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Abstract—We propose a novel algorithm for compressive B
imaging that exploits both the sparsity and persistence across |
scales found in the 2D wavelet transform coefficients of natural
images. Like other recent works, we model wavelet structure
using a hidden Markov tree (HMT) but, unlike other works, ours
is based on loopy belief propagation (LBP). For LBP, we adopt a [
recently proposed “turbo” message passing schedule that alter-
nates between exploitation of HMT structure and exploitation of
compressive-measurement structure. For the latter, we levege
Donoho, Maleki, and Montanari’s recently proposed approximate
message passing (AMP) algorithm. Experiments on a large image
database show that our turbo LBP approach maintains state-of-
the-art reconstruction performance at half the complexity?

Fig. 1. Left: The camera-man image. Center: The correspondamgform
coefficients, demonstrating PAS. Right: An illustration ofag-tree structure.

More recently, HMT-based compressive imaging has been
attacked using modern Bayesian tools [9]. For example, [5]
|. INTRODUCTION used Markov-chain Monte-Carlo (MCMC), which is known to

In compressive imaging [1], we aim to estimate an imag{e'eld correct posteriors after convergence. For practioalge

2 : ) however, convergence takes an impossibly long time
RY from M < N noisy linear observatio RM, 12€S, ’ . ; P
Te - Y B < and so MCMC must be terminated early, at which point its

y=®x+w = dVO+ w, (1) performance suffers. Variational Bayes (VB) can sometimes
. . ) . offer a better performance/complexity tradeoff, motingti
assuming that the image hasareprESE{”m'@RN IN'SOME  the approach in [6]. Our experiments indicate that, while
wavelet basis¥ (i.e., z = W) containing only a few K) 6] indeed offers a state-of-the art performance/compyexi
large coefficients (i.e. X' < N). In (1), @ < RN is a  yradeoff, it is possible to do significantly better.
known measurement matrix and ~ A(0,0°) is additive | thig paper, we propose a novel approach to HMT-based
white Gaussian noise. Though! < N' makes the problem ¢, 5ressive imaging based on loopy belief propagation. [10]
|II-posed3 it has been shown that_ca_n be recover_ed from  por this, we modeb as Bernoulli-Gaussian with HMT struc-
when K is adequately small and is incoherent with' [1].  y,re on the coefficient state, and propagate beliefs on the co
The Wave_lgt coefficients of natural_lmages are known Vésponding factor graph. A recently proposed “turbo” scited
have an additional structure knownmessistence acrossscales  [11] syggests to iterate between exploitation of the HMUitr

(PAS) [2], which we now describe. For 2D images, the wavelgjye and exploitation of the observation structure from Eby
coefficients are naturally organized into quad-trees, @Bech 1o former we use the standard sum-product algorithm [10],
coefficient at levelj acts as a parent for four child coefficients,q for the latter the recently proposagbroximate message

at level j+1. The PAS property says that, if a parent is Ver¥assing (AMP) algorithm [12], which has been proven to yield

small, then all of its children are likely to be very Sma";asymptotically correct posteriors (ag, N — oo with M /N

similarly, if a_parent is_large_, then it_ is likely that someutb fixed) under i.i.d Gaussia® [13], while being very fast—
not necessarily all) of its children will also be large. operating, essentially, as an iterative thresholding rittyo.
Several authors have exploited the PAS property for comy this paper, we further expand the factor graph to enable
pressive imaging [3]-[6]. The so-called “model-based” aggint estimation of all statistical parameters (e.g., th&/@N
proach [3] is a deterministic incarnation of PAS that @8R\ 4riances? and the HMT parameters). Experiments on a large

a restricted union-of-subspaces and manifests as a modifigdye database show that our turbo approach maintains state
CoSaMP [7] algorithm. Most other approaches are Bayesigine._art reconstruction performance at half the comipfex
in nature, exploiting the fact that PAS is readily modeled

by a hidden Markov tree (HMT) [8]. The first work in this 1. SIGNAL MODEL
direction appears to be [4], where an iteratively re-wedght )
¢, algorithm, generating an estimateof was alternated with ~ Since we use a 2D wavelet transform, the transform co-

a Viterbi algorithm, generating an estimate of the HMT stateefficients {6,,} can be partitioned into so-called “wavelet”
coefficients (at indices: € W) and “approximation” coef-

LSupported in part by NSF CCF-1018368 and AFOSR FA9550-0824. ficients (at indicesn € A). The wavelet coefficients can be



observation structure i support structure

For the activity rates and transition parameters, Beta ipype
ors are assumed:

po ~ Beta(py; c,d) = 11:((;;(?) (po) " (1 —pp)* ™" (6)
Py~ Betalpliiod) = EESOLOT -2 )
P~ Betalss ey ) = F kSR 0y

11 11 r =j +d7 11\c,;,—1 11 —1
!~ Betapllic,d) = SRR )=

I11. | MAGE RECONSTRUCTION
: : : | : To infer 8, we would like to compute the posterior
Fig. 2. Fact h tation of the signal model. Bzl d ~
19 actor grapnh representation o € signal moae RvIess; an p(o ‘ y) o~ Zp(y | 07 S)p(e, S) (10)
s N

se¢ are wavelet states at the roots of two different Markov trdé® variable

s5 is an approximation state and hence is not part of any Marlew. ffhe M

remaining s,, are wavelet states at levejs > 0. For visual simplicity, a = s 0. |s 0 11
binary-tree is shown instead of a quad-tree, and the nogeesenting the Z w lill p( i ‘ n) _1w|_2’ ( )
statistical parameters, {p;},pl 1, P}, {p?o}, {p;l} are not shown. 8 Lh(s) n= L (Orrsm) m= Lg.(0)

where= denotes equality up to a normalization constant. Here,
Vé,r(en, sn) Is specified by (2) and, due to the white Gaussian
noise model,g,,(8) = N (ym;al 0,0%), whereal denotes

e m'™ row of the matrixA £ ®W.

further partitioned into several quad-trees, each witlevels
(see Fig. 1). We denote the indices of coefficients at le
j €{0,...,J—1} of the wavelet trees byV;, wherej =0 is
the root. With a slight abuse of notation, we sometimes refi
to the approximation coefficients using levek —1. A. Loopy Belief Propagation

Each transform coefficiertt, is modeled using a (condition-  \hijle exact computation qf( | y) is computationally pro-
ally independent) Bernoulli-Gaussian prior pdf of the form hipjtive, the marginal posterior§p(6,, | 4)} can be efficiently
_ ) 2 approximated usingoopy belief propagation (LBP) [10] on
P(On |5n) = 50N (03 0,07) + (1 = 52)0(0), () the factor graph of Fig. 2. In doing so, we also obtain the
with §(.) denoting the Dirac delta, N'(z;u,v) 2 marginal posteriors{p(s,|y)}. In fact, we simultaneously
(2mv)~1/2¢=(@=m*/(2) and s, € {0,1} a hidden binary infer the statistical parameteys {p;},pL;,pj, {P}°}, {p}'},
state. The stategs, },c4 are assigned an apriori activitybut—for simplicity—we treat them here as if they were fixed
rate Pr{s, = 1} = p*,, which is discussed further below.and known and detail the procedure by which they are learned
Meanwhile, the root wavelet statgs, },cyy, are assigned in Section I1I-D.
Pr{s, = 1} = p). Within each quad-tree, the states have a In LBP, messages are exchanged between the nodes of
Markov structure. In particular, the activities of statédexel the factor graph until convergence. Messages take the form
j > 0 are determined by their parent’s activities (at levedf either pdfs or pmfs, as will be clear from the context.

j —1) and the transition matrix Intuitively, the messages flowing to/from a variable node ca
0 1 00 be interpreted as local beliefs about that variable. Adoaord
T, ) 2 [ Py - } ’ (3) to the sum-product algorithm [10], the message emitted by
L=pj  pj a variable node along a given edge is (a scaled version of)

where p)? denotes the probability that a child's state equafél'e pror(]jl?ct ?}f the incoming _medssbages fon all Oth%r edlges.
0 given that his parent's state equals and p!! denotes ' canwhiie, the message emitted by a function node along
] a given edge is (a scaled version of) the integral (or sum) of

the probability that a child’s state equals given given h q fth de traint f i dthe i .
that his parent’s state equals Finally, the signal variances "€ product of the node’s constraint function and the incami

{02),cy. are assigned the same prior within each levijessages on all other edges. The integration (or summation)

j g {71’0 J — 1}. The corresponding factor graph ids performed over all variables other than the one directly

shown in7 F7i§' 2’ ' connected to the edge along which the message travels.
We take a “fully Bayesian” approach, modeling all sta- If our factor graph had no loops, then exact marginal

tistical parameters as random variables and assigning thBggLeriors cogld be compl_Jted using two passes of the sum-
non-informative hyperpriors. For the precisions (i.eyeirse product algorithm [10]. Since our factor graph has loops,
variances), Gamma hyperpriors are assumed: exact inference is known to be NP hard and LBP is not

guaranteed to produce correct posteriors. Still, LBP hanbe
successfully applied to many other problems, such as ase turb
decoding and LDPC decoding in communications, and in this
paper we demonstrate that LBP can be successfully applied to
compressive imaging as well.

1 a1
pj ~ Gamma(p;;aj, b;) = mbfpjj exp(=bjp;) (4)
J

1
p ~ Gammal(p;a,b) = ——b"p" " exp(—bp). (5)

I'(a)



hy” details of Bernoulli-Gaussian AMP below, using a supepgeri
1 to denote the SPE iteration.

According to the sum-product algorithm, the fact that
Vs, -0, 1S non-Gaussian implies thatgn_,gm is also non-
Gaussian, and this complicates the calculation of the subse
quent messagez’;m%n. However, for largeV, the combined
effect of {ugﬁgm}g:l can be approximated as Gaussian,
at which point it becomes sufficient to parameterize each
Fig. 3. The turbo approach yields a decoupled factor graph. message/énﬁgm by its mean and VarianC(%m, vl ) [15]:
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B. Message Scheduling: The Turbo Approach Hann 2 Jo On Vi, .y () (15)
Given that our belief propagation is loopy, there exists Vi = fo On — pin)?v g (On). (16)

considerable freedom as to how messages are scheduled. In
this work, we adopt the “turbo” approach recently proposedembining the fact that

in [11]. For this, we split the factor graph in Fig. 2 along the S g/ v 1
dashed line, noting that the left half exploits structuretia [TV ;1. 00) = N | 6; i TS o (17)
compressed observations and the right half exploits streiéh q q Y qY4

the HMT. As a result, we obtain the two decoupled subgrapis, 9m(8) = N(ym: aZ.8,52), it can be shown that
in Fig. 3. We then alternate belief propagation on each of " M

the two resulting su_b-graphs, tr_eating the likelihoods{en} _ Vi (0n) = N (0”; Zyn ,%) (18)
generated from belief propagation on one sub-graph assprior gm0 Ay A2
on {s,} for the other sub-graph. In other words, O T > gn Amabtlm (19)
PO (sn) £ 1, (5n) (12) Cnn £ 0%+ Ly AgVym- - (20)
A (sn) 2 v, (sn), (13) The quantities:’;-! andv’! are then calculated from
wherev’, ;(.) denotes the message passed from node Ato  vi™  (6,) = vy, 0, (0n) [T V0, (0n), (1)

node B during the'® turbo iteration.

Borrowing terminology from theéurbo equalization metho
used in communications [14], we refer to inference{sf, } > it Az /¢l 1
using compressive-measurement structurespassity pattern 2N | O S A S, A (22)
equalization (SPE) and inference dfs,, } using HMT structure I#m SAnZin/ Hin - £adz#m “in/Hin
as sparsity pattern decoding (SPD). Due to the tree structureAssuming that the entries oA were generated from an
of HMT, there are no loops in the SPD factor graph, and.d distribution with unit-normalized columns, andl/ is
so SPD can be performed exactly using only two rounds aflequately large, we havg, ., A7, ~ Zf‘il A? =1 and
sum-product message passing [10]. The SPE factor graph:;‘insz o 2L 7J\r/L[:1 ¢ . In this case, (21) reduces to
loopy, and so SPE performs several iterations of loopy belie

q Where, using (17), the product term in (21) becomes

propagation, internally, per turbo iteration. SPE detaite Vol Lo (0n) 2 (AN (00;0,07) + (1 = X,)8(6,))
described in the next subsection. X N (O,; € ) (23)
C. Sparsity Pattern Equalization via AMP m S Uiz Azl (24)

We now discuss the message passing within SPE duringygd the mean and variance ggfig (0,,) become
single turbo iteratiort. The operations are invariant tp and o

so we suppress thenotation for brevity. As described above, fin = ()& /(L4 V) (25)

SPE performs several iterations of loopy belief propagatio vith =yl (B 4 ittt el (26)
. . . . . A _ . . . .

per turbo iteration using the fixed prioss, = h, (s, = 1). N A B (e ) exp(—Ca(ch ) (€D 1)), 27)

Over the SPE iterations, the message_., is fixed at where

_ . 2 :
1m0, 00) = WNO0.D) (M0 B8 a0 2 e 5,002 152y, (00 2 gy

The dashed box in Fig. 3 shows the region of the factor gragla
on which messages are updated during the SPE iteratiors. '(l%%
I

sub-graph can be recognlged as'the one that [.)O”Oho’ Ma ing the final SPE values from the previous turbo iteration.
and Mont_anarl used to de_rlve their so-calbggbroximate mes- According to the sum-product algorithm, the estimated
sage passing (AMP) algorlthm_s [12]. Although they mostly posterior at the-SPE iteration is

focus on the case of Laplacian (or least-favoralslg)riors,

they outlined the case of general priors in [15]. We deriwe th P(0ny) = vs, e, (0TI, Vi . (Bn),  (28)

r the first turbo iteration, we sef),,, = y,, andc? > o2
all m, n. For subsequent turbo iterations, SPE is initialized



whose mean and variance determine tHeiteration MMSE
estimate off,, and its variance, respectively. Noting that the
difference between (28) and (21) is only the inclusion of t
m*™ product term, the mean and variance become

Original | “ModelCS
B i T T iy

Nij_l = an( . )51 /(1 + 'V:L) (29)
vt = () + e, /e, (30)
w2 Yl A, (31)
Y £ Bulch) exp(—Calch)(€)). (32)

Similarly, theit"-SPE iterations,,-posterior estimate is

ﬁi (Sn | y) = V};Lsn (377.)th~>sn (Sn)v (33)

M
V}'n—mn (sn) = / Tn(On,50) H V:;L—wn (0n).  (34) f i 3 - .Y
=1 Fig. 4. Reconstruction fromd/ = 5000 observations of d28 x 128 (i.e.,

Sin(;efn(ﬁn7 Sn) = SnN(9n7 0,0 ) (1 - 87,,)5(9”,), it can be N = 16384) section of the cameraman image using i.i.d Gaus@®an

) n

seen that SPE’s extrinsic log-likelihood ratio (LLR) is

where

i 21 ”lfvnasn (sn=1) _ 1 n_Sn__ Cn + () (€0)2. (35) We now briefly summarize how the transition probabilities

" Vi o (sn=0) 2 c,+o2 " {pj'} are learned. Say that, just after tH& turbo iteration,

The message update equations derived thus far updafffe§heK level-;j coefficients thought to be “large(”; have
O(MN) variables per iteration, which is inconvenient fochildren that are also thought to be large (based on the SPE-
large M and N. We now summarize the “first-order” AMP generated LLRs). Then the corresponding hyperparameters
algorithm [15] for the non-identical Bernoulli-Gaussiarigp 2nd transition probability are updated as follows:

(14), which updates onl@)(N) variables per iteration: p+D

; M ; ; & =g rG (47)
E?} = ZTEL 1 A;Tm«zm + Hy ESG; d;_“rl) = dj + K _ C (48)
P = Fo(&;c 37 eI A (t41) [ A (41 (t+1)
i+1:G( c) (38) (p}1)<+>:9<j+>(<+>+d ) ' (49)
2 =y — ZN Aty + 22N R (g1 ¢)(39) The parameters;, p- ;, and {p}°} are learned similarly.
i+1 1—0—1
=t Lt (40) IV. NUMERICAL RESULTS
. . e 1
where F,(;.), Gn(.) and () are defined as The proposed turbo approach to compressive imaging was
Fa(&¢) = o (c) ¢ (41) compared to several others: CoSaMP [7], ModelCS [3], vari-
Y 1+ Bu(c) exp(—Ca(c)(£)?) ational Bayes [6], and MCMC [5]. All numerical experiments
Gn(&¢) = Bule)exp(—Cu(c) ()P E, (&) 4+ €71, (6;¢)  were performed onl28 x 128 (i.e., N = 16384) grayscale
an(c) (42) images using a wavelet decomposition withquad-tree levels,
E,(&e) = TETRG exp( ACIGDIE 1 yielding 82 = 64 approximation coefficients anglx 82 =192

2y (1 4 9 2V1(43 Markov trees. In all cases, the matri had i.i.d Gaussian
+ Bn(€) exp(=Gu(e)(€)%) (1 +2¢(en) (£)°))(43) entries, and\/ =5000 noiseless measurements were used.
D. Learning the Satistical Parameters For our turbo scheme, we learned the statistical parameters

We now briefly summarize how the precisiofip;} are @S described in Section IlI-D and applied the same values
learned. Say that, just after thé" turbo iteration,S; £ {n € to all Markov trees. The Gamma hyperparameters were set
W; : L > 0} contains indices of the level-coefficients @S a = 1 = a; Vj, b = 1 x 10719, and [b,...,bs] =
though to be “large,” ands; £ |S,| is its cardinality. Here, [50,4,4.5,1.5,0.45]. The Beta parameters were chosen with

0" is used to denote the final SPE iteration. Then, leigl- ¢Hd=1 a”dcﬁdg =1Vj such thaB{p°} =0.9, E{p;'} =0.5,

precision hyper-parameters and mean are updated via ~ E{pg}=0.9, andE{p>,}=0.9.
- Fig. 4 shows d28x128 section of the “cameraman” image
A = a;+ K;/2 (44)

J along with the recovered images of the various algorithms.
l};‘*” =b;+ % Znesj (use)? (45) CoSaMP, which leverages only simple sparsity, and ModelCS,
B[p¢] = &S‘*”/[}(‘*” (46) which models PAS deterministically, both perform poorlireT
J J HMT-based schemes (VB, MCMC, and turbo) all perform
and, for turbo iteratiort + 1, the varianceqo? }new, are set significantly better, with MCMC and turbo performing best.
to 1/E[p ;“ Y]. The precisionp (and noise varlance2) are For a quantitative comparison, we measured average recon-
learned similarly from the SPE-estimated residual. struction performance over a suite of images froMiarosoft



ot I = B8

Fig. 5. A sample image from each of the 20 types in the Microsafallase.
Image statistics were found to vary significantly from oneetyp another.

—— CoSaMP
-8t ModelCS
—4A— VB
—&— MCMC
—O— Turbo

Average NMSE (dB)

2 4 6 8 10 12 14 15 18 20
Image type
Fig. 6. Average NMSE for each image type.

Research Object Class Recognition database that contains
20 types of images (see Fig. 5) with roughdy images of

each type. For each image type, we computed the average ; pomperg,

normalized mean squared error (NMSE} — &||3/||z||% as

well as the average computation time on a 2.5 GHz PC. The$8
results are reported in Figures 6 and 7, and the global a@8rag,
(over all 591 images) are reported in Table |I. We observe

that the proposed turbo algorithm outperforms all the other
algorithms in both reconstruction NMSE and computatio
time. Relative to the turbo algorithm, CoSaMP and ModelCS
both have significantly higher NMSE and require significantl

higher computation. MCMC yields NMSE that is very close to

that of the turbo algorithm, but is4 times slower. Variational

Bayes yields NMSE that i$ dB worse than that of the turbo [6]

algorithm, while taking twice as long to run.

1400

i
N
=3
=

[N
1)
S
=]

sool W—H‘W—M

Average computation time (sec)

CoSaMP
600 —<— Cosal
ModelCS
—A— VB
400 —%— MCMC
—O— Turbo
200
G —o
0 : ! ! . : . ! ! : !
0 2 4 6 8 10 12 14 16 18 20
Image type

Fig. 7. Average computation time for each image type.

[ Algorithm [[ Computation Time (sec] NMSE (dB) |
CoSaMP 859 -10.13
ModelCS 1205 -15.10

Variational Bayes 107 -19.04
MCMC 742 -20.10
Turbo 53 -20.31

TABLE |
NMSE AND COMPUTATION TIME AVERAGED OVER 591 IMAGES.
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