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Abstract—We propose a novel algorithm for compressive
imaging that exploits both the sparsity and persistence across
scales found in the 2D wavelet transform coefficients of natural
images. Like other recent works, we model wavelet structure
using a hidden Markov tree (HMT) but, unlike other works, ours
is based on loopy belief propagation (LBP). For LBP, we adopt a
recently proposed “turbo” message passing schedule that alter-
nates between exploitation of HMT structure and exploitation of
compressive-measurement structure. For the latter, we leverage
Donoho, Maleki, and Montanari’s recently proposed approximate
message passing (AMP) algorithm. Experiments on a large image
database show that our turbo LBP approach maintains state-of-
the-art reconstruction performance at half the complexity.1

I. I NTRODUCTION

In compressive imaging [1], we aim to estimate an image
x ∈ R

N from M ≤ N noisy linear observationsy ∈ R
M ,

y = Φx+w = ΦΨθ +w, (1)

assuming that the image has a representationθ ∈ R
N in some

wavelet basisΨ (i.e., x = Ψθ) containing only a few (K)
large coefficients (i.e.,K ≪ N ). In (1), Φ ∈ R

M×N is a
known measurement matrix andw ∼ N (0, σ2I) is additive
white Gaussian noise. ThoughM < N makes the problem
ill-posed, it has been shown thatx can be recovered fromy
whenK is adequately small andΦ is incoherent withΨ [1].

The wavelet coefficients of natural images are known to
have an additional structure known aspersistence across scales
(PAS) [2], which we now describe. For 2D images, the wavelet
coefficients are naturally organized into quad-trees, where each
coefficient at levelj acts as a parent for four child coefficients
at level j+1. The PAS property says that, if a parent is very
small, then all of its children are likely to be very small;
similarly, if a parent is large, then it is likely that some (but
not necessarily all) of its children will also be large.

Several authors have exploited the PAS property for com-
pressive imaging [3]–[6]. The so-called “model-based” ap-
proach [3] is a deterministic incarnation of PAS that leverages
a restricted union-of-subspaces and manifests as a modified
CoSaMP [7] algorithm. Most other approaches are Bayesian
in nature, exploiting the fact that PAS is readily modeled
by a hidden Markov tree (HMT) [8]. The first work in this
direction appears to be [4], where an iteratively re-weighted
ℓ1 algorithm, generating an estimate ofx, was alternated with
a Viterbi algorithm, generating an estimate of the HMT states.
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Fig. 1. Left: The camera-man image. Center: The corresponding transform
coefficients, demonstrating PAS. Right: An illustration of quad-tree structure.

More recently, HMT-based compressive imaging has been
attacked using modern Bayesian tools [9]. For example, [5]
used Markov-chain Monte-Carlo (MCMC), which is known to
yield correct posteriors after convergence. For practicalimage
sizes, however, convergence takes an impossibly long time,
and so MCMC must be terminated early, at which point its
performance suffers. Variational Bayes (VB) can sometimes
offer a better performance/complexity tradeoff, motivating
the approach in [6]. Our experiments indicate that, while
[6] indeed offers a state-of-the art performance/complexity
tradeoff, it is possible to do significantly better.

In this paper, we propose a novel approach to HMT-based
compressive imaging based on loopy belief propagation [10].
For this, we modelθ as Bernoulli-Gaussian with HMT struc-
ture on the coefficient state, and propagate beliefs on the cor-
responding factor graph. A recently proposed “turbo” schedule
[11] suggests to iterate between exploitation of the HMT struc-
ture and exploitation of the observation structure from (1). For
the former we use the standard sum-product algorithm [10],
and for the latter the recently proposedapproximate message
passing (AMP) algorithm [12], which has been proven to yield
asymptotically correct posteriors (asM,N → ∞ with M/N
fixed) under i.i.d GaussianΦ [13], while being very fast—
operating, essentially, as an iterative thresholding algorithm.
In this paper, we further expand the factor graph to enable
joint estimation of all statistical parameters (e.g., the AWGN
varianceσ2 and the HMT parameters). Experiments on a large
image database show that our turbo approach maintains state-
of-the-art reconstruction performance at half the complexity.

II. SIGNAL MODEL

Since we use a 2D wavelet transform, the transform co-
efficients {θn} can be partitioned into so-called “wavelet”
coefficients (at indicesn ∈ W) and “approximation” coef-
ficients (at indicesn ∈ A). The wavelet coefficients can be
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Fig. 2. Factor graph representation of the signal model. The variabless1 and
s6 are wavelet states at the roots of two different Markov trees. The variable
s5 is an approximation state and hence is not part of any Markov tree. The
remainingsn are wavelet states at levelsj > 0. For visual simplicity, a
binary-tree is shown instead of a quad-tree, and the nodes representing the
statistical parametersρ, {ρj}, p1

−1
, p1

0
, {p00j }, {p11j } are not shown.

further partitioned into several quad-trees, each withJ levels
(see Fig. 1). We denote the indices of coefficients at level
j ∈ {0, . . . , J−1} of the wavelet trees byWj , wherej = 0 is
the root. With a slight abuse of notation, we sometimes refer
to the approximation coefficients using levelj = −1.

Each transform coefficientθn is modeled using a (condition-
ally independent) Bernoulli-Gaussian prior pdf of the form

p(θn | sn) = snN (θn; 0, σ
2
n) + (1− sn)δ(θn), (2)

with δ(.) denoting the Dirac delta,N (x;µ, v) ,

(2πv)−1/2e−(x−µ)2/(2v), and sn ∈ {0, 1} a hidden binary
state. The states{sn}n∈A are assigned an apriori activity
rate Pr{sn = 1} = p1−1, which is discussed further below.
Meanwhile, the root wavelet states{sn}n∈W0

are assigned
Pr{sn = 1} = p10. Within each quad-tree, the states have a
Markov structure. In particular, the activities of states at level
j > 0 are determined by their parent’s activities (at level
j − 1) and the transition matrix

Tj−1 ,

[
p00j 1− p00j

1− p11j p11j

]

, (3)

wherep00j denotes the probability that a child’s state equals
0 given that his parent’s state equals0, and p11j denotes
the probability that a child’s state equals1 given given
that his parent’s state equals1. Finally, the signal variances
{σ2

n}n∈Wj
are assigned the same prior within each level

j ∈ {−1, 0, . . . , J − 1}. The corresponding factor graph is
shown in Fig. 2.

We take a “fully Bayesian” approach, modeling all sta-
tistical parameters as random variables and assigning them
non-informative hyperpriors. For the precisions (i.e., inverse
variances), Gamma hyperpriors are assumed:

ρj ∼ Gamma(ρj ; aj , bj) =
1

Γ(aj)
b
aj

j ρ
aj−1
j exp(−bjρj) (4)

ρ ∼ Gamma(ρ; a, b) =
1

Γ(a)
baρa−1 exp(−bρ). (5)

For the activity rates and transition parameters, Beta hyperpri-
ors are assumed:

p
1

0 ∼ Beta(p10; c, d) =
Γ(c+ d)

Γ(c)Γ(d)
(p10)

c−1(1− p
1

0)
d−1 (6)

p
1

−1 ∼ Beta(p1
−1; c, d) =

Γ(c+ d)

Γ(c)Γ(d)
(p1

−1)
c−1(1− p

1

−1)
d−1

(7)

p
00

j ∼ Beta(p00j ; cj , dj) =
Γ(cj + dj)

Γ(cj)Γ(dj)
(p00j )cj−1(1− p

00

j )dj−1

(8)

p
11

j ∼ Beta(p11j ; cj , dj) =
Γ(cj + dj)

Γ(cj)Γ(dj)
(p11j )cj−1(1− p

11

j )dj−1
.

(9)

III. I MAGE RECONSTRUCTION

To infer θ, we would like to compute the posterior

p(θ |y) ∼=
∑

s

p(y |θ, s)p(θ, s) (10)

=
∑

s

p(s)
︸︷︷︸

,h(s)

N∏

n=1

p(θn | sn)
︸ ︷︷ ︸

,fn(θn,sn)

M∏

m=1

p(ym |θ)
︸ ︷︷ ︸

,gm(θ)

, (11)

where∼= denotes equality up to a normalization constant. Here,
fn(θn, sn) is specified by (2) and, due to the white Gaussian
noise model,gm(θ) = N (ym;aT

mθ, σ2), whereaT
m denotes

themth row of the matrixA , ΦΨ.

A. Loopy Belief Propagation

While exact computation ofp(θ |y) is computationally pro-
hibitive, the marginal posteriors{p(θn |y)} can be efficiently
approximated usingloopy belief propagation (LBP) [10] on
the factor graph of Fig. 2. In doing so, we also obtain the
marginal posteriors{p(sn |y)}. In fact, we simultaneously
infer the statistical parametersρ, {ρj}, p1−1, p

1
0, {p

00
j }, {p11j },

but—for simplicity—we treat them here as if they were fixed
and known and detail the procedure by which they are learned
in Section III-D.

In LBP, messages are exchanged between the nodes of
the factor graph until convergence. Messages take the form
of either pdfs or pmfs, as will be clear from the context.
Intuitively, the messages flowing to/from a variable node can
be interpreted as local beliefs about that variable. According
to the sum-product algorithm [10], the message emitted by
a variable node along a given edge is (a scaled version of)
the product of the incoming messages on all other edges.
Meanwhile, the message emitted by a function node along
a given edge is (a scaled version of) the integral (or sum) of
the product of the node’s constraint function and the incoming
messages on all other edges. The integration (or summation)
is performed over all variables other than the one directly
connected to the edge along which the message travels.

If our factor graph had no loops, then exact marginal
posteriors could be computed using two passes of the sum-
product algorithm [10]. Since our factor graph has loops,
exact inference is known to be NP hard and LBP is not
guaranteed to produce correct posteriors. Still, LBP has been
successfully applied to many other problems, such as as turbo
decoding and LDPC decoding in communications, and in this
paper we demonstrate that LBP can be successfully applied to
compressive imaging as well.
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Fig. 3. The turbo approach yields a decoupled factor graph.

B. Message Scheduling: The Turbo Approach

Given that our belief propagation is loopy, there exists
considerable freedom as to how messages are scheduled. In
this work, we adopt the “turbo” approach recently proposed
in [11]. For this, we split the factor graph in Fig. 2 along the
dashed line, noting that the left half exploits structure inthe
compressed observations and the right half exploits structure in
the HMT. As a result, we obtain the two decoupled subgraphs
in Fig. 3. We then alternate belief propagation on each of
the two resulting sub-graphs, treating the likelihoods on{sn}
generated from belief propagation on one sub-graph as priors
on {sn} for the other sub-graph. In other words,

h(t)
n (sn) , ν

(t)
h→sn

(sn) (12)

d(t+1)
n (sn) , νtfn→sn(sn), (13)

whereν(t)

A→B(.) denotes the message passed from node A to
node B during thetth turbo iteration.

Borrowing terminology from theturbo equalization method
used in communications [14], we refer to inference of{sn}
using compressive-measurement structure assparsity pattern
equalization (SPE) and inference of{sn} using HMT structure
as sparsity pattern decoding (SPD). Due to the tree structure
of HMT, there are no loops in the SPD factor graph, and
so SPD can be performed exactly using only two rounds of
sum-product message passing [10]. The SPE factor graph is
loopy, and so SPE performs several iterations of loopy belief
propagation, internally, per turbo iteration. SPE detailsare
described in the next subsection.

C. Sparsity Pattern Equalization via AMP

We now discuss the message passing within SPE during a
single turbo iterationt. The operations are invariant tot, and
so we suppress thet-notation for brevity. As described above,
SPE performs several iterations of loopy belief propagation
per turbo iteration using the fixed priorsλn , hn(sn = 1).
Over the SPE iterations, the messageνfn→θn is fixed at

νfn→θn(θn) = λnN (θn; 0, σ
2
n) + (1− λn)δ(θn). (14)

The dashed box in Fig. 3 shows the region of the factor graph
on which messages are updated during the SPE iterations. This
sub-graph can be recognized as the one that Donoho, Maleki,
and Montanari used to derive their so-calledapproximate mes-
sage passing (AMP) algorithms [12]. Although they mostly
focus on the case of Laplacian (or least-favorable)θ-priors,
they outlined the case of general priors in [15]. We derive the

details of Bernoulli-Gaussian AMP below, using a superscript-
i to denote the SPE iteration.

According to the sum-product algorithm, the fact that
νfn→θn is non-Gaussian implies thatνiθn→gm

is also non-
Gaussian, and this complicates the calculation of the subse-
quent messagesνigm→θn

. However, for largeN , the combined
effect of {νiθn→gm

}Nn=1 can be approximated as Gaussian,
at which point it becomes sufficient to parameterize each
messageνiθn→gm

by its mean and variance(µi
mn, v

i
mn) [15]:

µi
mn ,

∫

θn
θn ν

i
θn→gm

(θn) (15)

vimn ,
∫

θn
(θn − µi

mn)
2νiθn→gm

(θn). (16)

Combining the fact that

∏

q

N (θ;µq, vq) ∼= N

(

θ;

∑

q µq/vq
∑

q v
−1
q

,
1

∑

q v
−1
q

)

(17)

with gm(θ) = N (ym;aT
mθ, σ2), it can be shown that

νigm→θn(θn) = N

(

θn;
zimn

Amn
,
cimn

A2
mn

)

(18)

zimn , ym −
∑

q 6=n Amqµ
i
qm (19)

cimn , σ2 +
∑

q 6=n A
2
mqv

i
qm. (20)

The quantitiesµi+1
mn andvi+1

mn are then calculated from

νi+1
θn→gm

(θn) ∼= νfn→θn(θn)
∏

l 6=m νigl→θn
(θn), (21)

where, using (17), the product term in (21) becomes

∼= N

(

θn;

∑

l 6=m Alnz
i
ln/c

i
ln

∑

l 6=m A2
lnz

i
ln/c

i
ln

,
1

∑

l 6=m A2
ln/c

i
ln

)

. (22)

Assuming that the entries ofA were generated from an
i.i.d distribution with unit-normalized columns, andM is
adequately large, we have

∑

l 6=m A2
ln ≈

∑M
l=1 A

2
ln = 1 and

ciln ≈ cin , 1
M

∑M
m=1 c

i
mn. In this case, (21) reduces to

νi+1
θn→gm

(θn) ∼=
(
λnN (θn; 0, σ

2
n) + (1− λn)δ(θn)

)

×N (θn; ξ
i
nm, cin) (23)

ξinm ,
∑

l 6=m Alnz
i
ln, (24)

and the mean and variance ofνi+1
θn→gm

(θn) become

µi+1
nm = αn(c

i
n)ξ

i
nm/(1 + γi

nm) (25)

vi+1
nm = γi

nm(µi+1
nm )2 + µi+1

nm cin/ξ
i
nm (26)

γi
nm , βn(c

i
n) exp(−ζn(c

i
n)(ξ

i
nm)2), (27)

where

αn(c) ,
σ2
n

c+σ2
n
, βn(c) ,

1−λn

λn

√
c+σ2

n

c , ζn(c) ,
σ2
n

2c(c+σ2
n)
.

For the first turbo iteration, we setz0mn = ym and c0n ≫ σ2
n

for all m,n. For subsequent turbo iterations, SPE is initialized
using the final SPE values from the previous turbo iteration.

According to the sum-product algorithm, the estimatedθn-
posterior at theith-SPE iteration is

p̂i(θn |y) ∼= νfn→θn(θn)
∏M

l=1 ν
i
gl→θn

(θn), (28)



whose mean and variance determine theith-iteration MMSE
estimate ofθn and its variance, respectively. Noting that the
difference between (28) and (21) is only the inclusion of the
mth product term, the mean and variance become

µi+1
n = αn(c

i
n)ξ

i
n/(1 + γi

n) (29)

vi+1
n = γi

n(µ
i+1
n )2 + µi+1

n cin/ξ
i
n (30)

ξin ,
∑M

l=1 Alnz
i
ln (31)

γi
n , βn(c

i
n) exp(−ζn(c

i
n)(ξ

i
n)

2). (32)

Similarly, theith-SPE iterationsn-posterior estimate is

p̂i(sn |y) ∼= νi−1
fn→sn

(sn)νhn→sn(sn), (33)
where

νifn→sn(sn)
∼=

∫

θn

fn(θn, sn)

M∏

l=1

νigl→θn(θn). (34)

Sincefn(θn, sn) = snN (θn; 0, σ
2
n)+ (1− sn)δ(θn), it can be

seen that SPE’s extrinsic log-likelihood ratio (LLR) is

Li
n , ln

νifn→sn
(sn=1)

νifn→sn
(sn=0)

=
1

2
ln

cin
cin + σ2

n

+ ζn(c
i
n)(ξ

i
n)

2. (35)

The message update equations derived thus far updates
O(MN) variables per iteration, which is inconvenient for
large M and N . We now summarize the “first-order” AMP
algorithm [15] for the non-identical Bernoulli-Gaussian prior
(14), which updates onlyO(N) variables per iteration:

ξin =
∑M

m=1 Amnz
i
m + µi

n (36)

µi+1
n = Fn(ξ

i
n; c

i) (37)

vi+1
n = Gn(ξ

i
n; c

i) (38)

zi+1
m = ym −

∑N
n=1 Amnµ

i
n +

zi
m

M

∑N
n=1 F

′
n(ξ

i
n; c

i) (39)

ci+1 = σ2 + 1
M

∑N
n=1 v

i+1
n , (40)

whereFn(.; .), Gn(.; .) andF ′
n(.; .) are defined as

Fn(ξ; c) =
αn(c)

1 + βn(c) exp(−ζn(c)(ξ)2)
ξ (41)

Gn(ξ; c) = βn(c) exp(−ζn(c)(ξ)
2)Fn(ξ; c)

2 + c ξ−1Fn(ξ; c)
(42)

F ′
n(ξ; c) =

αn(c)

[1 + βn(c) exp(−ζn(c)(ξ)2)]2
[
1

+ βn(c) exp(−ζn(c)(ξ)
2)
(
1 + 2ζ(cn)(ξ)

2
)]
.(43)

D. Learning the Statistical Parameters

We now briefly summarize how the precisions{ρj} are
learned. Say that, just after thetth turbo iteration,Sj , {n ∈
Wj : L∞

n > 0} contains indices of the level-j coefficients
though to be “large,” andKj , |Sj | is its cardinality. Here,
“∞” is used to denote the final SPE iteration. Then, level-j’s
precision hyper-parameters and mean are updated via

â(t+1)

j = aj +Kj/2 (44)

b̂(t+1)

j = bj +
1
2

∑

n∈Sj
(µ∞

n )2 (45)

E[ρ̂(t+1)

j ] = â(t+1)

j /b̂(t+1)

j , (46)

and, for turbo iterationt+1, the variances{σ2
n}n∈Wj

are set
to 1/E[ρ̂(t+1)

j ]. The precisionρ (and noise varianceσ2) are
learned similarly from the SPE-estimated residual.

Original CoSaMP ModelCS

Variational Bayes MCMC Turbo

Fig. 4. Reconstruction fromM = 5000 observations of a128× 128 (i.e.,
N = 16384) section of the cameraman image using i.i.d GaussianΦ.

We now briefly summarize how the transition probabilities
{p11j } are learned. Say that, just after thetth turbo iteration,
of the Kj level-j coefficients thought to be “large,”Cj have
children that are also thought to be large (based on the SPE-
generated LLRs). Then the corresponding hyperparameters
and transition probability are updated as follows:

ĉ(t+1)

j = cj + Cj (47)

d̂
(t+1)

j = dj +Kj − Cj (48)

(p̂11j )(t+1) = ĉ(t+1)

j

(
ĉ(t+1)

j + d̂
(t+1)

j

)−1
. (49)

The parametersp10, p1−1, and{p00j } are learned similarly.

IV. N UMERICAL RESULTS

The proposed turbo approach to compressive imaging was
compared to several others: CoSaMP [7], ModelCS [3], vari-
ational Bayes [6], and MCMC [5]. All numerical experiments
were performed on128× 128 (i.e., N = 16384) grayscale
images using a wavelet decomposition with4 quad-tree levels,
yielding 82 =64 approximation coefficients and3×82 =192
Markov trees. In all cases, the matrixΦ had i.i.d Gaussian
entries, andM=5000 noiseless measurements were used.

For our turbo scheme, we learned the statistical parameters
as described in Section III-D and applied the same values
to all Markov trees. The Gamma hyperparameters were set
as a = 1 = aj ∀j, b = 1 × 10−10, and [b0, . . . , b4] =
[50, 4, 4.5, 1.5, 0.45]. The Beta parameters were chosen with
c+d=1 andcj+dj=1 ∀j such thatE{p00j }=0.9, E{p11j }=0.5,
E{p10}=0.9, andE{p1−1}=0.9.

Fig. 4 shows a128×128 section of the “cameraman” image
along with the recovered images of the various algorithms.
CoSaMP, which leverages only simple sparsity, and ModelCS,
which models PAS deterministically, both perform poorly. The
HMT-based schemes (VB, MCMC, and turbo) all perform
significantly better, with MCMC and turbo performing best.

For a quantitative comparison, we measured average recon-
struction performance over a suite of images from aMicrosoft



Fig. 5. A sample image from each of the 20 types in the Microsoft database.
Image statistics were found to vary significantly from one type to another.
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Research Object Class Recognition database2 that contains
20 types of images (see Fig. 5) with roughly30 images of
each type. For each image type, we computed the average
normalized mean squared error (NMSE)‖x − x̂‖22/‖x‖

2
2 as

well as the average computation time on a 2.5 GHz PC. These
results are reported in Figures 6 and 7, and the global averages
(over all 591 images) are reported in Table I. We observe
that the proposed turbo algorithm outperforms all the other
algorithms in both reconstruction NMSE and computation
time. Relative to the turbo algorithm, CoSaMP and ModelCS
both have significantly higher NMSE and require significantly
higher computation. MCMC yields NMSE that is very close to
that of the turbo algorithm, but is14 times slower. Variational
Bayes yields NMSE that is1 dB worse than that of the turbo
algorithm, while taking twice as long to run.

Although the experiments reported here assume noiseless
observations, we have performed successful noisy compressive
imaging as well. Even in the noiseless case, though, we find
σ2 > 0 useful in conjunction with our sparse signal model (2);
natural images are never truly sparse, and so the very small
coefficients get absorbed into the noise vectorw.

V. CONCLUSION

We proposed a new approach to HMT-based compressive
imaging based on loopy belief propagation, leveraging a turbo
message passing schedule and the AMP algorithm of Donoho,
Maleki, and Montanari. We then tested our algorithm on a
suite of 591 natural images and found that it outperformed
the state-of-the-art approach while halving its runtime.

2From each image in the “Pixel-wise labelled image database v2”
at http://research.microsoft.com/en-us/projects/objectclassrecognition, we ex-
tracted the center128×128 section. What we refer to as an “image type” is
referred to as a “row” in the database.
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Fig. 7. Average computation time for each image type.

Algorithm Computation Time (sec) NMSE (dB)

CoSaMP 859 -10.13
ModelCS 1205 -15.10

Variational Bayes 107 -19.04
MCMC 742 -20.10
Turbo 53 -20.31

TABLE I
NMSE AND COMPUTATION TIME AVERAGED OVER591 IMAGES.
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