Compressive Imaging using Approximate
Message Passing and a Markov-Tree Prior

Subhojit Som, Lee C. Potter, and Philip Schniter

Department of Electrical and Computer Engineering
The Ohio State University

Nov 8, 2010



The Compressive Imaging Problem

Linear observation of a sparse signal:

v

® ¢ RM*N | 3 known measurement matrix.

v

¥ ¢ RV*N an orthonormal basis.

v

Sparse: @ = WTx has K < M non-zero coefficients.
Underdetermined when M < N.
w € RM is AWGN ~ N(0,021y).

v

v

Our aim is to recover the image x from observation y.



Quadtree Structure in Wavelet Transform of Natural
Images

Persistence across scales: a large child coefficient usually has a
large parent coefficient.




Hidden Markov Tree Model for Wavelet Coefficients

v

Indicator vector s € {0,1}" denotes activity pattern.

v

Wavelet coefficients 6,, are distributed independently given
activity variable s,:

P(On)5n) = 52N (0,:0,02) + (1 — 5,)5(6,,).

v

The indicator variables are modeled as Markov tree p(s).

» Markov tree is specified by parent to child state transition
matrices A,, and activity priors of the root p(sgp = 1).

4 = p(r)lao 1— p(r)lao
n 1— prll—>1 p’}L—ﬂ

Assume that the transition matrix A; and variance o2 are

J
constant at any scale but vary across scales.

[Crouse, Nowak, Baraniuk 1998; Romberg, Choi, Baraniuk 2001]

v



Hidden Markov Tree Model




Reconstruction w/ Probabilistically Structured Sparsity

v

Markov-chain Monte Carlo (MCMC):

» Markov random field (MRF) [Wolfe, Godsill, Ng 2004]
» Markov tree [He, Carin 2009]

Drawbacks: slow convergence and difficulty in detecting
convergence.

» Methods that iterate matching pursuit or ¢;-optimization
with MAP sparsity-pattern detection:

» Markov tree [Duarte, Wakin, Baraniuk 2008]
» MRF [Cevher, Duarte, Hedge, Baraniuk 2008]

Drawback: slow and ad hoc.
» Variational Bayes:
» Markov tree [He, Chen, Carin 2010]
Drawback: performance not always satisfactory
» Turbo reconstruction based on AMP:
» Markov chain [Schniter 2010]



Factor Graph Representation




Turbo Reconstruction

Inference problem can be tackled by splitting it into two
sub-problems and iterating between them

» Reminiscent of noncoherent turbo equalization.

» The sparsity pattern equalization (SPE) block solves the
inference problem using the observation structure (linear
observation model).

» The sparsity pattern decoding (SPD) block solves the
inference problem using the support structure (Markov
model).

[Schniter 2010]



Message Passing between SPE and SPD

» Message passing within SPE is done via Approximate
Message Passing (AMP). [Donoho, Maleki, Montanari 2009]

» SPD is done on HMT and forward-backward algorithm
gives exact posterior.

» Beliefs on the indicator variables s, are exchanged between
these two blocks.

extrinsic beliefs on s,

extrinsic beliefs on s,



Gaussian Messages from g, to x,
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Non-Gaussian Messages from z,, to g,

» Qutgoing message is product of incoming messages.

» Computation of means and variances suffice.



Message Update Complexity

» Message update complexity: M N updates of O(N) or
O(M) corresponding to M N edges.
» Use two approximations:
» Apply uniform variance approximations, e.g., ¢, & Cmn.
» Taylor series is used to approximate the deviations of
messages across outgoing edges from the average message.
» These approximatations reduce the algorithm complexity
to O(MN).
» For subsampled DFT measurement matrix the complexity
is O(N log N).



Estimating Model Parameters

» Hyperpriors are assigned to model parameters o;, oy,
p?ﬁo, pjl-_>1 at j* scale and the probability p} that 0} scale
coefficients are active.

» Gamma prior is assumed for the precision A\; =1/ JJZ:

1

1 4.
b.’

Gam()\;) = Tay)

AT exp(—bjA).
» Beta prior is assumed for activity and transition prior
parameters p;:

Ucj +dj) ;-1

Beta(p;) = p(cj)l“(dj)p]

(1—py)%t.

» At the end of every turbo iteration, the model is updated
with the mean of the posteriors (MMSE estimates) of these
parameters.

» The MMSE estimates of z,, and s,, are used to obtain the
posterior.



Hyperpriors on Model Parameters
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Simulation Results: M = 5000, N = 16384
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Comparison with Existing Methods

Original CoSaMP
T
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Reconstruction from M = 5000 observations. The images are of
size 128 x 128 (i.e., N = 16384).



Comparison with Existing Methods
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Average Normalized Mean Squared Error (NMSE) for 20
categories 128 x 128 images (i.e., N = 16384) from M = 5000
observations. In each category there are 30 images.

[http://research.microsoft.com/en-us/projects/objectclassrecognition]



Comparison with Existing Methods
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Average computation time for 20 categories 128 x 128 images
(i.e., N =16384) from M = 5000 observations. In each category

there are 30 images.



Summary on Comparison with Existing Methods

‘ Algorithm H Computation Time (sec) ‘ NMSE (dB) ‘
CoSaMP 859 -10.13
ModelCS 1205 -15.10

Variational Bayes 107 -19.04
MCMC 742 -20.10
Turbo 53 -20.31

Table: Average computation time and Normalized Mean Squared
Error (NMSE) from 584 natural images of size 128 x 128; N = 16384,
M = 5000.



Conclusions

» We apply turbo reconstruction algorithm based on
approximate message passing on hidden Markov tree
modeled structured sparse signals.

» We propse to estimate the model parameters from the
measured data.

» We apply the algorithm on natural images and demonstrate
that it performs better than the existing algorithms in
terms of both accuracy and computation time.



