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Abstract—We study cooperative, opportunistic multiuser
scheduling using ARQ feedback in multi-cell downlink systems.
Adopting the cell breathing ICI control mechanism, we formu-
late the scheduling problem as an infinite horizon discounted
reward partially observable Markov decision process and study
two scenarios. When the cooperation between the cells is
asymmetric, we show that the optimal scheduling policy has
a greedy flavor and is simple to implement. Under symmetric
cooperation, we link the scheduling problem with restless
multiarmed bandit processes and propose a low complexity
index scheduling policy. The proposed index policy is essentially
Whittle’s index policy, if the scheduling problem is Whittl e
indexable. Extensive numerical experiments suggest that the
proposed policy is near-optimal.

I. I NTRODUCTION

Opportunistic multiuser scheduling [1], where system re-
sources are allocated to user(s) based on instantaneous chan-
nel conditions, is well suited to the cellular environment
thanks to the presence of the base station, a central coor-
dinating authority. It is understandable that the availability
of channel state information at the scheduler is crucial for
the success of opportunistic scheduling schemes. Much of
the literature on this topic make the unrealistic assumption of
readily available channel state information at the scheduler. In
reality, however, significant resources must be spent to obtain
channel state information. This leads us to the following
critical question:Are there efficient joint channel acquisi-
tion - multiuser scheduling schemes for cellular systems?
For single-cell downlink systems, this issue was recently
addressed in independent works [2] and [3]. In these works,
the authors model the fading channels usingi.i.d ON-OFF
Markov channels (Gilbert Elliott (GE) channels [4]) and show
that the memory in the fading channels can be exploited using
the ARQ1 feedback mechanism for efficient opportunistic
scheduling. Rarely in realistic scenarios do we encounter a
single-cell system, however. In a multi-cell system, transmis-
sion in one cell interferes with the transmissions in adjacent
cells. It follows that the channel states of users in a cell is
a function of transmissions and scheduling decisions in the
adjacent cells, effectively imparting a convoluted dependence
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1A standard in most upcoming wireless systems.

between the scheduling choices in neighboring cells. We now
face the question:How do we exploit the channel memory and
the ARQ feedback mechanism for opportunistic scheduling in
a multi-cell environment ?

We address this problem by following a two layered
approach: A well established inter-cell interference (ICI)
control mechanism is adopted and assumed to be in place.
On top of this layer, we optimize ARQ based multiuser
scheduling across the cells. We restrict our focus to two-
cell systems since our analysis can be readily extended to
multi-cell systems with the use of six-directional antennae at
the base stations [5].

By formulating the scheduling problem as an infinite hori-
zon discounted reward Partially Observable Markov Decision
Process (POMDP) [6], we study it under two scenarios:
asymmetric and symmetric cooperation between cells. Under
asymmetric cooperation, cell 1 makes scheduling decisions
without any regard to the scheduling decisions in cell 2, while
cell 2 adapts its decisions based on cell 1 behavior, so that
the cell breathing protocol is not violated. Such asymmetric
cooperation can model scenarios such as: cell 1 covers the
heart of a city with higher data rate requirements compared to
cell 2 that covers the suburbs. Under asymmetric cooperation,
we explicitly characterize the optimal scheduling policy and
show that it has agreedy flavorand that it can be imple-
mented by a simpleround-robinalgorithm. In the symmetric
cooperation case, cell 1 and cell 2 mutually cooperate,
effectively emulating a centralized scheduling problem. We
connect the symmetric case scheduling problem with Restless
Multiarmed Bandit processes (RMAB) [7] and study it in a
Whittle’s indexabilityframework [7]. Based on this study,
we propose an index policy which is, in fact,Whittle’s index
policy if the scheduling problem is Whittle indexable. The
proposed policy is simple to implement and has near-optimal
numerical performance.

II. PROBLEM SETUP

Consider a two-cell system. Time is slotted and the base
stations are the central controllers that control transmission
to the users within their respective cells, in each slot. The
fading coefficients between the base stations and the users
are modeled with memory, i.e., with two-state Markov chains.
The fading coefficients of the channels evolve synchronously
across time slots based on the Markov chain statistics. We
adopt thecell breathingprotocol [8]- [10] as the ICI control
mechanism. Consistent with [8], within each cell, we cluster
users into near and far users, based on the geometric distance
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between the users and their respective base stations. Let
Nj andFj denote the number of near users and far users,
respectively, in cellj. Only one user is scheduled per slot
per cell. Also, in each slot, if, in any cell, a far user is
scheduled, transmission takes place at powerP1, P1 > 0 and
the neighboring cell schedules a near user at the reduced
power P2, P2 < P1. This essentially aims to nullify the
multi-cell variant of thenear-far effect seen in single cell
systems. We can show that [11], under cell breathing, the
SINR channel (henceforth, simply the ‘channel’) of each user
can also be modeled asi.i.d Markov chains with ON/OFF
states. The two-state Markov channel is characterized by a
2× 2 probability transition matrix

P =

[

p 1− p
r 1− r

]

.

Herep denotes the probability that the channel evolves from
ON state to ON state in adjacent slots andr denotes the
probability that the channel evolves from OFF to ON state.
Throughout this work, we assume the fading coefficients, and
hence the SINR channels, are positively correlated, i.e.,p >
r.

A traditional ARQ based transmission is deployed in each
cell. That is, at the beginning of a time slot, the head of
line packet of the scheduled user is transmitted. If the packet
does not go through, i.e., it is not successfully decoded by
the user (occurs when the channel is in the OFF state),
a NACK is reported by the user at the end of the slot,
and the packet is retained at the head of the queue for
retransmission at a later time. If the packet does go through
(i.e., the ON state), an ACK is reported and the packet is
removed from the queue. For each successful transmission,
the corresponding base station accrues a reward1 and no
reward upon a failed transmission. This reward structure will
be further explained shortly. At the end of the slot, the base
stations of neighboring cells share their ARQ information.
Thus each cell has all the channel information available to
its neighbor, hence facilitating joint scheduling among the
cells. The performance metric that the cells aim to maximize
is the expected discounted reward over an infinite horizon,
defined below.

Expected Discounted Reward under PolicyA: Define the
belief value of useri as the probability that the channel
between useri and the corresponding base station is in the
ON state in the current slot. A stationary scheduling policy
A is a stationary mapping between the belief values of the
users and the near-far or far-near user pair scheduled in the
adjacent cells. Letπnj indicate the vector of belief values
of near users in cellj and πfj is similarly defined for far
users in cellj. Thus with{πn1 , πf1 , πn2 , πf2} as the current
system state, the expected discounted reward over an infinite
horizon, under a policyA, is given by

V (πn1 , πf1 , πn2 , πf2 ,A)

= R(πn1 , πf1 , πn2 , πf2 , (a, a))

+β E[V (T (πn1), T (πf1), T (πn2), T (πf2),A)], (1)

where (a, a) is the user pair scheduled under policyA in

the current slot. The expectation is over the belief values
T (πn1), T (πf1), T (πn2), T (πf2) andT (.) is the Markovian
belief evolution operator conditioned on the belief valuesand
the ARQ feedbacks from the previous slot. The discount
factor β ∈ (0, 1) gives greater weight to the immediate
reward than the future reward. Withnj indicating the set
of near users in cellj andfj similarly defined for the set of
far users, the expected immediate reward is given by

R(πn1 , πf1 , πn2 , πf2 , (a, a))

=

{

πn1(a) + πf2(a), if (a, a) ∈ (n1, f2)

πf1(a) + πn2(a), if (a, a) ∈ (f1, n2).
(2)

Optimal Stationary Policy: A stationary policy that maxi-
mizes the expected discounted reward is optimal. Thus, for
any state{πn1 , πf1 , πn2 , πf2}, the optimal stationary policy
is given by

A
∗ = argmax

A
V (πn1 , πf1 , πn2 , πf2 ,A) (3)

III. O PTIMAL SCHEDULING UNDER ASYMMETRIC

COOPERATION BETWEENCELLS

Consider a system where cell breathing is deployed by the
following asymmetric cooperation between the cells: cell 1
schedules transmission to its users without any regard to the
decisions in cell 2, while cell 2 schedules based on the user
group choice of cell 1, to conform with the cell breathing
protocol. Cell 1 is aware of this compromise made by cell
2 and therefore adopts the two state Markov model for the
channels of cell 1 users. Such an asymmetric cooperation can
result from scenarios such as (1) Cell 1 covers the heart of
a city with higher data rate requirements compared to cell
2, which covers the suburbs, (2) Sharing of ARQ feedback
information between the adjacent base stations is not mutual
due to, e.g., a partial link failure between the base stations,
(3) In the context of game theory, cell 1 is a selfish player
and cell 2 is a rule-abiding player.

Let πj denote the vector of belief values ofall users in cell
j. Thusπj = πn1∪πf1 . Let Â denote the greedy policy within
cell 1 with the mapping given by:π1 → a = argmaxi π

1(i).

Let Â
f

denote the greedy policy within the far-user group,

within cell 2. ThusÂ
f
: πf2 → argmaxi π

f2(i). Define the
greedy policyÂ

n
similarly for near users in cell 2. Define the

joint, two-cell scheduling policy{Â, Â
f
, Â

n
} as below: In cell

1, greedy policŷA is implemented in each slot, without any
regard to the cell breathing protocol. In cell 2, in each slot, if
policy Â in cell 1 scheduled a near user, cell 2 schedules a far

user by implementing policŷA
f
. Similarly, if cell 1 scheduled

a far user, cell 2 schedules a near user by implementing the
greedy policyÂ

n
within the near user group. We now report

our result on the optimal scheduling policy in the two-cell
downlink, under asymmetric cooperation.

Proposition 1. Under asymmetric cooperation, the policy

{Â, Â
f
, Â

n
} is optimal.

Proof outline:The proof proceeds by showing that, condi-
tioned on the class (near/far) of the user scheduled in cell 1,
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the scheduling decisions in cell 1 and cell 2 are decoupled.
Details are available in [11].

Note that the optimal policy{Â, Â
f
, Â

n
} is a variant of the

greedy policy and can be implemented using a simple round-
robin algorithm. Also, it can be shown that the knowledge
of the Markov channel parameters, i.e,p, r, is not required
for the implementation of the optimal policy. The reader is
referred to [11] for more details and discussion.

IV. SCHEDULING UNDER SYMMETRIC COOPERATION

BETWEEN CELLS - INDEX POLICY

A direct optimality analysis of the ARQ based scheduling
problem, with symmetric cooperation, appears very difficult
due to the complex relationship between the scheduling
decisions across space and time. We therefore establish a
connection between the scheduling problem and the restless
multiarmed bandit (RMAB) processes [7] and make use
of the established theory behind RMAB processes in our
analysis. A brief introduction to RMAB processes follows.

A. Restless Multiarmed Bandit Processes

RMAB processes are defined as a family of sequential
dynamic resource allocation problems in the presence of
several competing,independently evolvingprojects. They are
characterized by a fundamental trade-off between decisions
guaranteeing high immediate rewards versus those that sac-
rifice immediate rewards for better future rewards. In each
slot, a single project must be allocated the available system
resources. The state of the projects stochastically evolves
from the current time slot to the next time slot, depending
on the current state and the action taken.

Since a direct analysis of RMAB processes is traditionally
known to be hard, Whittle developed the notion ofindexa-
bility for RMAB processes and it is known (e.g., [12]) that
some RMAB’s satisfying this hard-to-establish property yield
to low complexity, index-type optimal scheduling policies.
We formally introduce Whittle’s indexability framework next:
Consider only one project of the RMAB. The scheduler in
each slot must either activate the project or let it stay idle. In
the former case a reward dependent on the state of the project
is accrued. This reward structure is the same as the one used
in the original RMAB. In the case of the idle decision, a
reward W for passivity is accrued. The goal of the scheduler
is to maximize the total discounted reward over an infinite
horizon. For a project stateπ, the value of W corresponding
to equal net rewards for activate and idle decisions is defined
as the indexI(π). Call the optimal activate/idle scheduling
policy as the W-subsidy policy. LetD(W ) be the set of states
under which a project would be kept idle under theW -
subsidy policy. LetS denote the state space of the project.
The project is indexable ifD(W ) increases monotonically
from ∅ to S asW increases from−∞ to ∞. The RMAB is
Whittle indexable if all the projects are indexable.

It can be shown that the two-cell scheduling policy under
symmetric cooperation is a general variant of the RMAB
processes [11]. In the rest of this section we perform a

Whittle’s indexability study of the scheduling problem and
using the structural results of this study, we derive an index
scheduling policy.

B. Indexability Analysis

Consider a single project made up of a near-far or a far-
near user pair. In each slot, the state of the project is givenby
the belief values of the channels of the users, i.e.,(π1, π2).
If the project is scheduled in a slot, i.e., if the users are
scheduled, the belief value evolves into one of the follow-
ing states:{(r, r), (r, p), (p, r), (p, p)} corresponding, respec-
tively, to ARQ feedbacks (NACK,NACK), (NACK,ACK),
(ACK,NACK) and (ACK,ACK) respectively. Recall thatp
andr are the elements of the probability transition matrix of
the Markov modeled channels withp > r.

DefineV a andV p as the total discounted rewards corre-
sponding to activate and idle decisions in the current slot and
optimal decisions in future slots. LetV denote the optimal
total discounted reward. Thus, withVxy := V (x, y),

V a(π1, π2) = π1 + π2 + β
(

π1π2Vpp + π1(1 − π2)Vpr

+(1− π1)π2Vrp + (1− π1)(1 − π2)Vrr

)

V p(π1, π2) = W + βV (T (π1), T (π2))

V (π1, π2) = max(V a(π1, π2), V
p(π1, π2)) (4)

where, recall,T (π) is the one-step Markov channel evo-
lution operator on the belief valueπ, conditioned on the
current decision. LetRI denote the region{(π1, π2);π1 ∈
[πss, 1], π2 ∈ [πss, 1]}, with πss = r

1−(p−r) denoting the
steady state ON-probability of the Markov channels. Let
RII denote the union of the regionsR1

II

.
= {(π1, π2);π1 ∈

[0, πss], π2 ∈ [πss, 2πss − π1]} andR2
II

.
= {(π1, π2);π2 ∈

[0, πss], π1 ∈ [πss, 2πss − π2]}. Let A be the set of states
(π1, π2) in which it is optimal to activate. LetP be the set
corresponding to optimal idle decision.

We first report the thresholdability properties of the
W -subsidy scheduling policy whenW is such that
V a(πss, πss) ≥ V p(πss, πss) and whenV a(πss, πss) <
V p(πss, πss). Proof details are available in [11].

Proposition 2. If W is such that V a(πss, πss) ≥
V p(πss, πss), then
(1) RI ∈ A
(2) Within regionRII , the threshold boundary is given by

the upper segment of the hyperbola

V a(π1, π2) = W + βV a(T (π1), T (π2))

where

V a(x1, x2)

= x1 + x2 + β
[

(1− x1)(1− x2)V (r, r)

+(1− x1)(x2)V (r, p)

+x1(1− x2)V (p, r) + x1x2V (p, p)
]

,

T (x) = x(p− r) + r, and upper segment indicates the
segment of the hyperbola that lies in the first quadrant
around the asymptotes.
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Proposition 3. If W is such that V a(πss, πss) <
V p(πss, πss), then

(1) (π1, π2) ∈ P , ∀π1 + π2 ≤ 2πss

(2) Within regionRI , the threshold boundary is given by
the upper segment of the hyperbola

V a(π1, π2) =
W

1− β
.

C. Index Policy

The thresholdability results of theW -subsidy policy and
hence the threshold boundaries reported above were obtained
using sufficient conditions that hold only in the shown
regions. A tighter analysis needed to characterize the optimal
W-subsidy policy in the whole state space appears intractable.
We therefore make a set of assumptions (A) on the proper-
ties of the optimalW -subsidy policy and derive an index
scheduling policy for the two-cell system. Our assumptions
are stated next.

(A0) The threshold boundaries reported in Propositions 2 and
3 in the restricted regions hold true in the entire state
space.

(A1) The threshold boundaries progressively move to the
right, i.e., the regionP progressively expands, asW
increases. This is essentially Whittle’s indexability.

An illustration of the extrapolated boundaries in comparison
with the established boundaries is available in [11].

We now classify the state space into four non-overlapping
regions. LetW0 be defined as the value ofW at which
V a(πss, πss) = V p(πss, πss). The state space is now classi-
fied as below:

• R1: (π1, π2) such thatπ1 + π2 ≤ 2r
• R2: Region between the boundaries{(π1, π2) : π1 +

π2 > 2r} and {(π1, π2) : V a(π1, π2)|W=W0
=

V p(π1, π2)W=W0
}. By definition of W0, the second

boundary passes through the steady state.
• R3: (π1, π2) such that(π1, π2) /∈ R1∪R2 andπ1+π2 <

2p
• R4: (π1, π2) such thatπ1 + π2 ≥ 2p

Under assumptions (A0) and (A1), asW increases from0
to 2r, the threshold boundary moves progressively outwards
within regionR1, with the boundary given by(π1, π2) such
thatπ1+π2 = W . AsW increases from2r toW0, the thresh-
old boundary progressively moves outward within regionR2,
with the boundary given by the extrapolation of the boundary
derived in Proposition 2, i.e.,(π1, π2) such thatV a(π1, π2) =
W + βV a(T (π1), T (π2)). WhenW increases fromW0 to
2p, the threshold boundary progressively moves outward
within R3 and the boundary is given from Proposition 3
by the convex curve:(π1, π2) such thatV a(π1, π2) =

W
1−β

.
When W increases from2p to 2, the threshold boundary
progressively moves outward within regionR4 with boundary
given by (π1, π2) such thatπ1 + π2 = W .

The index we employ in our policy is defined as follows:
For any state(π1, π2), the value ofW for which the threshold
boundary passes through(π1, π2) is the index of that state.
Note that if assumptions(A) were true, the index we defined

is the Whittle’s index. Thus, when(A) is true, the index
policy we propose is, in fact, the Whittle’s index policy .

Initialization
This step involves evaluating the quantities
V (p, p), V (p, r), V (r, r),W0 and identifying the regions
R1, . . . , R4. Details of this step are available in [11].

Index policy on belief vector π = (π1, . . . , πN )
(1) Within each user group (n1, f1, n2, f2), identify the
users that have the highest belief values. Call them
n∗

1, f
∗

1 , n
∗

2 andf∗

2 , respectively. It can be shown [11] that,
user pair(n∗

1, f
∗

2 ) has an index higher than any other user
pair from the composite groupn1×f2. Likewise, the user
pair (f∗

1 , n
∗

2) has higher index than any other pair from
f1 × n2. Thus it is sufficient to compare the indices of
user pairs(n∗

1, f
∗

2 ) and (f∗

1 , n
∗

2).
(2) Calculate the index of the states corresponding to
user pairs(n∗

1, f
∗

2 ) and(f∗

1 , n
∗

2). Index calculation is later
explained as a separate step.
(3) Schedule the user pair with the higher index.
(4) Receive ARQ feedback from the scheduled user pair.
(5) Update the belief values of all the users based on the
scheduling decisions and the ARQ feedback.
(6) Repeat the scheduling policy in the next time slot.

Index calculation routine
(1) Determine the region(R1, R2, R3, R4) in which
(π1, π2) belongs.
(2) Based on the identified region, identify the threshold
boundary from the discussion in Subsections B and C.
Table 1.
(3) Determine the value ofW for which the identified
threshold boundary passes through(π1, π2). This can
be accomplished as follows: For discretized values of
W = 0 : δW : 2, find the value ofW (call it W ∗) for
which the threshold boundary is closest to(π1, π2).
(4) W ∗ is the index of the user pair. ReturnW ∗ to the
index policyroutine.

V. NUMERICAL RESULTS AND DISCUSSION

We now proceed to report the numerical performance
of the proposed index policy. Table I reports the quantity
%subopt= Vopt−Vindex

Vopt
×100% whereVopt is the optimal infi-

nite horizon discounted reward andVindex is the reward under
the proposed index policy. The optimal policy is implemented
by an exhaustive search over all possibleN1×F2+F1×N2

decisions in each time slot. The policies are repeated for
increasing horizon lengths until convergence is reached. The
quantity%subopt quantifies the degree of sub-optimality of
the index policy. The very low values of%subopt suggests
that the index policy is near optimal.

To illustrate the advantage of using ARQ feedback for
scheduling, we compare the index policy performance with
two baseline cases:Vgenie andVrand in Table II.Vgenie is the
optimal reward in the genie-aided system defined as follows:
At the end of every time slot, the scheduler learns about the
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N1 = 2, F1 = 3, N2 = 2, F2 = 3

p r β %subopt

0.7638 0.3663 0.8013 0.0008%

0.9504 0.5462 0.8452 0.0002%

0.8476 0.4230 0.5358 0.0001%

0.7452 0.6356 0.8739 0.0031%

0.7825 0.5010 0.4170 0.0000%

0.5546 0.4580 0.3381 0.0001%

0.8536 0.6670 0.2880 0.0001%

0.6688 0.4065 0.7413 0.0002%

0.8947 0.3289 0.2060 0.0000%

0.5387 0.4922 0.7067 0.0007%

TABLE I
ILLUSTRATION OF THE NEAR OPTIMAL PERFORMANCE OF THE

PROPOSED INDEX POLICY. EACH ROW CORRESPONDS TO RANDOMLY

GENERATED SYSTEM PARAMETERS(p, r, AND β) AND INITIAL BELIEF

VALUES.

N1 = 2, F1 = 3, N2 = 2, F2 = 3

p r β %ARQgain

0.7397 0.5790 0.8436 93.5592%

0.7600 0.4697 0.1551 98.1181%

0.7058 0.5223 0.7954 89.0940%

0.7801 0.6404 0.9649 93.6788%

0.7994 0.3420 0.2678 97.9097%

0.9919 0.2318 0.4784 94.2659%

0.6064 0.5657 0.2762 99.3912%

0.8446 0.5150 0.3688 98.6200%

0.7051 0.5944 0.5793 97.2564%

0.9631 0.7544 0.3493 98.7781%

TABLE II
ILLUSTRATION OF THE SIGNIFICANCE OF USINGARQ FEEDBACK IN

OPPORTUNISTIC SCHEDULING. EACH ROW CORRESPONDS TO

RANDOMLY GENERATED SYSTEM PARAMETERS(p, r, AND β) AND

INITIAL BELIEF VALUES .

channel state ofeveryuser in the system in that time slot. The
optimal scheduling policy in the genie aided system is greedy,
i.e., in each slot schedule the legitimate user pair that hasthe
highest sum of belief values.Vrand is the reward accrued by a
policy that ignores any channel feedback from the users and
schedules randomly. The quantity%ARQgain= Vindex−Vrand

Vgenie−Vrand

quantifies the gain in reward when the ARQ feedback is used
in scheduling. The high values of%ARQgain in Table II
underlines the significance of exploiting ARQ feedback in
our scheduling setup. More comprehensive numerical results
illustrating the near optimality of the proposed index policy
and the gains associated with ARQ based scheduling can be
found in [11].

VI. CONCLUSION

We studied ARQ based cooperative scheduling in multi-
cell downlink system. When the cooperation between the
cells is asymmetric, the optimal scheduling policy has a
greedy flavor and is simple to implement. Under symmetric
cooperation, however, a direct optimality analysis appears
difficult. We formulated the scheduling problem as a more
general variant of the restless multiarmed bandit processes
and studied it from the perspective of Whittle indexability.
Whittle indexability is an important condition that is known
to predispose the Whittle’s index policy towards optimality
in various RMAB processes. Founded on the indexability
analysis of the two-cell scheduling problem, we proposed an
easy-to-implement index policy. Upon Whittle indexability
of the scheduling problem, the proposed policy is essentially
the Whittle’s index policy. Extensive numerical experiments
suggest that the proposed policy is near optimal and that
significant gains can be realized by exploiting the memory
in the fading channels.
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