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/Problem Statement: \

Consider communicating over a channel that is
e Rayleigh block-fading with block size N,
e frequency-selective with delay spread L (where L < N),
e sparse with S non-zero taps (where 0 < .S < L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:
1. What is the capacity of this channel?

2. How can we build a practical system that operates near this capacity?
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KI'he Capacity of our Sparse Channel: \

For the unknown NN-block-fading, L-length, S-sparse channel described earlier,
Kannu/Schniter [1] established that

1. In the high-SNR regime, the ergodic capacity obeys
Coparse(SNR) = =5 T0g(SNR) + O(1).
2. To achieve the prelog factor R,,... = NT_S It suffices to use

e pilot-aided OFDM (with N subcarriers, of which S are pilots)

e with (necessarily) joint channel estimation and data decoding.
Key points:

e The effect of unknown channel support manifests in the O(1) offset term, not

N—S
the prelog factor ~5=.

e While [1] uses constructive proofs, the scheme proposed there is impractical.

[1] A. P. Kannu and P. Schniter, “On communication over unknown sparse frequency-selective

\\block—fading channels,” arXiv 1006.1548, June 2010. /
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KI'he Conventional Approach — Compressed Channel Sensing (CCS):\

[2] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “"Compressed channel sensing: A new

Motivated by recent advances in the field of “compressed sensing.”

Consider OFDM with P pilot subcarriers, giving |y, = Fyh + v, | where

Yy, € CP . observations on pilot subcarriers
F, € CP*L : a submatrix of the DFT matrix
h € C" : channel impulse response (S-sparse)

v, € C : AWGN with variance o2.

CCS-based noncoherent decoding takes the following decoupled approach [2]:
1. Use sparse reconstruction to generate a pilot-aided estimate h,

A

2. Coherently decode assuming h = h.
Modern CCS typically employs the LASSO (also known as BPDN):
h||1 such that |y, — Fphl2 < A

h £ argmi
LASSO,\A — argiming

which guarantees o-proportional £s-error with | P = O(S(log L)) | pilots.

\\approach to estimating sparse multipath channels,” Proc. IEEE, June 2010. /
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KI'he Main Contribution of this Work:

A new approach to communicating over sparse channels that. ..
N—S

e (empirically) achieves the optimal prelog factor R.,... = N
e is practical: complexity O(N L), which supports L = 100,
e significantly outperforms CCS-based decoding at both low and high SNR.

Our scheme uses. . .

e a conventional transmitter: pilot-aided BICM OFDM,

e a novel receiver: based on loopy belief propagation (BP)

— key enabler: “relaxed BP" of Guo/Wang [3] and Rangan [4]

[3] D. Guo and C.-C. Wang, “Random sparse linear systems observed via arbitrary channels: A
decoupling principle, in Proc. ISIT, June 2007.

[4] S. Rangan, “Estimation with random linear mixing, belief propagation and compressed

\\sensing,” arXiv:1001.2228v2, May 2010.

N

/




Phil Schniter The Ohio State University

/How would we do optimal decoding?: \
e To minimize BER, we need to compute the posterior pmfs {p(bq |y, cpt) 22:1
where cpt denotes known pilot/training bits.
e Assuming
1. bit-interleaved coded modulation (BICM) with OFDM:
info coded /interleaved M-QAM N OFDM
bitsb bits ¢ symbols s 7 subcarriers
2. sparse WSSUS Rayleigh-fading channel h and AWGN w:
y=D(s)Fh + v,
we can factor the posterior as follows:
L N Q
ply. ) o [ TLote) S TTptwilsi2) Y nsied) S plelb. ) [T 00
T j=1 s =1 c b_, qg=1
which can be visualized using a factor graph. . .
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KI'he Factor Graph for Noncoherent BICM-OFDM: \
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To jointly infer all random variables, we perform belief propagation (BP) on the

\\factor graph, passing (parameters of) pdfs from node to node. /
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/Approximate BP for Noncoherent BICM-OFDM: \

e Since our factor graph (FG) has loops, BP convergence is not guaranteed.

However, our simulations suggest that this is not a problem.

e Approximate BP on the left portion of the FG can be efficiently implemented
using an off-the-shelf soft-input/soft-output (SISO) decoder.

e Approximate BP on the right portion of the FG can be efficiently implemented
using a modification of the “relaxed BP" algorithm (suitable for N = 100).

e Repeated forward-backward BP iterations are reminiscent of “noncoherent

turbo equalization.”
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/Numerical Results: \

Transmitter:

e LDPC codewords with length =~ 10000 bits.
o M-QAM with M € {4,16,64,256} and multi-level Gray mapping.
e OFDM with N = 1021 subcarriers.

e Various choices of P “pilot subcarriers” and T'M interspersed “training bits.”

Channel:
e Delay spread L = 256 ~ N/4.
e Sparsity S =64 = L/4.

Compressed channel sensing:
e LASSO was implemented using SPGL1 with genie-aided tuning.

e For comparison, we also performed CCS using several reference estimators:

\\ , support-aware MMSE, and bit+support-aware MMSE. /
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/I\IMSE & BER versus pilot ratio P/S (at SNR=20dB, T =0):

M=6, SNR=20dB, bpcu=3

M=6, SNR=20dB, bpcu=3
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implementable schemes

reference schemes

LMMSE = LMMSE-based CCS
LASSO = LASSO-based CCS
BP-n = BP after n turbo iterations

SG = support-aware genie
BSG = bit- and support-aware genie

e For CCS, channel estimation MSE improves monotonically with P.
e As P grows too large, BER suffers due to necessary decrease in LDPC code-rate.

\\ e For CCS, P=4S5=1L gives best tradeoff. (No longer “compressed” channel sensing!)/
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/Bit—Rate versus SNR (with P=45=L pilots and T'=0 training): \

log,o(BER) of BP BER=0.001 contours (M=6, P=45 =L, T=0)
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Key points:
e Turbo-BP outperforms not only LASSO, but even the support genie (SG)!

e Turbo-BP performs nearly as well as the bit-+support-aware genie (BSG)!

e With P = L, all approaches achieve the prelog factor R ~ &=L = 3 which falls
short of the optimal R, = —NJGS _ 15

16° /
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/Bit—Rate versus SNR (with P=0 pilots and T'= S training): \
log,o(BER) (1=8, SNR=20dB, bpcu=3.75) BER=0.01 contour (M =8, P=0, T=1)
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Key points:
e At high-SNR, BP favors the use of P=0 pilots and T'M = SM training bits.

e With this pilot/training arrangement, BP achieves the channel's capacity prelog

factor Repase = N2

. /

12




Phil Schniter The Ohio State University

/BER versus SNR (with P=45=L pilots and 7'=0 training): \
M=2, P=4, bpcu=0.5 . M=2, P=4, bpcu=0.5
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implementable schemes reference schemes
LMMSE = LMMSE-based CCS SG = support-aware genie
LASSO = LASSO-based CCS BSG = bit- and support-aware genie
BP-n = BP after n turbo iterations
Key points:
. . 1 E .
e Sparsity can be exploited even at very low SNR. (SNR=¢-— +* range is [0,6.5] dB.)
e BP has a 1.8dB advantage over LASSO, which has a 2.2dB advantage over LMMSE.

. /
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/Conclusions: \

e We proposed a new noncoherent decoding scheme for N-subcarrier
BICM-OFDM transmitted over an S-sparse L-length channel that. ..

— is based on approximate belief propagation,

— is computationally efficient: complexity O(NL).

e Simulations suggest that our scheme. ..
. . , . N—S
— at high SNR, achieves the channel’s capacity prelog factor R,,... = ==,
— at low SNR, is only 0.8dB worse than bit+support-aware genie,

— significantly outperforms LASSO-based compressed channel sensing.

e Future work:
— automatically learn the channel statistics (e.g., SNR, sparsity .5),
— further reduce complexity to O(N log N),
— exploit channel tracking across OFDM symbols,

— handle channel variation within each OFDM symbol.
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Thanks!

N
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/Performance Limits of CCS:
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In the large system limit (i.e., L, .S, P — oo) with i.i.d F',, the Donoho/Tanner

phase transition curve (PTC) predicts exactly where noiseless LASSO will fail:

N

minimum P/L
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——optimum demodulation

0 0.2

The PTC translates directly to a minimum required P/L for CCS (as SNR— 00).

[5] D. L. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional geometry,

0.4 0.6 0.8 1
S/L

\\with implications for modern data analysis and signal processing,” Phil. Trans. Royal Soc. A, 2009. /
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