Compressive Imaging using Approximate Message Passing and a Markov-Tree Prior

Subhojit Som, Lee C. Potter, and Philip Schniter

Department of Electrical and Computer Engineering
The Ohio State University

Nov 8, 2010

The Compressive Imaging Problem

Linear observation of a sparse signal:

$$y = \Phi x + w = \Phi \Psi \theta + w$$
.

- $\Phi \in \mathbb{R}^{M \times N}$, a known measurement matrix.
- $\mathbf{\Psi} \in \mathbb{R}^{N \times N}$, an orthonormal basis.
- ▶ Sparse: $\theta = \Psi^T x$ has K < M non-zero coefficients.
- ▶ Underdetermined when M < N.
- $\boldsymbol{w} \in \mathbb{R}^M$ is AWGN $\sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}_M)$.

Our aim is to recover the image x from observation y.

Quadtree Structure in Wavelet Transform of Natural Images

Persistence across scales: a large child coefficient usually has a large parent coefficient.

Hidden Markov Tree Model for Wavelet Coefficients

- ▶ Indicator vector $s \in \{0,1\}^N$ denotes activity pattern.
- ▶ Wavelet coefficients θ_n are distributed independently given activity variable s_n :

$$p(\theta_n|s_n) = s_n \mathcal{N}(\theta_n; 0, \sigma_n^2) + (1 - s_n)\delta(\theta_n).$$

- ▶ The indicator variables are modeled as Markov tree p(s).
 - Markov tree is specified by parent to child state transition matrices A_n and activity priors of the root $p(s_0 = 1)$.

$$A_n = \begin{bmatrix} p_n^{0 \to 0} & 1 - p_n^{0 \to 0} \\ 1 - p_n^{1 \to 1} & p_n^{1 \to 1} \end{bmatrix}$$

Assume that the transition matrix A_j and variance σ_j^2 are constant at any scale but vary across scales.

[Crouse, Nowak, Baraniuk 1998; Romberg, Choi, Baraniuk 2001]

Hidden Markov Tree Model

Reconstruction w/ Probabilistically Structured Sparsity

- ► Markov-chain Monte Carlo (MCMC):
 - ► Markov random field (MRF) [Wolfe, Godsill, Ng 2004]
 - ► Markov tree [He, Carin 2009]

Drawbacks: slow convergence and difficulty in detecting convergence.

- ▶ Methods that iterate matching pursuit or ℓ_1 -optimization with MAP sparsity-pattern detection:
 - ► Markov tree [Duarte, Wakin, Baraniuk 2008]
 - ► MRF [Cevher, Duarte, Hedge, Baraniuk 2008]

Drawback: slow and ad hoc.

- ► Variational Bayes:
 - ► Markov tree [He, Chen, Carin 2010]

Drawback: performance not always satisfactory

- ► Turbo reconstruction based on AMP:
 - ► Markov chain [Schniter 2010]

Factor Graph Representation

Turbo Reconstruction

Inference problem can be tackled by *splitting* it into two sub-problems and iterating between them

- ▶ Reminiscent of noncoherent turbo equalization.
- ▶ The sparsity pattern equalization (SPE) block solves the inference problem using the observation structure (linear observation model).
- ▶ The sparsity pattern decoding (SPD) block solves the inference problem using the support structure (Markov model).

[Schniter 2010]

Message Passing between SPE and SPD

- Message passing within SPE is done via Approximate
 Message Passing (AMP). [Donoho, Maleki, Montanari 2009]
- ▶ SPD is done on HMT and forward-backward algorithm gives exact posterior.
- ▶ Beliefs on the indicator variables s_n are exchanged between these two blocks.

Gaussian Messages from g_m to x_n

$$\nu_{g_m \to x_n}(x_n) \propto \int_{\{x_q\}_{q \neq n}} \mathcal{N}(y_m; A_{mn} x_n + \sum_{q \neq n} A_{mq} x_q, \sigma_w^2) \prod_{q \neq n} \nu_{x_q \to g_m}(x_q)$$

$$\nu_{g_m \to x_n}(x_n) = \mathcal{N}\left(x_n; \frac{z_{mn}}{A_{mn}}, \frac{c_{mn}}{|A_{mn}|^2}\right)$$

$$z_{mn} = y_m - \sum_{q \neq n} A_{mq} \mu_{mq} \quad \text{and} \quad c_{mn} = \sigma_w^2 + \sum_{q \neq n} A_{mq}^2 \nu_{mq}$$

Non-Gaussian Messages from x_n to g_m

- Outgoing message is product of incoming messages.
- ▶ Computation of means and variances suffice.

Message Update Complexity

- ▶ Message update complexity: MN updates of $\mathcal{O}(N)$ or $\mathcal{O}(M)$ corresponding to MN edges.
- ▶ Use two approximations:
 - ▶ Apply uniform variance approximations, e.g., $c_n \approx c_{mn}$.
 - Taylor series is used to approximate the deviations of messages across outgoing edges from the average message.
- ▶ These approximatations reduce the algorithm complexity to $\mathcal{O}(MN)$.
 - ▶ For subsampled DFT measurement matrix the complexity is $\mathcal{O}(N \log N)$.

Estimating Model Parameters

- ▶ Hyperpriors are assigned to model parameters σ_j , σ_w , $p_j^{0\to 0}$, $p_j^{1\to 1}$ at j^{th} scale and the probability p_0^1 that 0^{th} scale coefficients are active.
 - ▶ Gamma prior is assumed for the precision $\lambda_j = 1/\sigma_j^2$:

$$\operatorname{Gam}(\lambda_j) = \frac{1}{\Gamma(a_j)} b_j^{a_j} \lambda_j^{a_j - 1} \exp(-b_j \lambda).$$

▶ Beta prior is assumed for activity and transition prior parameters p_j :

Beta
$$(p_j) = \frac{\Gamma(c_j + d_j)}{\Gamma(c_j)\Gamma(d_j)} p_j^{c_j - 1} (1 - p_j)^{d_j - 1}.$$

- ▶ At the end of every turbo iteration, the model is updated with the mean of the posteriors (MMSE estimates) of these parameters.
 - ▶ The MMSE estimates of x_n and s_n are used to obtain the posterior.

Hyperpriors on Model Parameters

Simulation Results: M = 5000, N = 16384

Comparison with Existing Methods

Reconstruction from M=5000 observations. The images are of size 128×128 (i.e., N=16384).

Comparison with Existing Methods

Average Normalized Mean Squared Error (NMSE) for 20 categories 128×128 images (i.e., N=16384) from M=5000 observations. In each category there are 30 images. [http://research.microsoft.com/en-us/projects/objectclassrecognition]

Comparison with Existing Methods

Average computation time for 20 categories 128×128 images (i.e., N=16384) from M=5000 observations. In each category there are 30 images.

Summary on Comparison with Existing Methods

Algorithm	Computation Time (sec)	NMSE (dB)
CoSaMP	859	-10.13
ModelCS	1205	-15.10
Variational Bayes	107	-19.04
MCMC	742	-20.10
Turbo	53	-20.31

Table: Average computation time and Normalized Mean Squared Error (NMSE) from 584 natural images of size 128×128 ; N = 16384, M = 5000.

Conclusions

- We apply turbo reconstruction algorithm based on approximate message passing on hidden Markov tree modeled structured sparse signals.
- ▶ We propse to estimate the model parameters from the measured data.
- ▶ We apply the algorithm on natural images and demonstrate that it performs better than the existing algorithms in terms of both accuracy and computation time.