as deterministic unknowns,
and learned through the EM algorithm, as detailed in Sec-
tion III. Although above and in the sequel we assume real-
valued Gaussians, all expressions can be converted to the
circular-complex-Gaussian case by replacing allN with CN
and removing all12 ’s.

GAMP can handle an arbitrary probabilistic relationship
pY |Z(ym|zm) between the observed outputym and the noise-
less outputzm , aT

mx, whereaT
m is the mth row of A.

Our additive Gaussian noise assumption impliespY |Z(y|z) =
N (y; z, ψ). To complete our description, we need only to
specify gin(·), g′in(·), gout(·), and g′out(·) in Table I. Using
straightforward manipulations, ourpY |Z(·|·) yields [6]

gout(y, ẑ, µ
z; q) =

y − ẑ

µz + ψ
(4)

−g′out(y, ẑ, µ
z; q) =

1

µz + ψ
, (5)

and our BG signal prior (2) yields

gin(r̂, µ
r; q) = π(r̂, µr; q) γ(r̂, µr; q) (6)

µrg′in(r̂, µ
r; q) = π(r̂, µr; q)

(
ν(r̂, µr; q) + |γ(r̂, µr; q)|2

)

−
(
π(r̂, µr; q)

)2
|γ(r̂, µr; q)|2, (7)

where

π(r̂, µr; q) ,
1

1 +
(
λ

1−λ
N (r̂;θ,φ+µr)
N (r̂;0,µr)

)−1 (8)

γ(r̂, µr; q) ,
r̂/µr + θ/φ

1/µr + 1/φ
(9)

ν(r̂, µr; q) ,
1

1/µr + 1/φ
. (10)

Table I implies that BG-GAMP’s marginal posteriors are

p(xn|y; q) =
1
Cn

pX(xn; q)N (xn; r̂n, µ
r
n) (11)

= 1
Cn

(
(1− λ)δ(xn) + λN (xn; θ, φ)

)

×N (xn; r̂n, µ
r
n) (12)

definitions:
pZ|Y (z|y; ẑ, µz) =

pY |Z(y|z)N (z;ẑ,µz)
∫
z′ pY |Z(y|z′)N (z′;ẑ,µz)

(D1)

gout(y, ẑ, µ
z) = 1

µz

(

EZ|Y {z|y; ẑ, µz} − ẑ
)

(D2)

g′out(y, ẑ, µ
z) = 1

µz

(

varZ|Y {z|y;ẑ,µz}

µz − 1
)

(D3)

pX|Y(x|y; r̂, µr) =
pX(x)N (x;r̂,µr)∫

x′ pX(x′)N (x′;r̂,µr)
(D4)

gin(r̂, µ
r) =

∫

x x pX|Y(x|y; r̂, µr) (D5)
g′in(r̂, µ

r) = 1
µr

∫

x |x− gin(r̂, µ
r)|2 pX|Y(x|y; r̂, µr) (D6)

initialize:
∀n : x̂n(1) =

∫

x x pX(x) (I1)
∀n : µxn(1) =

∫

x |x− x̂n(1)|2pX(x) (I2)
∀m : ûm(0) = 0 (I3)

for t = 1, 2, 3, . . .

∀m : ẑm(t) =
∑N

n=1Amnx̂n(t) (R1)
∀m : µzm(t) =

∑N
n=1 |Amn|2µxn(t) (R2)

∀m : p̂m(t) = ẑm(t)− µzm(t) ûm(t− 1) (R3)
∀m : ûm(t) = gout(ym, p̂m(t), µzm(t)) (R4)
∀m : µum(t) = −g′out(ym, p̂m(t), µzm(t)) (R5)
∀n : µrn(t) =

(
∑N

n=1 |Amn|2µum(t)
)−1 (R6)

∀n : r̂n(t) = x̂n(t) + µrn(t)
∑M

m=1A
∗
mnûm(t) (R7)

∀n : µxn(t+1) = µrn(t)g
′
in(r̂n(t), µ

r
n(t)) (R8)

∀n : x̂n(t+1) = gin(r̂n(t), µ
r
n(t)) (R9)

end

TABLE I
THE GAMP ALGORITHM [6]

for scaling factorCn ,
∫
pX(xn; q)N (xn; r̂n, µ

r
n). From

(12), it is straightforward to show that BG-GAMP yields the
following posterior support probabilities:

Pr{xn 6= 0 |y; q} = π(r̂n, µ
r
n; q). (13)

III. EM L EARNING OF THEPRIOR PARAMETERSq

We use the expectation-maximization (EM) algorithm [10]
to learn the statistical parametersq , [λ, θ, φ, ψ]. The EM al-
gorithm is an iterative technique that increases the likelihood at
each iteration, guaranteeing convergence to a local maximum
of the likelihoodp(y; q). In our case, we choose the “hidden
data” to be{x,w}, which yields the EM update

qi+1 = argmax
q

E
{
ln p(x,w; q)

∣
∣y; qi

}
, (14)

wherei denotes EM iteration andE{·|y; qi} denotes expecta-
tion conditioned on the observationsy under the parameter
hypothesisqi. Moreover, we use the well-established “in-
cremental” updating schedule [11], whereq is updated one
element at a time while keeping the other elements fixed.

A. EM update forλ

We now derive the EM update forλ given previous pa-
rametersqi = [λi, θi, φi, ψi]. Becausex is apriori indepen-
dent of w and i.i.d, the joint pdfp(x,w; q) decouples into
C
∏N
n=1 pX(xn;λ, θ, φ) for a λ-invariant constantC, and so

λi+1 = argmax
λ∈(0,1)

N∑

n=1

E
{
ln pX(xn;λ, θ

i, φi)
∣
∣y; qi

}
. (15)

The maximizing value ofλ in (15) is necessarily a value ofλ
that zeroes the derivative, i.e., that satisfies

N∑

n=1

∫

xn

p(xn|y; q
i)
d

dλ
ln pX(xn;λ, θ

i, φi) = 0. (16)



For thepX(xn;λ, θ, φ) given in (2), it is readily seen that

d

dλ
ln pX(xn;λ, θ

i, φi)

=
N (xn; θ

i, φi)− δ(xn)

pX(xn;λ, θi, φi)
=

{
1
λ xn 6= 0
−1
1−λ xn = 0

. (17)

Plugging (17) and (12) into (16), it becomes evident that
the neighborhood around the pointxn = 0 should be treated
differently than the remainder ofR. Thus, we define the closed
ball Bǫ = [−ǫ, ǫ] andBǫ , R \ Bǫ, and note that, in the limit
ǫ→ 0, the following is equivalent to (16):

1

λ

N∑

n=1

∫

xn∈Bǫ

p(xn |y; q
i)

︸ ︷︷ ︸

ǫ→0
= π(r̂n, µ

r
n; q

i)

=
1

1−λ

N∑

n=1

∫

xn∈Bǫ

p(xn |y; q
i)

︸ ︷︷ ︸

ǫ→0
= 1−π(r̂n, µ

r
n; q

i)

.

(18)
To verify that the left integral converges to theπ(r̂n, µrn; q

i)
defined in (8), it suffices to plug (12) into (18) and apply the
Gaussian-pdf multiplication rule;3 meanwhile, for anyǫ, the
right integral must equal one minus the left. Finally, the EM
update forλ is the unique value satisfying (18) asǫ→ 0, i.e.,

λi+1 =
1

N

N∑

n=1

π(r̂n, µ
r
n; q

i). (19)

Conveniently,{π(r̂n, µrn; q
i)}Nn=1 are GAMP outputs.

B. EM update forθ

Similar to (15), the EM update4 for θ can be written as

θi+1 = argmax
θ∈R

N∑

n=1

E
{
ln pX(xn;λ

i, θ, φi)
∣
∣y; qi

}
, (20)

The maximizing value ofθ in (20) is necessarily a value ofθ
that zeroes the derivative, i.e., that satisfies

N∑

n=1

∫

xn

p(xn|y; q
i)
d

dθ
ln pX(xn;λ

i, θ, φi) = 0. (21)

For thepX(xn;λ, θ, φ) given in (2), it is readily seen that

d

dθ
ln pX(xn;λ

i, θ, φi)

=
(xn − θ)

φi
λiN (xn; θ, φ

i)

pX(xn;λi, θ, φi)
=

{
xn−θ
φi xn 6= 0

0 xn = 0
. (22)

Splitting the domain of integration in (21) intoBǫ andBǫ, and
then plugging in (22), we find that the following is equivalent
to (21) in the limit of ǫ→ 0:

N∑

n=1

∫

xn∈Bǫ

(xn − θ) p(xn|y; q
i) = 0. (23)

3N (x; a,A)N (x; b,B)=N (x;
a/A+b/B
1/A+1/B

, 1
1/A+1/B

)N (0; a−b, A+B).
4If the user has good reason to believe that the true signal pdfis symmetric

around zero, then they may consider fixingθ=0 and avoiding this EM update.

The unique value ofθ satisfying (23) asǫ→ 0 is then

θi+1 =

∑N
n=1 limǫ→0

∫

xn∈Bǫ

xnp(xn|y; qi)
∑N
n=1 limǫ→0

∫

xn∈Bǫ

p(xn|y; qi)
(24)

=
1

λi+1N

N∑

n=1

π(r̂n, µ
r
n; q

i)γ(r̂n, µ
r
n; q

i) (25)

for the GAMP outputs{γ(r̂n, µrn; q
i)}Nn=1 defined in (9).

The equality in (25) can be verified by plugging the GAMP
posterior expression from (12) into (24) and simplifying via
the Gaussian-pdf multiplication rule.

C. EM update forφ

Similar to (15), the EM update forφ can be written as

φ̂i+1 = argmax
φ>0

N∑

n=1

E
{
ln pX(xn;λ

i, θi, φ)
∣
∣y; qi

}
. (26)

The maximizing value ofφ in (26) is necessarily a value of
φ that zeroes the derivative, i.e., that satisfies

N∑

n=1

∫

xn

p(xn|y; q
i)
d

dφ
ln pX(xn;λ

i, θi, φ) = 0. (27)

For thepX(xn;λ, θ, φ) given in (2), it is readily seen that

d

dφ
ln pX(xn;λ

i, θi, φ)

=
1

2

(
|xn − θi|2

(φ)2
−

1

φ

)
λiN (xn; θ

i, φ)

pX(xn;λi, θi, φ)
(28)

=

{
1
2

(
|xn−θi|2

(φ)2 − 1
φ

)

xn 6= 0

0 xn = 0
. (29)

Splitting the domain of integration in (27) intoBǫ andBǫ, and
then plugging in (29), we find that the following is equivalent
to (27) in the limit of ǫ→ 0:

N∑

n=1

∫

xn∈Bǫ

(
|xn − θi|2 − φ

)
p(xn|y; q

i) = 0. (30)

The unique value ofφ satisfying (30) asǫ→ 0 is then

φi+1 =

∑N
n=1 limǫ→0

∫

xn∈Bǫ

|xn − θi|2p(xn|y; q
i)

∑N
n=1 limǫ→0

∫

xn∈Bǫ

p(xn|y; qi)
(31)

=
1

λi+1N

N∑

n=1

π(r̂n, µ
r
n, q

i)
(∣
∣θi − γ(r̂n, µ

r
n; q

i)
∣
∣
2

+ ν(r̂n, µ
r
n; q

i)
)

(32)

for the GAMP outputs{ν(r̂n, µrn; q
i)}Nn=1 defined in (10).

The equality in (32) can be verified by plugging the GAMP
posterior expression from (12) into (31) and simplifying using
the Gaussian-pdf multiplication rule.
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Fig. 1. Empirical noiseless PTCs for Bernoulli-
Gaussian signals and theoretical PTC for Lasso.
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Fig. 2. Empirical noiseless PTCs for Bernoulli-
Rademacher case and theoretical PTC for Lasso.
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Fig. 3. Empirical noiseless PTCs for Bernoulli
signals and theoretical PTC for Lasso.

D. EM update forψ

Finally, we derive the EM update forψ given previous
parametersqi. Becausew is apriori independent ofx and i.i.d,
the joint pdf p(x,w; q) decouples intoC

∏M
m=1 pW (wm;ψ)

for a ψ-invariant constantC, and so

ψi+1 = argmax
ψ>0

M∑

m=1

E
{
ln pW (wm;ψ)

∣
∣y; qi

}
. (33)

The maximizing value ofψ in (33) is necessarily a value of
ψ that zeroes the derivative, i.e., that satisfies

M∑

m=1

∫

wm

p(wm|y; qi)
d

dψ
ln pW (wm;ψ) = 0. (34)

BecausepW (wm;ψ) = N (wm; 0, ψ), it is readily seen that

d

dψ
ln pW (wm;ψ) =

1

2

(
|wm|2

(ψ)2
−

1

ψ

)

, (35)

which, when plugged into (34), yields the unique solution

ψi+1 =
1

M

M∑

m=1

∫

wm

|wm|2 p(wm|y; qi). (36)

Sincewm = ym − zm for zm , aT
mx, we can also write5

ψi+1 =
1

M

M∑

m=1

∫

zm

|ym − zm|2 p(zm|y; qi) (37)

=
1

M

M∑

m=1

(
|ym − ẑm|2 + µzm

)
(38)

whereẑm andµzm, the posterior mean and variance ofzm, are
available from GAMP (see steps (R1)-(R2) in Table I).

E. EM Initialization

Since the EM algorithm converges only to a local maximum
of the likelihood function, proper initialization is essential. We
initialize the sparsity asλ0 = M

N ρSE(
M
N ), whereρSE(

M
N ) is

the sparsity ratioKM achieved by the Lasso PTC [2]

ρSE(
M
N ) = maxa≥0

1− 2N
M [(1 + a2)Φ(a)− aφ(a)]

1− a2 − 2[(1 + a2)Φ(a)− aφ(a)]
. (39)

5Empirically, we have observed that the EM update forψ works better with
theµzm term in (38) weighted byM

N
and suppressed until later EM iterations.

We conjecture that this is due to bias in the GAMP variance estimatesµzm.

We initialize the active mean asθ0 = 0, which effectively as-
sumes that the active pdff(·) is symmetric. Finally, noting that
E{‖y‖22} = (SNR + 1)Mψ for SNR , tr(ATA)λφ/(Mψ),
we see that the variances,φ andψ, can be initialized based
on ‖y‖22 and a given hypothesisSNR0 ≥ 0. In particular,

ψ0 =
‖y‖22

(SNR0 + 1)M
, φ0 =

‖y‖22 −Mψ0

tr(ATA)λ0
, (40)

where, without other knowledge, we suggestSNR0 = 100.

IV. N UMERICAL RESULTS

A. Noiseless Phase Transitions

First, we describe the results of experiments that computed
noiseless empirical phase transition curves (PTCs) under var-
ious sparse-signal distributions. To compute each empirical
PTC, we constructed a30 × 30 grid of oversampling ratio
M
N ∈ [0.05, 0.95] and sparsity ratioKM ∈ [0.05, 0.95] for fixed
signal lengthN = 1000. At each grid point, we generated
R = 100 independent realizations ofK-sparse signalx
andM ×N i.i.d-Gaussian measurement matrixA. From the
measurementsy = Ax, we attempted to reconstruct the signal
x using various algorithms. A recoverŷx from realization
r ∈ {1, . . . , R} was considered a success (i.e.,Sr = 1)
if NMSE , ‖x − x̂‖22/‖x‖

2
2 < 10−4, where the average

success rate is defined asS , 1
R

∑R
r=1 Sr. The empirical

PTC was then plotted, using Matlab’scontour command,
as theS = 0.5 contour over the sparsity-undersampling grid.

Figures 1–3 show the empirical PTCs for three recovery
algorithms: the proposed EM-BG-GAMP algorithm,6 a “genie-
aided” BG-GAMP that knew the true[λ, θ, φ, ψ], and the
Laplacian-AMP from [2]. For comparison, Figs. 1–3 also dis-
play the theoretical Lasso PTC (39). The signal was generated
as BG with zero mean (θ = 0) and unit variance (φ = 1) in
Fig. 1, as Bernoulli-Rademacher (BR) in Fig. 2 (i.e., non-zero
coefficients chosen uniformly from{−1, 1}), and as Bernoulli
in Fig. 3 (i.e., all non-zero coefficients set equal to1 or,
equivalently, BG withθ = 1 andφ = 0).

Figures 1–3 demonstrate that, for all three signal types,
the empirical PTC of EM-BG-GAMP improves on that for
Laplacian-AMP as well as the theoretical Lasso PTC. (The
latter two are known to converge in the large system limit

6Matlab code available at http://www.ece.osu.edu/˜schniter/EMturboGAMP
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Fig. 4. NMSE for noisy recovery of a Bernoulli-
Gaussian signal.
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Rademacher signal.
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Fig. 6. NMSE for noisy recovery of a Bernoulli
signal.

[2].) The smallest gains over Lasso appear when the signal
is BR (i.e., the least-favorable distribution [3]), whereas the
largest gains appear when the signal is Bernoulli. Amazingly,
EM-BG-AMP perfectly recovered almost every Bernoulli re-
alization whenMN ≥ 0.65. The figures suggest that the EM
algorithm does a decent job of learning the parametersλ, θ, φ.
In fact, EM-BG-GAMP slightly outperforms genie-BG-GAMP
in Figs. 1–2 due to realization-specific data fitting.

B. Noisy Signal Recovery

Figures 4–6 show NMSE for noisy recovery of the same
three sparse signal types considered in Figs. 1–3. To construct
these new plots, we fixedN = 1000,K = 100, SNR = 25dB,
and variedM . Each data point represents NMSE averaged
over R = 500 realizations. For comparison, we show the
performance of the proposed EM-BG-GAMP, Bayesian Com-
pressive Sensing (BCS) [9], Sparse Bayesian Learning [8] (via
T-MSBL), debiased genie-aided7 Lasso (via SPGL1 [12]), and
Smoothed-ℓ0 (SL0) [13]. All algorithms were run under the
suggested defaults, with‘noise’=‘small’ in T-MSBL.

In Fig. 4 and Fig. 6, we see EM-BG-GAMP outperforming
all other algorithms for all meaningful values of undersam-
pling ratio M

N . In fact, for Bernoulli signals (Fig. 6), we see
a significant improvement, especially whenMN ∈ [0.3, 0.38].
We have verified (in simulations not shown here) that similar
behavior persists at lowerSNRs. In Fig. 5, we see EM-BG-
GAMP outperforming all algorithms except T-MSBL, which
does≈1 dB better for large values ofMN . Apparently, the prior
assumed by T-MSBL is a better fit to BR than the BG prior.

Admittedly, the near-dominant EM-BG-GAMP performance
observed forperfectly sparse signals in Figs. 1–6 does not
hold for all signal classes. As an example, Fig. 7 shows noisy
recovery NMSE for a Student’s-t signal with pdf

pX(x; q) , Γ((q+1)/2))√
2πΓ(q/2)

(
1 + x2

)−(q+1)/2
(41)

under thenon-compressibleparameter choiceq = 1.67 [14].
There, we see EM-BG-GAMP outperformed by SL0 and
genie-aided Lasso, although not by T-MSBL and BCS. In
fact, among the competing algorithms, those that performed
best for exactly sparse signals seem to do worst for this
non-compressible signal, and vice versa. We attribute these

7We ran SPGL1 in ‘BPDN’ mode:minx̂ ‖x‖1 s.t. ‖y −Ax‖2 ≤ σ, for
tolerancesσ2 ∈ {0.1, 0.2, . . . , 1.5} ×Mψ, and reported the lowest NMSE.

behaviors to a poor fit between the assumed and actual signal
priors, motivating future work on an EMGaussian-Mixture
GAMP with automatic selection of the mixture order.
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Fig. 7. NMSE for noisy recovery of a non-compressible Student’s-t signal.


