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Abstract—We  study cooperative, opportunistic multiuser between the scheduling choices in neighboring cells. We now
scheduling using ARQ feedback in multi-cell downlink systens.  face the questiortdow do we exploit the channel memory and

Adopting the cell breathing ICI control mechanism, we formu-  the ARQ feedback mechanism for opportunistic scheduling in
late the scheduling problem as an infinite horizon discounts . .
a multi-cell environment ?

reward partially observable Markov decision process and sidy ) )
two scenarios. When the cooperation between the cells is We address this problem by following a two layered

asymmetric, we show that the optimal scheduling policy has approach: A well established inter-cell interference YICI
a greedy flavor and is simple to implement. Under symmetric control mechanism is adopted and assumed to be in place.

cooperation, we link the scheduling problem with restless On top of this layer, we optimize ARQ based multiuser
multiarmed bandit processes and propose a low complexity ’

index scheduling policy. The proposed index policy is essgally scheduling acr.oss the cells. We restrict our.focus to two-
Whittle’s index policy, if the scheduling problem is Whittle ~Cell systems since our analysis can be readily extended to
indexable. Extensive numerical experiments suggest thathe multi-cell systems with the use of six-directional antema

proposed policy is near-optimal. the base stations [5].
By formulating the scheduling problem as an infinite hori-
|. INTRODUCTION zon discounted reward Partially Observable Markov Denisio

Opportunistic multiuser scheduling [1], where system rgrocess (POMDP) [6], we study it under two scenarios:

. ﬁsymmetric and symmetric cooperation between cells. Under
sources are allocated to user(s) based on instantaneaus cha . . . .
fi\symmetnc cooperation, cell 1 makes scheduling decisions

nel conditions, is well suited to the cellular environment. . - . .
: without any regard to the scheduling decisions in cell 2 Jevhi
thanks to the presence of the base station, a central cogr: ; - i
- X . cell 2 adapts its decisions based on cell 1 behavior, so that
dinating authority. It is understandable that the avalitybi . . . .
: . ) 7~ .the cell breathing protocol is not violated. Such asymruoetri
of channel state information at the scheduler is crucial for

o ) cooperation can model scenarios such as: cell 1 covers the
the success of opportunistic scheduling schemes. Much, 0 . L .
; . . o - heart of a city with higher data rate requirements compared t
the literature on this topic make the unrealistic assunmpbio

: : ; . cell 2 that covers the suburbs. Under asymmetric cooperatio
readily available channel state information at the schexdLri . : . y . P
. o . we explicitly characterize the optimal scheduling policyda
reality, however, significant resources must be spent taiobt ; . :
. . . - show that it has areedy flavorand that it can be imple-
channel state information. This leads us to the followin

L S - L VNG ented by a simpleound-robinalgorithm. In the symmetric
critical question:Are there efficient joint channel acquisi- .
cgoperation case, cell 1 and cell 2 mutually cooperate,

tion - multiuser scheduling schemes for cellular systems . : . .
. . L ffectively emulating a centralized scheduling problene W
For single-cell downlink systems, this issue was recent . . .
onnect the symmetric case scheduling problem with Restles

addressed in independent works [2] and [3]. In these Worlﬁultiarmed Bandit processes (RMAB) [7] and study it in a

the authors model the fading channels usingl ON-OFF AR . .
Markov channels (Gilbert Elliott (GE) channels [4]) and sho Whittles mdexgbmtyframework_ [7].' Based on tl‘]IS. study,
we propose an index policy which is, in fadt/hittle’s index

that the memory in the fading channels can be exploited usinglicy if the scheduling problem is Whittle indexable. The

the ARQ feedback mechanism for efficient opportunistigJ Y : .
) . - . roposed policy is simple to implement and has near-optimal
scheduling. Rarely in realistic scenarios do we encounterﬁa

) . . Umerical performance.
single-cell system, however. In a multi-cell system, traiss
sion in one cell interferes with the transmissions in adjace
cells. It follows that the channel states of users in a cell is Il. PROBLEM SETUP
a function of transmissions and scheduling decisions in the

. X . . Consider a two-cell system. Time is slotted and the base
adjacent cells, effectively imparting a convoluted de o y

stations are the central controllers that control transimis
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1A standard in most upcoming wireless systems. users into near and far users, based on the geometric distanc



between the users and their respective base stations. thet current slot. The expectation is over the belief values
N; and F; denote the number of near users and far use®(7"), T (z/1), T(7"2), T (x/2) and T'(.) is the Markovian
respectively, in cellj. Only one user is scheduled per slobelief evolution operator conditioned on the belief valaad

per cell. Also, in each slot, if, in any cell, a far user isthe ARQ feedbacks from the previous slot. The discount
scheduled, transmission takes place at poier™ > 0 and factor 3 € (0,1) gives greater weight to the immediate
the neighboring cell schedules a near user at the reducediard than the future reward. With; indicating the set
power P», P, < P;. This essentially aims to nullify the of near users in celf and f; similarly defined for the set of
multi-cell variant of thenear-far effect seen in single cell far users, the expected immediate reward is given by
systems. We can show thaF [11], un‘der cell ,breathing, the R(=™ 7/t 7", 72 (a, )

SINR channel (henceforth, simply the ‘channel’) of eactruse
can also be modeled as.d Markov chains with ON/OFF _ (@) + 72 (a), if (a,a) € (n1, fo) @)
states. The two-state Markov channel is characterized by a 7@ +72(a), if (a,a) € (f1,n2).

2 x 2 probability transition matrix Optimal Stationary PolicyA stationary policy that maxi-
p o_ P 1—p mizes the expected discounted reward is optimal. Thus, for
o 1=r| any state{7™, 7/ 7"z 7f2} the optimal stationary policy

Herep denotes the probability that the channel evolves fro}ﬁ given by

ON state to ON state in adjacent slots andienotes the @ = argmaxV(z™, 1 7" 1f2 @) (3)
probability that the channel evolves from OFF to ON state. a

Throughout this work, we assume the fading coefficients, and |||. OpTIMAL SCHEDULING UNDERASYMMETRIC
hence the SINR channels, are positively correlated, p.e-, COOPERATION BETWEENCELLS

T.

A traditional ARQ based transmission is deployed in eacrEI
cell. That is, at the beginning of a time slot, the head Q
line packet of the scheduled user is transmitted. If the ﬂlacla
does not go through, i.e., it is not successfully decoded
the user (occurs when the channel is in the OFF stat
a NACK is reported by the user at the end of the slo
and the packet is retained at the head of the queue

Consider a system where cell breathing is deployed by the
lowing asymmetric cooperation between the cells: cell 1
chedules transmission to its users without any regardeto th
ecisions in cell 2, while cell 2 schedules based on the user
oup choice of cell 1, to conform with the cell breathing
otocol. Cell 1 is aware of this compromise made by cell
and therefore adopts the two state Markov model for the

L ) annels of cell 1 users. Such an asymmetric cooperation can
retransmission at a later time. If the packet does go throu

. _ esult from scenarios such as (1) Cell 1 covers the heart of
(ie., the ON state), an ACK is reported and the packet.éscity with higher data rate requirements compared to cell
removed from the queue. For each successful transmissign, .1 covers the suburbs (2) Sharing of ARQ feedback
the corresponding base station accrues a rewashd no .’ '

; o . information between the adjacent base stations is not rhutua
reward upon a failed transmission. This reward structute w

; Yue to, e.g., a partial link failure between the base station
be further explained shortly. At the end of the slot, the ba §) In the context of game theory, cell 1 is a selfish player
stations of neighboring cells share their ARQ informatio '

. A . nd cell 2 is a rule-abiding player.
Thus each cell has all the channel information available t0| o+ j qenote the vector of belief values aif users in cell

its neighbor, hence facilitating joint scheduling amoneg th.. Thusri — 77 Un/t . Letd denote the greedy policy within
cells. The performance metric that the cells aim to maximi Il 1 with the mapping given byr! — a = arg max, 7' (i)

is the expected discounted reward over an infinite horizon, = . ; o
defined below. Let @ denote the greedy policy within the far-user group,
. N .

Expected Discounted Reward under PolityDefine the Within cell 2. Thus@™ : w2 — argmax; 7/2(i). Define the
belief value of useri as the probability that the channelgreedy policyd similarly for near users in cell 2. Define the
between usef and the corresponding base station is in thgint, two-cell scheduling policjﬁ, @f, @"} as below: In cell
ON state in the current slot. A stationary scheduling policy, greedy policﬂ is implemented in each slot, without any
@ is a stationary mapping between the belief values of thegard to the cell breathing protocol. In cell 2, in each,sfot
users and the near-far or far-near user pair scheduled in giglicy @ in cell 1 scheduled a near user, cell 2 schedules a far
adjacent cells._ Letr™s indicate_the_ vector of pelief values ooy by implementing policgf. Similarly, if cell 1 scheduled
of near users n celj_and ij 'J? sw:ﬂarljy defined for far ¢y user, cell 2 schedules a near user by implementing the
users in cellj. Thus with{z™, /1,72, 72 } as the current o0y bolicyd™ within the near user group. We now report

Eys.tem statg, the exlpectgd d_lscoubnted reward over an mf"ﬁhr result on the optimal scheduling policy in the two-cell
orizon, under a polic, is given by downlink, under asymmetric cooperation.

n fi n f . . . .
V(r", alt, 7", w2 Q) Proposition 1. Under asymmetric cooperation, the policy
= R(z™,7" 7" 72 (a,q)) {a, @f,@n} is optimal.

ni f1 no f2
BBV (™), T (), T (™), T(x), D), (1) Proof outline: The proof proceeds by showing that, condi-

where (a,a) is the user pair scheduled under poli@yin tioned on the class (near/far) of the user scheduled in ¢ell 1



the scheduling decisions in cell 1 and cell 2 are decouplétfhittle’s indexability study of the scheduling problem and
Details are available in [11]. using the structural results of this study, we derive annde

Note that the optimal policy@, @f,@n} is a variant of the scheduling policy.
greedy policy and can be implemented using a simple round-
robin algorithm. Also, it can be shown that the knowledgB. Indexability Analysis

of the Markov channel parameters, iz,r, is not required  Consider a single project made up of a near-far or a far-
for the implementation of the optimal policy. The reader ifear user pair. In each slot, the state of the project is diyen
referred to [11] for more details and discussion. the belief values of the channels of the users, {#;, ).
If the project is scheduled in a slot, i.e., if the users are
IV. SCHEDULING UNDER SYMMETRIC COOPERATION scheduled, the belief value evolves into one of the follow-
BETWEEN CELLS - INDEX PoLICY ing states{(r,r), (r,p), (p,r), (p,p)} corresponding, respec-

A direct optimality analysis of the ARQ based schedulinﬁjvely' to ARQ feedbacks (NACK,NACK), (NACK,ACK),

problem, with symmetric cooperation, appears very difficlfACK.NACK) and (ACK,ACK) respectively. Recall thap

due to the complex relationship between the scheduliﬁ@dr are the elements of the probability transition matrix of
decisions across space and time. We therefore establisH1& Mgrkovamodelid channels with> 7.

connection between the scheduling problem and the restlesD€fine V¢ and V* as the total discounted rewards corre-
multiarmed bandit (RMAB) processes [7] and make usponding to activate and idle decisions in the current sidt a
of the established theory behind RMAB processes in ogptlmgl decisions in future slots._ Lét denote the optimal
analysis. A brief introduction to RMAB processes follows. fotal discounted reward. Thus, with., := V (z,y),

V(my,m2) = m+m+ ﬂ(ﬁmvpp + (1 —7m2)Vyr
A. Restless Multiarmed Bandit Processes

RMAB processes are defined as a family of sequential = m)meVrp 4 (1= m)(1 = MWM)
dynamic resource allocation problems in the presence &f'(m1,m2) = W + V(T (m),T(72))
several competingndependently evolvingrojects. They are  V(my, 1) = max(V(my,m), VP (7, 72)) (4)
characterized by a fundamental trade-off between dedasion )
guaranteeing high immediate rewards versus those that S\gE_ere, recall,7'(r) is the pne-step Marko_\{ channel evo-
rifice immediate rewards for better future rewards. In eaéHt'On Ope“’f‘“_’f on the belief value, C(_)ndmoned on the
slot, a single project must be allocated the available ayst&UeNt decision. Lef?; denote the regrlor{(m,m)_; m €
resources. The state of the projects stochastically esolN@ss 1T € [mss, 1]}, with 7y = —7—5 denoting the
from the current time slot to the next time slot, dependingje2dy state ON-probability of the Markov channels. Let
on the current state and the action taken. 11 denote the union of the reg|orﬁ2}1 = A{(m,m);m €
Since a direct analysis of RMAB processes is traditionall (s, T2 € [Mas, 2mss — m]} @nd Ry = {(m1,m2);m2 €
known to be hard, Whittle developed the notioniofiexa- > Tssl; M1 € [ss, 2755 — m2]}. Let A be the set of states
bility for RMAB processes and it is known (e.g., [12]) that71+ 72) in which it is optimal to activate. LeP be the set
some RMAB's satisfying this hard-to-establish propersidi corresp_ondlng to optimal idle deC'S'c.m' .
to low complexity, index-type optimal scheduling policies Wwe f'.rSt report the thregholdablhty pr.opert|es of the
We formally introduce Whittle’s indexability framework xie W;—sub3|dy schedpuhng policy - wheni ;S such that
Consider only one project of the RMAB. The scheduler i (Tss:Tss) = VP (s, mss) and whenVe (my,, mos) <
each slot must either activate the project or let it stay .idie V?(ss, mss ). Proof details are available in [11].
the former case a reward dependent on the state of the proj@gbposition 2. If W is such that V@(m, mes) >
is accrued. This reward structure is the same as the one usgd(r,,, r,), then
in the original RMAB. In the case of the idle decision, 1) R, ¢ A
reward W for passivity is accrued. The goal of the schedulgb) within region R;;, the threshold boundary is given by
is to maximize the total discounted reward over an infinite  the upper segment of the hyperbola
horizon. For a project stater, the value of W corresponding
to equal net rewards for activate and idle decisions is define Vi(m,m) = W+ BVUT(m), T (7))
as the indexI(r). Call the optimal activate/idle scheduling where
policy as the W-subsidy policy. LEX(W) be the set of states

under which a project would be kept idle under thi- V1, w2)
subsidy policy. LetS denote the state space of the project. = x1+w9+ [3[(1 —x1)(1 —22)V(r,7)
The project is indexable iD(W) increases monotonically +(1 = z1)(22)V (1, p)

from () to S as W increases from-oco to co. The RMAB is
Whittle indexable if all the projects are indexable. ta1(1—z2)V(pr) + 2122V (p,p)],

It can be shown that the two-cell scheduling policy under T'(z) = z(p — r) + r, and upper segment indicates the
symmetric cooperation is a general variant of the RMAB  segment of the hyperbola that lies in the first quadrant
processes [11]. In the rest of this section we perform a around the asymptotes.



Proposition 3. If W is such that V%(m.,mss) < is the Whittle’s index. Thus, whefA) is true, the index
VP(7ss,mss), then policy we propose is, in fact, the Whittle’s index policy .
(1) (m,m2) € P, Vmy + mo < 2w L
(2) Within region R;, the threshold boundary is given byl Initialization

W Vip,p),V(p,r),V(r,r), Wy and identifying the regiong
Vo(m,m) = 5 Ry,..., R,. Details of this step are available in [11].
Index policy on belief vector m = (71,...,7n)
C. Index Policy (1) Within each user groupn(, fi,n2, f2), identify the

. . . users that have the highest belief values. Call them
The thresholdability results of thd -subsidy policy and n, f* s and f3, respectively. It can be shown [11] that,

hence the threshold boundaries reported above were obtaine S ; .
. . . . user pair(ny, f5) has an index higher than any other user
using sufficient conditions that hold only in the shown "~ : Lo
: . . . .| pair from the composite group, x f». Likewise, the user
regions. A tighter analysis needed to characterize thengpbti air (f,n3) has higher index than any other pair from
W-subsidy policy in the whole state space appears intréctah b " 1’7}|'2hus it is gsuf'ficient io com a¥e the ir?dices Lt
We therefore make a set of assumptions (A) on the proparlljlSer nQa.irs( « f£2) and (fF,n%) P
ties of the optimall¥-subsidy policy and derive an index pairsiny, /2 J1:M2)-

scheduling policy for the two-cell system. Our assumptions(2) Calculate the index of the states corresponding) to

are stated next. user pairdnji, fi) and(f;, n%). Index calculation is later

. . . explained as a separate step.
(A0) Th_e threshold_ boundar_les reported m_Proposmo_nst aN (3) Schedule the user pair with the higher index.
3 in the restricted regions hold true in the entire stal

e(4) Receive ARQ feedback from the scheduled user pair.
space. i , (5) Update the belief values of all the users based on |the
(A1) The threshold boundaries progressively move to thescheduling decisions and the ARQ feedback.

right, i.e., the regiori> progressively expands, d¥ | @) Repeat the scheduling policy in the next time slot.
increases. This is essentially Whittle’s indexability.

An illustration of the extrapolated boundaries in compzmis | NdeX calcul_atlonhroutlng i which
with the established boundaries is available in [11]. (1) Deti”?'”e the region(Ry, Ry, Rs, Ra) In whic
We now classify the state space into four non-overlapping ™!’ m2) belongs.

regions. Letl, be defined as the value d¥ at which 2) Based on the identified region, identify the threshg
V(1ys, Tes) = VP (mes, mss). The state space is now classi boundary from the discussion in Subsections B and|C.

fied as below: Te? blg 1 ine the value ofF” for which the identified
« Ri: (m1,m) such thatr, + 7 < 2r (3) Determine the value o or whic e identifie

: ; . . threshold boundary passes through, ). This can
» [i;: Region between the boundl?né&n,@) ™M T | pe accomplished as follows: For discretized values| of
Ty > 2T} and {(7T177T2) Vv (7T1,7T2)|W:W0 =

_— W =0 : dw : 2, find the value ofiW (call it W*) for
VP(my, m2)w=w, }- By definition of Wy, the second . .
boundary passes through the steady state. which the threshold boundary is closest(iq , 72).

. (4) W* is the index of the user pair. Retuiiy* to the
. g;; (71'1,71'2) such thai(m,m) ¢ R1UR5 and7T1—|—7T2 < index pOlicerUtine.

e Ry (m,m2) such thatry + mo > 2p

Under assumptions (A0) and (A1), &8 increases fronf
to 2r, the threshold boundary moves progressively outwards
within region Ry, with the boundary given by, m3) such We now proceed to report the numerical performance
thatm, +m2 = W. As W increases fromr to Wy, the thresh- of the proeosed index policy. Table | reports the quantity
old boundary progressively moves outward within regityy  %subopt %ﬁ“dx x 100% whereV, is the optimal infi-
with the boundary given by the extrapolation of the boundanjte horizon discounted reward a4« is the reward under
derived in Proposition 2, i.e(sr;, m) such thaf/®(my, m) = the proposed index policy. The optimal policy is implemente
W + V(T (m), T (m2)). WhenW increases fromi¥, to by an exhaustive search over all possiblex F; + F x N
2p, the threshold boundary progressively moves outwadkcisions in each time slot. The policies are repeated for
within R3 and the boundary is given from Proposition 3ncreasing horizon lengths until convergence is reachéd. T
by the convex curvef{r, o) such thatV*(my, ) = %. quantity %subopt quantifies the degree of sub-optimality of
When W increases fron2p to 2, the threshold boundary the index policy. The very low values ¢tsubopt suggests
progressively moves outward within regidh with boundary that the index policy is near optimal.
given by (7, m) such thatry + m = W. To illustrate the advantage of using ARQ feedback for

The index we employ in our policy is defined as followsscheduling, we compare the index policy performance with
For any statér, 72), the value ofi¥ for which the threshold two baseline case$;enic andViang in Table II. Vgenie is the
boundary passes throudh, ) is the index of that state. optimal reward in the genie-aided system defined as follows:
Note that if assumption&4) were true, the index we definedAt the end of every time slot, the scheduler learns about the

o

V. NUMERICAL RESULTS AND DISCUSSION



N1=2, F1=3, N2=2, F2=3

P r B8 Y%subopt
0.7638 0.3663 0.8013 0.0008%
0.9504 0.5462 0.8452 0.0002%
0.8476 0.4230 0.5358 0.0001%
0.7452 0.6356 0.8739 0.0031%
0.7825 0.5010 0.4170 0.0000%
0.5546 0.4580 0.3381 0.0001%
0.8536 0.6670 0.2880 0.0001%
0.6688 0.4065 0.7413 0.0002%
0.8947 0.3289 0.2060 0.0000%
0.5387 0.4922 0.7067 0.0007%

TABLE |

ILLUSTRATION OF THE NEAR OPTIMAL PERFORMANCE OF THE
PROPOSED INDEX POLICYEACH ROW CORRESPONDS TO RANDOMLY
GENERATED SYSTEM PARAMETERSp, 7, AND 3) AND INITIAL BELIEF
VALUES.

N1=2 F1=3, N2=2, F2=3

P r B8 %ARQgain
0.7397 0.5790 0.8436 93.5592%
0.7600 0.4697 0.1551 98.1181%
0.7058 0.5223 0.7954 89.0940%
0.7801 0.6404 0.9649 93.6788%
0.7994 0.3420 0.2678 97.9097%
0.9919 0.2318 0.4784 94.2659%
0.6064 0.5657 0.2762 99.3912%
0.8446 0.5150 0.3688 98.6200%
0.7051 0.5944 0.5793 97.2564%
0.9631 0.7544 0.3493 98.7781%

TABLE Il

ILLUSTRATION OF THE SIGNIFICANCE OF USINGARQ FEEDBACK IN
OPPORTUNISTIC SCHEDULINGEACH ROW CORRESPONDS TO
RANDOMLY GENERATED SYSTEM PARAMETERYp, 7, AND [3) AND
INITIAL BELIEF VALUES .

channel state adveryuser in the system in that time slot. The

VI. CONCLUSION

We studied ARQ based cooperative scheduling in multi-
cell downlink system. When the cooperation between the
cells is asymmetric, the optimal scheduling policy has a
greedy flavor and is simple to implement. Under symmetric
cooperation, however, a direct optimality analysis appear
difficult. We formulated the scheduling problem as a more
general variant of the restless multiarmed bandit prosesse
and studied it from the perspective of Whittle indexability
Whittle indexability is an important condition that is know
to predispose the Whittle’s index policy towards optimalit
in various RMAB processes. Founded on the indexability
analysis of the two-cell scheduling problem, we proposed an
easy-to-implement index policy. Upon Whittle indexalyilit
of the scheduling problem, the proposed policy is esséyntial
the Whittle’s index policy. Extensive numerical experirtgen
suggest that the proposed policy is near optimal and that
significant gains can be realized by exploiting the memory
in the fading channels.
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